高考化学水解知识点大全
- 格式:docx
- 大小:18.31 KB
- 文档页数:4
高考水解知识点总结一、水的化学性质1. 水的组成和结构水是由两个氢原子和一个氧原子通过共价键结合而成的分子。
每个氢原子与氧原子之间的键角为104.5度,形成了一个呈V字形的分子结构。
2. 水的电离与自离在纯净水中,极少数水分子会自发地发生电离,产生氢离子(H+)和氢氧根离子(OH-)。
这种自离的现象使水具有酸性和碱性的特性。
3. 酸碱中和反应酸(如盐酸)和碱(如氢氧化钠)在适当的条件下混合可以发生中和反应,生成盐和水。
其中盐是由酸中的阳离子和碱中的阴离子组成。
4. 水的溶解性水是一种非常好的溶剂,能够溶解许多物质。
这是因为水分子具有极性,它可以与其他极性分子或离子发生氢键或离子键的相互作用,使其溶解在水中。
5. 水的电导性纯净水中自离子的浓度很低,导电能力较弱。
但在加入少量电解质(如盐)后,水的电导率会显著增加,因为这些电解质能够提供更多的离子。
6. 水的溶解度溶解度是指在一定温度下,在水中可以溶解的物质的最大量。
不同物质的溶解度受到温度、压力和溶质浓度等因素的影响。
二、水的物理性质1. 凝固和熔化水的凝固点是0摄氏度,熔化点也是0摄氏度。
当水的温度低于0摄氏度时,水分子排列成规则的晶体结构形成冰。
2. 水的沸腾和蒸发水的沸点是100摄氏度,在此温度下液体水转变为气态的水蒸气。
蒸发是液体表面分子不断从液体状态转变为气体状态的过程。
3. 水的表面张力水的表面张力使得其表面呈现一种像弹性薄膜一样的特性,使得水滴能够在平坦的表面上形成较小的接触角。
4. 水的比热容水的比热容较大,意味着水可以吸收或释放大量的热量而温度变化较小。
这种特性使水适合作为生物体内的热稳定剂。
三、水的生物学意义1. 水是生命的基础生物体中水的含量很高,它是维持生命的基本要素,参与到生命体内众多化学反应和物质运输中。
2. 水的溶剂性由于水的极性和良好的溶解性,许多生物大分子(如蛋白质、碳水化合物)和离子能够在水中溶解和运输,为生物体的各种生理功能提供支持。
课时39盐类的水解及应用知识点一盐类的水解及影响因素【考必备·清单】1.盐类的水解2.水解离子方程式的书写(1)多元弱酸盐水解:分步进行,以第一步为主。
如Na2CO3水解的离子方程式:CO2-3+H2O⇌HCO-3+OH-,HCO-3+H2O⇌H2CO3+OH-。
(2)多元弱碱盐水解:方程式一步完成。
如FeCl3水解的离子方程式:Fe3++3H2O⇌Fe(OH)3+3H+。
(3)阴、阳离子相互促进水解:水解程度较大,书写时要用“===”“↑”“↓”等。
如NaHCO3与AlCl3溶液混合反应的离子方程式:Al3++3HCO-3===Al(OH)3↓+3CO2↑。
[名师点拨]①盐类发生水解后,其水溶液往往显酸性或碱性,但也有特殊情况,如CH3COONH4溶液显中性。
②NH+4与CH3COO-、HCO-3、CO2-3等在水解时相互促进,其水解程度比单一离子的水解程度大,但仍然水解程度比较弱,不能进行完全,在书写水解方程式时用“”。
3.水解的规律有弱才水解,越弱越水解;谁强显谁性,同强显中性。
4.影响盐类水解平衡的因素(1)内因:形成盐的酸或碱越弱,其盐就越易水解。
如水解程度:Na 2CO 3>Na 2SO 3,Na 2CO 3>NaHCO 3。
(2)外因⎩⎪⎨⎪⎧溶液的浓度:浓度越小,水解程度越大温度:温度越高,水解程度越大外加酸碱⎩⎪⎨⎪⎧酸:弱酸根离子的水解程度增大,弱碱阳离子的水解程度减小碱:弱酸根离子的水解程度减小,弱碱阳离子的水解程度增大(3)以FeCl 3水解为例[Fe 3++3H 2O ⇌Fe(OH)3+3H +],填写外界条件对水解平衡的影响。
[名师点拨] (1)相同条件下的水解程度:①正盐>相应的酸式盐,如CO 2-3>HCO -3。
②水解相互促进的盐>单独水解的盐>水解相互抑制的盐。
如NH+4的水解程度:(NH4)2CO3>(NH4)2SO4>(NH4)2Fe(SO4)2。
高考化学水解知识点大全高考化学水解知识点1.概述:水解是高中化学较常见、也是较重要的一类化学反应,说到底就是和水发生的复分解或取代反应。
均为吸热反应,升高温度,水解程度增大。
溶液越稀,水解程度越大。
2.实质:被水解是物质,在水分子作用下断键后,其阳性基团结合水分子中的阴性基团OH,阴性基团结合水分子中的阳性基团H,可表示为:3.分类:⑴卤代烃(卤素原子)的水解:氢氧化钠水溶液(NaOH作催化剂)生成醇。
⑵酯的水解:酯化反应的逆反应,生成醇和酸;酸做催化剂可逆,碱作催化剂不可逆,(油脂碱性条件下的水解为皂化反应)。
⑶蛋白质的水解:生成氨基酸,酸或碱均可作催化剂,且均不可逆。
⑷多糖的水解:蔗糖水解得一分子葡萄糖一分子果糖,麦芽糖水解得两分子葡萄糖,淀粉、纤维素水解的最终产物都是葡萄糖。
纤维素水解用浓硫酸作催化剂,其他三个水解用稀硫酸作催化剂。
⑸一些特殊金属化合物水解:①碳化物:CaC2+2H2O=Ca(OH)2+C2H2↑,Al4C3+12H2O=4Al(OH)3+3CH4↑,②氮化物:Mg3N2+6H2O=3Mg(OH)2+2NH3↑,③硫化物:Al2S3+6H2O= 2Al(OH)3+3H2S↑,④非金属卤化物:PCl5+4H2O=5HCl+H3PO4,ICl+H2O=HCl+HIO,⑤氢化物:NaH+H2O=NaOH+H2↑⑹盐类的水解:中和反应的逆反应,生成酸和碱。
除少数强烈双水解外,通常都十分微弱。
处理该部分问题需要牢记:有弱才水解,无弱不水解;谁弱谁水解,越弱越水解;谁强呈谁性,同强呈中性。
4.延伸⑴醇解,⑵氨解,⑶酯交换等盐类的水解第一片:概述1.概念:在水溶液中,盐电离出来的离子结合水电离的H+或OH_生成弱电解质的过程。
2.条件:⑴盐应是可溶性的,⑵能电离出弱酸根离子或弱碱的阳离子3.实质:生成弱电解质,破坏了水的电离平衡,促进了水的电离。
4.规律:有弱才水解,无弱不水解;谁弱谁水解,都弱都水解;越弱越水解,越稀越水解,越热越水解。
盐类的水解(一)水解规律简述为:有弱才水解,无弱不水解越弱越水解,弱弱都水解谁强显谁性,等强显中性1.正盐溶液①强酸弱碱盐呈酸性②强碱弱酸盐呈碱性③强酸强碱盐呈中性④弱酸碱盐不一定2.酸式盐①若只有电离而无水解,则呈酸性(如NaHSO4)②若既有电离又有水解,取决于两者相对大小电离程度>水解程度,呈酸性电离程度<水解程度,呈碱性③常见酸式盐溶液的酸碱性: 碱性:NaHCO3、NaHS、Na2HPO4、NaHS.酸性(很特殊,电离大于水解):NaHSO3、NaH2PO4、NaHSO4(二)影响水解的因素内因:盐的本性.外因:浓度、温度、溶液碱性的变化(1)温度不变,浓度越小,水解程度越大.(2)浓度不变,湿度越高,水解程度越大.(3)改变溶液的pH值,可抑制或促进水解。
(三)盐类水解原理的应用考点 1.判断或解释盐溶液的酸碱性例如:①正盐KX、KY、KZ的溶液物质的量浓度相同,其pH值分别为7、8、9,则HX、HY、HZ的酸性强弱的顺序是________________②相同条件下,测得①NaHCO3②CH3COONa ③NaAlO2三种溶液的pH值相同。
那实验么它们的物质的量浓度由大到小的顺序是_______________.考点2.比较盐溶液中离子浓度间的大小关系.(1)一种盐溶液中各种离子浓度相对大小①当盐中阴、阳离子等价时[不水解离子] >[水解的离子] >[水解后呈某性的离子(如H+或OH—)] >[显性对应离子如OH—或H+]实例:a:CH3COONa. B:NH4Cl②当盐中阴、阳离子不等价时。
要考虑是否水解,水解分几步,实例Na2CO3:考点3.溶液中各种微粒浓度之间的关系(1)电荷守恒:电解质溶液呈电中性,即所有阳离子所带的正电荷总数与所有阴离子所带的负电荷总数代数和为零。
(2)物料守恒(原子守恒):即某种原子在变化过程(水解、电离)中数目不变。
(3)质子守恒:即在纯水中加入电解质,最后溶液中[H+]与其它微粒浓度之间的关系式(由电荷守恒及质子守恒推出)练一练! 写出0.1mol/L Na 2CO 3溶液中微粒三大守恒关系式。
化学高考知识点水解化学高考知识点-水解水解是指化学物质在水中发生分解或反应的过程。
在高考化学考试中,水解是一个重要的知识点,涉及到离子化合物的溶解、酸碱溶液的性质以及中性溶液的生成等内容。
本文将从三个方面介绍化学高考知识点-水解。
一、电解质的水解电解质是指在水溶液中能够导电的化合物。
根据溶解度的不同,电解质可以分为强电解质和弱电解质。
在水中,电解质会发生水解反应,将化合物分解为离子,形成溶液中的离子态。
以NaCl为例,NaCl溶解在水中会发生如下的水解反应:NaCl(s) → Na+(aq) + Cl-(aq)这是一个完全的离解反应,产生的Na+和Cl-离子完全溶解在水中,形成强酸性溶液。
而对于弱电解质,如CH3COOH,虽然也会发生水解反应,但是反应并不完全,只有一部分CH3COOH分子会离解。
二、酸碱溶液的水解酸和碱在水中溶解时,也会发生水解反应。
酸溶液的水解产生氢离子(H+),碱溶液的水解产生氢氧根离子(OH-)。
根据产生氢离子和氢氧根离子的不同,酸碱溶液可以分为强酸、弱酸、强碱和弱碱。
以HCl为例,HCl在水中完全离解,产生氢离子:HCl(g) + H2O(l) → H3O+(aq) + Cl-(aq)这是一个典型的酸的水解反应,产生的H3O+离子使溶液呈酸性。
而对于碱溶液,如NaOH,NaOH在水中也是完全离解的,产生氢氧根离子:NaOH(s) + H2O(l) → Na+(aq) + OH-(aq)这是一个典型的碱的水解反应,产生的OH-离子使溶液呈碱性。
三、中性溶液的生成当酸和碱以适量相互中和时,会生成中性溶液。
酸碱中和反应的特点是酸和碱的摩尔比例为1:1,且反应进行完全。
以HCl和NaOH的中和反应为例:HCl(aq) + NaOH(aq) → NaCl(a q) + H2O(l)这是一个典型的酸碱中和反应,生成的产物是NaCl和H2O,其中NaCl是无色晶体,而H2O是中性液体。
高考化学水解知识点一、单质和化合物的水解1. 单质的水解反应单质的水解反应,指的是某一种元素形态下的水解反应。
单质水解的反应式一般为:A + H2O ——>B + C其中,A代表单质,B表示产物,C为反应副产物。
单质水解反应存在很多,比如氧气、氢气、氮气等。
举个例子,氢气水解的化学反应式为:2H2O ——> 2H2 + O2在这一反应中,H2被副产物氧气还原,并且氧气作为反应的副产物随后释放出来。
2. 化合物水解反应化合物的水解反应,指的是化合物中某一部分分解成其他物质的反应。
化合物水解实际上包括两种情况:1. 离子化合物的水解反应离子化合物水解反应是指一个离子化合物,在水溶液中分解成离子的过程。
这种反应在生产过程中有着非常广泛的应用。
例如硝酸铜(Cu(NO3)2)水解反应的化学反应式为:Cu(NO3)2 + 2H2O ——> Cu(OH)2↓ + 2HNO3我们可以看到,化合物在水中发生分解产生了可沉淀的氢氧化铜和氮酸,其中氢氧化铜为配合物,形态通常为每个Cu (II)离子与两个(OH)¯离子形成的离子团,分子式为Cu(OH)2。
2. 非离子化合物的水解反应非离子化合物的水解反应是指某一种化合物在水溶液中分解成为其他物质的过程。
这种反应通常发生在水溶液中,例如硫酸盐和碳酸盐。
二、酸碱水解反应酸碱水解反应是指含有弱酸、弱碱或其盐的水解反应。
1. 弱酸的水解反应弱酸的水解反应发生在水溶液中,通常以离子态的形式发生。
弱酸的水解反应涉及到酸性、碱性和pH值等概念。
例如,乙酸水解反应的化学式为:CH3COOH + H2O ⇌ CH3COO¯ + H3O+2. 弱碱和它们的盐的水解反应弱碱和它们的盐的水解反应是指含有弱碱、弱酸或其盐的水解反应。
例如,铵盐的水解反应的化学式为:NH4Cl + H2O ⇌ NH4+ + Cl¯在这个反应中NH4+离子具有酸性,所以会使得反应中产生氢离子。
盐类的水解高考知识点盐类的水解是高考化学考试中的一个重要知识点,也是化学反应中常见的一种反应类型。
在盐类溶液中水解产生的氢离子或氢氧根离子,会影响溶液的酸碱性质。
下面将介绍盐类的水解及其相关的知识点。
一、酸性盐的水解酸性盐是指含有酸性阳离子的盐,如NH4Cl。
当酸性盐溶解在水中时,酸性阳离子会与水发生水解反应生成较强的酸性物质。
以NH4Cl为例,NH4+离子与水分子发生反应生成NH4OH和HCl。
NH4OH是一种弱碱,而HCl是一种强酸。
因此,NH4Cl溶液呈酸性。
二、碱性盐的水解碱性盐是指含有碱性阳离子的盐,如Na2CO3。
碱性阳离子在水中与水分子发生水解反应生成碱性物质。
以Na2CO3为例,CO32-离子与水分子反应生成OH-离子和碳酸根离子(HCO3-)。
OH-离子是一种强碱,而HCO3-是一种弱碱。
因此,Na2CO3溶液呈碱性。
三、中性盐的水解中性盐是指既不含有酸性阳离子也不含有碱性阳离子的盐,如NaCl。
这类盐溶解在水中,不会引起酸碱性质的变化,所以NaCl 溶液是中性的。
然而,需要注意的是,某些中性盐在特定条件下也会发生水解反应。
例如,AlCl3是一种中性盐,但在水中会发生水解反应生成Al(OH)3和HCl。
水解反应的产物和离子浓度决定了溶液的酸碱性质。
四、盐类的水解常数盐类的水解反应可以用水解常数(Kw)来定量描述。
水解常数是水解反应的平衡常数,它表示水解反应的强弱程度。
对于一般的盐类水解反应,水解常数表达式可以写为:Kw = [H+][OH-]其中[H+]是氢离子的浓度,[OH-]是氢氧根离子的浓度。
当水解常数大于1时,水解反应偏向生成[H+],溶液呈酸性;当水解常数小于1时,水解反应偏向生成[OH-],溶液呈碱性;当水解常数等于1时,溶液呈中性。
实际上,由于酸性盐和碱性盐的水解反应会相互影响,导致水解常数不仅与盐的性质有关,还与溶液中其他物质的浓度有关。
因此,水解常数的计算需要考虑到多种因素。
水解和电离知识点总结一、水解的概念和原理水解是指将某一物质(通常是化合物)与水分解为两种或两种以上物质的化学变化过程。
水解反应是一种重要的溶液中的化学反应过程,常见于盐类、酯等化合物。
水解反应的原理是溶质与溶剂(水)之间发生化学反应,生成新的物质。
在水解反应中,通常涉及到酸碱中和和水解的两种类型。
水解是溶质在水中被水分子进攻,生成离子或者分子的过程。
水分子可以进攻锯环之中的原子以解锯环,则产生两个分子或离子。
二、水解的类型1. 酸碱中和水解酸碱中和水解是指在水中将酸、碱或盐的分子或离子与水分子发生反应,形成相应的酸性或碱性的物质。
酸碱中和水解反应通常可以表示为:H+ + OH- -> H2O。
例如:NaCl + H2O -> Na+ + Cl- + H2O在这个反应中,NaCl溶解在水中,产生Na+和Cl-离子,同时还有Na+和OH-和Cl-和H+ 进行酸碱中和反应,生成水分子。
2. 酯水解酯水解是指酯类化合物在水中分解为醇和酸的化学反应。
酯水解的一般化学方程式为:RCOOR’ + H2O -> RCOOH + R’OH。
例如:CH3COOC2H5 + H2O -> CH3COOH + C2H5OH在这个反应中,乙酸乙酯在水中分解为乙酸和乙醇。
3. 蛋白质水解蛋白质是生物体内重要的大分子,它们在生物体内发挥着重要的功能。
蛋白质水解是指蛋白质在酸、碱、酶的作用下,被水分解为氨基酸或肽链。
三、电离的概念和原理电离是指溶质在溶剂中失去或增加电荷的过程。
溶质中的分子或离子在水中溶解后,它们与水分子发生相互作用,导致分子中的原子或基团失去或增加电子,形成离子。
电离通常伴随着物质的溶解过程,是溶液中溶质与溶剂之间发生化学变化的重要现象。
电离的原理是溶质与溶剂中的水分子之间发生相互作用,导致溶质分子或离子中原子或基团失去或增加电子,形成离子。
四、电离的类型1. 强电解质和弱电解质根据电离度的不同,溶质可以分为强电解质和弱电解质。
盐类水解高考知识点盐类水解是高考化学中的一个重要知识点,涉及到盐类在水中的溶解和水解反应。
下面将详细介绍盐类水解的相关知识。
一、盐类的溶解盐类是由正离子和负离子组成的化合物,可以在水中溶解。
当盐溶解时,离子会与水分子发生作用,形成水合离子。
这种过程被称为盐的溶解,也可以看作是盐的离解。
二、盐类的水解1. 盐的水解当某些盐溶解在水中时,水分子会与盐中的离子发生反应,形成新的物质。
这种反应被称为盐的水解。
2. 强酸盐的水解强酸盐是指酸性离子与金属离子组成的盐,如硫酸铵(NH4HSO4)。
当强酸盐溶解在水中时,酸性离子会与水分子反应,生成酸性溶液中的H+离子。
3. 强碱盐的水解强碱盐是指碱性离子与金属离子组成的盐,如氢氧化钠(NaOH)。
当强碱盐溶解在水中时,碱性离子会与水分子反应,生成碱性溶液中的OH-离子。
4. 中性盐的水解中性盐是指酸性离子与碱性离子组成的盐,如氯化钾(KCl)。
当中性盐溶解在水中时,其离子不与水分子反应。
三、盐类水解的影响因素1. 键能力离子的键能力越强,盐的水解程度越小。
如果某个离子的键能力很强,离子在溶液中很难与水分子反应,导致水解程度较低。
2. 离子电荷离子电荷的绝对值越大,盐的水解程度越大。
电荷绝对值大的离子会与水分子形成更强的电荷作用力,使得水解反应更容易发生。
3. 溶液浓度溶液浓度越高,盐的水解程度越大。
在浓溶液中,离子相互之间的碰撞频率增大,从而加快了水解反应的进行。
四、盐类水解的应用盐类水解在生活和工业中有着广泛的应用。
例如,氢氧化钠的水解反应可以用于制取氢氧化铝;氯化铵的水解反应可用于制取氨气等。
总结:盐类水解是化学中的一个重要知识点,涉及到盐的溶解和水解反应。
不同类型的盐在水中的水解程度会受到离子键能力、离子电荷和溶液浓度等因素的影响。
盐类水解的应用也广泛存在于我们的生活和工业中。
注意事项:以上内容为一篇关于盐类水解的1000字文章,介绍了盐类溶解和水解的相关知识,以及影响因素和应用。
高考化学水解知识点大全
水解是高中化学较常见、也是较重要的一类化学反应,说到底就是和水发生的复分解或取代反应。
下面是小编为大家整理的关于高考化学水解知识点大全,希望对您有所帮助。
欢迎大家阅读参考学习!
高考化学水解知识点大全
1.概述:
水解是高中化学较常见、也是较重要的一类化学反应,说到底就是和水发生的复分解或取代反应。
均为吸热反应,升高温度,水解程度增大。
溶液越稀,水解程度越大。
2.实质:被水解是物质,在水分子作用下断键后,其阳性基团结合水分子中的阴性基团OH,阴性基团结合水分子中的阳性基团H,可表示为:
3.分类:
⑴卤代烃(卤素原子)的水解:氢氧化钠水溶液(NaOH作催化剂)生成醇。
⑵酯的水解:酯化反应的逆反应,生成醇和酸;酸做催化剂可逆,碱作催化剂不可逆,(油脂碱性条件下的水解为皂化反应)。
⑶蛋白质的水解:生成氨基酸,酸或碱均可作催化剂,且均不可逆。
⑷多糖的水解:蔗糖水解得一分子葡萄糖一分子果糖,麦芽糖水解得两分子葡萄糖,淀粉、纤维素水解的最终产物都是葡萄糖。
纤维素水解用浓硫酸作催化剂,其他三个水解用稀硫酸作催化剂。
⑸一些特殊金属化合物水解:
①碳化物:CaC2+2H2O=Ca(OH)2+C2H2↑,Al4C3+12H2O=4Al(OH)3+3CH4↑,
②氮化物:Mg3N2+6H2O=3Mg(OH)2+2NH3↑,
③硫化物:Al2S3+6H2O= 2Al(OH)3+3H2S↑,
④非金属卤化物:PCl5+4H2O=5HCl+H3PO4,ICl+H2O=HCl+HIO,
⑤氢化物:NaH+H2O=NaOH+H2↑
⑹盐类的水解:中和反应的逆反应,生成酸和碱。
除少数强烈双水解外,通常都十分微弱。
处理该部分问题需要牢记:
有弱才水解,无弱不水解;谁弱谁水解,越弱越水解;谁强呈谁性,同强呈中性。
4.延伸
⑴醇解,⑵氨解,⑶酯交换等
盐类的水解
第一片:概述
1.概念:在水溶液中,盐电离出来的离子结合水电离的H+或OH_生成弱电解质的过程。
2.条件:⑴盐应是可溶性的,⑵能电离出弱酸根离子或弱碱的阳离子
3.实质:生成弱电解质,破坏了水的电离平衡,促进了水的电离。
4.规律:有弱才水解,无弱不水解;谁弱谁水解,都弱都水解;越弱越水解,越稀越水解,越热越水解。
谁强显谁性(适用于正盐),同强显中性。
第二片:注意
⑴盐类的水解是中和反应的逆反应,通常情况下非常微弱(强烈双水解除外),因此离子方程式中,用可逆符号,不用等号,产物不标“↓”和“↑”。
⑵水解为吸热反应
⑶多元弱酸根的水解分步进行,难度逐渐增大,通常以第一步为。
多元弱碱的金属阳离子水解,一步完成。
⑷双水解:由弱酸根和弱碱的阳离子组成的盐,因分别结合H+和OH-而相互促进,使水解程度变大,甚至完全进行的反应。
具体有:
①强烈双水解的反应完全,离子方程式用等号表示,标明↑↓,离子间不能大量共存。
如:Al3+与CO32- 、HCO3- 、S2-、HS-、HSO3-、AlO2-,Fe3+与CO32-、 HCO3-
②不完全反应的双水解,离子方程式用可逆符号,产物不标明↑↓,
离子间可以大量共存。
如:NH4+与CO32- HCO3- S2-,HS-,CH3COO-等。
③弱酸根和弱碱的阳离子在溶液中,也不一定都是双水解,有时候可能是复分解,如:Na2S+CuSO4;有时候可能是氧化还原,如:FeCl3+Na2S。
第三片:应用
⑴判断溶液的酸碱性。
依据水解规律:谁强呈谁性,同强呈中性。
但,常见的NaHSO3溶液呈酸性。
⑵对比酸或碱的相对强弱。
越水解约弱,不水解为强。
如:若NaX、NaY、NaZ溶液的PH 值分别是7、9、11,则只有HX为强酸,HY、HZ均为弱酸,且酸性为HY>HZ。
⑶判断溶液中相关粒子浓度的关系
一般考查的有大小关系、电荷守恒、质子守恒、物料守恒、综合应用。
①以Na2CO3溶液为例:溶液中存在
Na2CO3=2Na++CO32-、CO32-+H2O HCO3-+OH-、HCO3-+H2O H2CO3+OH-及H2O H++OH-
A.大小关系:c(Na+)>c(CO32-)>c(OH-)>c(HCO3-)>c(H+),
B.电荷守恒:c(Na+)+c(H+)=c(OH-)+2c(CO32-)+c(HCO3-)
C.质子守恒:c(OH-)=c(HCO3-)+2c(H2CO3)+c(H+)
D.物料守恒:c(Na+)= 2[c(HCO3-)+c(CO32-)+c(H2CO3) ]
E.其他关系往往是利用前面的三个守恒,以某种离子为媒介的组合,或以不水解的Na+的量进行换算。
视具体情况而定,不过这类考题出现几率非常大。
②若NaHY的溶液呈碱性,说明HY-的水解大于其电离,则:c(Na+)>c(HY-)>c(OH-)>c(H2Y)>c(H+)> c(Y2-),常考的是c(Na+)> c(H2Y)> c(Y2-)。
若NaHY的溶液呈酸性,说明HY-的电离大于其水解(NaHSO4不水解),则;c(Na+)>c(HY-)>c(H+)>
c(Y2-)>c(H2Y)>c(OH-),常考的是c(Na+)> c(Y2-)>c(H2Y)。
③等物质的量的NaY和HY混合液,若呈碱性,说明Y-的水解大于HY的电离,则:c(HY)>c(Na+)>c(Y-)>c(OH-)> c(H+),若呈酸性,说明Y-的水解小于HY的电离,则:c(Y-)>c(Na+)>c(HY)>c(H+)> c(OH-)。
⑷判断盐溶液蒸干、灼烧后的产物
①若生成的是不挥发性的酸,则是原物质,如Al2(SO4)3、CuSO4。
②若是挥发性的酸,蒸发得其氢氧化物,灼烧的其氧化物,如AlCl3→Al(OH)3→Al2O3,FeCl3→Fe(OH)3→Fe2O3
③还原性物质,得其氧化物,如Na2SO3溶液蒸干后得到Na2SO4固体,FeSO4溶液蒸干灼烧后得Fe2(SO4)3。
④受热易分解的物质,蒸干灼烧后得到其分解产物,如NaHCO3溶液蒸干灼烧后得到Na2CO3固体、Ca(HCO3)2溶液先分解成CaCO3再灼烧,最后得CaO、Mg(HCO3)2先变成MgCO3再变成了溶解度更小的Mg(OH)2最后灼烧后得MgO。
⑤阴、阳离子均易水解、易挥发或易分解的盐,溶液蒸干后无固体物质残余。
如NH4HCO3、(NH4)2CO3、(NH4)2S等(NH4Cl、NH4I亦如此,又不完全一样)。
⑸生产,生活中的应用
明矾做净水剂、纯碱做洗涤剂(热的更好)、泡沫灭火剂、配FeCl3溶液加盐酸、铵态氮肥不能和草木灰混用等等。