人教版八年级数学第十三章《轴对称》教案
- 格式:docx
- 大小:3.63 MB
- 文档页数:196
人教版数学八年级上册教学设计13.1《轴对称》一. 教材分析人教版数学八年级上册第13.1节《轴对称》是初中数学中的重要内容,主要让学生理解轴对称的概念,掌握轴对称的性质,并能够运用轴对称解决实际问题。
本节内容通过具体的实例,引导学生探究轴对称的性质,培养学生的观察能力、操作能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了平面几何的基本概念,对图形的性质有一定的了解。
但轴对称作为一个全新的概念,对学生来说还是有一定难度的。
因此,在教学过程中,需要结合学生的实际情况,从生活实例出发,引导学生理解轴对称的概念,逐步掌握轴对称的性质。
三. 教学目标1.了解轴对称的概念,能够识别生活中的轴对称现象。
2.掌握轴对称的性质,能够运用轴对称解决实际问题。
3.培养学生的观察能力、操作能力和解决问题的能力。
四. 教学重难点1.轴对称的概念和性质。
2.运用轴对称解决实际问题。
五. 教学方法1.采用情境教学法,从生活实例出发,引导学生发现轴对称现象。
2.采用探究教学法,让学生通过合作交流,自主发现轴对称的性质。
3.采用实践教学法,让学生动手操作,巩固对轴对称的理解。
4.采用问题教学法,引导学生运用轴对称解决实际问题。
六. 教学准备1.准备相关的多媒体教学课件,展示生活中的轴对称现象。
2.准备一些实际的例子,用于引导学生发现轴对称的性质。
3.准备一些练习题,用于巩固学生对轴对称的理解。
七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称现象,如剪纸、衣服的折叠等,引导学生发现并理解轴对称的概念。
2.呈现(10分钟)呈现一些实际的例子,让学生观察并探讨轴对称的性质。
如:轴对称图形的大小、形状、位置关系等。
3.操练(10分钟)让学生分组进行操作,通过实际动手,发现并验证轴对称的性质。
可以让学生剪出一些轴对称的图形,观察并总结其性质。
4.巩固(10分钟)让学生解决一些实际问题,运用轴对称的知识。
如:设计一个轴对称的图案,或解决一些与轴对称相关的几何问题。
第十三章轴对称13.2 画轴对称图形第1课时一、教学目标【知识与技能】能画出简单平面图形作轴对称之后的图形,了解画一般轴对称图形的方法.【过程与方法】让每个学生在生动具体的问题情境中参与数学活动,通过积极主动的探索,加深自己的理解和认识.【情感、态度与价值观】让学生体验到成功的喜悦,树立自信心,体验合作交流的重要性,感受数学美,明白数学来源于生活又服务于生活的道理.二、课型新授课三、课时第1课时,共1课时。
四、教学重难点【教学重点】1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.【教学难点】利用轴对称进行一些图案设计.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规。
六、教学过程(一)导入新课我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.(出示课件3)(二)探索新知1.创设情境,探究轴对称图形的画法教师问1:(出示课件2)观察思考,欣赏美丽图案,思考这些图案是怎样形成的?你想学会制作这种图案的方法吗?学生回答:这些图案都是轴对称图形,希望学习这些图案制作方法.教师问2:在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印,这时,右脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴,并且连接任意一对对应点得到的线段被对称轴垂直平分.类似地,请你再画一个图形做一做,看看能否得到同样的结论呢?(出示课件5)学生问:这个如何做呢?出示下边的图案教师问3:认真观察,左脚印和右脚印有什么关系?(出示课件6)学生回答:成轴对称教师问4:对称轴是折痕所在的直线,即直线l,它与图中的线段PP ′是什么关系?学生回答:直线l垂直平分线段PP′教师总结点拨:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.教师讲解:同学们自己能做出一个类似的图形吗?学生回答:可以做到.师生共同解答如下:(1)取一张长方形纸;(2)将纸对折,中间夹上复写纸;(3)在纸上沿折叠线画出半只蝴蝶;(4)把纸展开.得到的图案如下:教师问5:取一张白纸折叠夹上复写纸,任画一个你最喜欢的图形,打开纸看一下,然后改变折痕方向重新叠纸,在原来的图形上描图,再打开,你会发现什么结论?学生动手作图后回答:这两个图形关于某直线成轴对称.教师问6:当对称轴的方向和位置发生变化时,得到图形的方向和位置会变吗?学生画图后回答:当对称轴的方向和位置发生变化时,得到图形的方向和位置不会变化.例1:将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,得到的图案是()(出示课件8)师生共同解答如下:动手剪一剪,亲自操作后得到答案:B.例2:如图,将长方形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =50°,则∠CFD 的度数为( )(出示课件10)A .20° B.30° C .40° D.50°师生共同解答如下:A. B. C. D. A B D CE F由折叠知道:∠EFD=∠A=90°,∵∠EFB=50°,∴∠CFD=180°-90°-50°==40°.答案:C.总结点拨:折叠是一种轴对称变换,折叠前后的图形形状和大小不变,对应边和对应角相等.2、运用新知,作轴对称图形教师问7:如何画一个点的轴对称图形?学生回答:画出点A关于直线l的对称点A′.教师问8:如何画呢?师生共同解答如下:作法:(1)过点A作l的垂线,垂足为点O.(2)在垂线上截取OA′=OA.点A′就是点A关于直线l的对称点. (出示课件12)教师问8:如何画一条线段的对称图形?学生回答:已知线段AB,画出AB关于直线l的对称线段.师生共同解答如下:(出示课件13)教师问9:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?师生共同探究后,完成下边的问题例3:如图,已知△ABC 和直线l ,作出与△ABC 关于直线l 对称的图形.师生共同解答如下:(出示课件14)分析:△ABC 可以由三个顶点的位置确定,只要能分别画出这三个顶点关于直线l 的对称点,连接这些对称点,就能得到要画的图形.(出示课件15)作法:(1)过点A 画直线l 的垂线,垂足为点O ,在垂线上截取OA ′=OA ,A ′就是点A 关于直线l 的对称点.(2)同理,分别画出点B ,C 关于直线l 的对称点B ′,C ′ .(3)连接A ′B ′,B ′C ′,C ′A ′,得到△ A ′B ′C ′即为所求. l AB C总结点拨:(出示课件16)作轴对称图形的方法:几何图形都可以看作由点组成.对于某些图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到与原图形成轴对称的图形.例4:在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.(出示课件17)师生共同解答如下:总结点拨:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.(出示课件18)(三)课堂练习(出示课件21-25)1.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定2.如图,把一张长方形的纸按图那样折叠后,B,D两点落在B′,D′点处,若得∠AOB′=70°,则∠B′OG的度数为________.3.如图,把下列图形补成关于直线l的对称图形.4.如图给出了一个图案的一半,虚线l 是这个图案的对称轴.整个图案是个什么形状?请准确地画出它的另一半.5.如图,画△ABC关于直线m的对称图形.参考答案:1.B2.55°3.解答如下图:4.解答如下图:5.解答如下图:(四)课堂小结今天我们学了哪些内容:1.轴对称图形的基本特征。
教学设计2024秋季八年级数学上册第十三章轴对称《轴对称:轴对称》一、教学目标(核心素养)1.知识与技能:学生能够理解轴对称图形的概念,掌握识别轴对称图形的方法,能画出给定图形的轴对称图形。
2.过程与方法:通过观察、操作、归纳等数学活动,培养学生的空间想象能力和图形变换能力;在小组合作中,提升交流与合作能力。
3.情感态度价值观:激发学生对数学美的感受,培养探索数学规律的兴趣;通过解决实际问题,增强应用数学的意识。
二、教学重点•轴对称图形的定义及其性质。
•如何判断一个图形是否为轴对称图形。
•掌握作轴对称图形的基本方法。
三、教学难点•理解轴对称图形中对称轴两侧图形全等的意义。
•灵活运用轴对称性质解决复杂图形问题。
四、教学资源•多媒体课件(包含轴对称图形的实例、动态演示)。
•实物教具(如对称的剪纸、镜子等)。
•学生分组材料(纸张、剪刀、直尺、铅笔)。
•教材及配套练习册。
五、教学方法•直观演示法:利用多媒体和实物展示轴对称现象。
•动手操作法:学生动手剪纸或画图,体验轴对称图形的形成过程。
•合作探究法:小组内讨论轴对称图形的性质,共同解决问题。
•归纳总结法:引导学生总结轴对称图形的特征和应用。
六、教学过程1. 导入新课•情境引入:展示自然界和生活中轴对称图形的图片(如蝴蝶、树叶、建筑等),引导学生观察并思考这些图形的共同特点。
•提出问题:这些图形有什么共同之处?你能举出更多这样的例子吗?2. 新课教学•定义讲解:明确轴对称图形的定义,强调对称轴、对应点、对应线段等概念。
•实例分析:选取几个典型的轴对称图形,引导学生分析其对称轴和对称性质。
•动手操作:•活动一:学生分组,利用纸张和剪刀尝试剪出轴对称图形,并讨论其对称轴。
•活动二:给定一个简单图形,要求学生画出其关于某条直线的轴对称图形,并说明作图步骤。
•归纳总结:总结轴对称图形的性质,强调对称轴两侧图形全等的特点。
结构图示意(简化版):引入(生活实例)→ 定义讲解(轴对称图形)→ 实例分析(图形特征)→动手操作(剪纸/画图)→ 归纳总结(性质、作图方法)3. 课堂小结•回顾轴对称图形的定义、性质及作图方法。
八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第13.1节介绍了轴对称的概念和性质。
本节内容是学生对几何图形变换的一次重要学习,它不仅巩固了学生对平面几何图形的认识,而且为后续学习其他几何变换打下基础。
教材通过丰富的实例,引导学生认识轴对称,探索轴对称的性质,提高学生的空间想象能力和抽象思维能力。
二. 学情分析八年级的学生已经掌握了基本的几何知识,具备一定的观察、分析和推理能力。
但轴对称概念较为抽象,学生可能难以理解。
因此,在教学过程中,教师应注重引导学生通过具体实例去发现和探索轴对称的性质,让学生在实践中掌握知识。
三. 教学目标1.让学生了解轴对称的概念,理解轴对称的性质。
2.培养学生观察、分析和推理的能力。
3.引导学生运用轴对称的性质解决实际问题。
四. 教学重难点1.轴对称的概念及性质。
2.如何运用轴对称的性质解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过生动有趣的实例,引导学生发现轴对称的性质,激发学生的学习兴趣。
在小组合作学习中,培养学生团队合作精神和沟通能力。
六. 教学准备1.准备与轴对称相关的实例图片和练习题。
2.准备课件,展示轴对称的性质和应用。
3.准备黑板,用于板书重要知识点。
七. 教学过程1. 导入(5分钟)利用生活中常见的实例,如剪纸、折纸等,引导学生发现这些实例中存在一种对称现象。
提问:“这种现象叫做什么?”让学生回答,引出本节课的主题——轴对称。
2. 呈现(10分钟)展示轴对称的定义和性质。
通过PPT呈现轴对称的图片,让学生观察并总结轴对称的性质。
同时,教师在黑板上画出轴对称的图形,标注出对称轴,让学生更直观地理解轴对称。
3. 操练(15分钟)让学生分组讨论,每组找出生活中的一个实例,运用轴对称的性质进行解释。
讨论结束后,每组选代表进行分享。
教师对每组的分享进行点评,指出优点和需要改进的地方。
第十三章轴对称13.1轴对称13.1.1 轴对称【知识与技能】(1)理解轴对称图形和两个图形关于某条直线对称的概念.(2)了解轴对称图形的对称轴,两个图形关于某条直线对称的对应点.(3)掌握线段垂直平分线的概念.(4)理解和掌握轴对称的性质.【过程与方法】通过已知图形画对称轴及画轴对称图形,让学生体会轴对称图形的性质和轴对称在实际生活中的应用.【情感态度与价值观】通过对轴对称图形和轴对称的认识,增强学生对对称美的认识,使学生感受数学带来的美.轴对称图形和两个图形关于某条直线对称的概念.轴对称图形和两个图形关于某条直线对称的区别和联系.多媒体课件、剪刀、长方形纸片教师引入:我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称的角度考虑,自然界的许多动植物也按照对称形生长,中国的方块字中有些也具有对称性,(教师利用投影出示一些图片,如图13-1.1-1)……对称给我们带来很多美的感受!其中轴对称是对称中重要的一种,那么这节课我们就学习轴对称.(教师板书课题)探究1:轴对称教师提出问题:把一张长方形纸片对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个图案,让学生欣赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征,教师归纳轴对称图形及轴对称的概念,并板书概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.然后教师让学生举出一些轴对称图形的例子.教师出示例题:例1在如图13-1.1-2所示的图形中,轴对称图形的个数是(B).学生先独立思考,再口答哪些是轴对称图形,教师进行点评.然后教师让学生完成:教材P60练习第1题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)探究2:两个图形成轴对称教师提出问题:在教材P59图13.1-3中,每对图形有什么共同特征?你们能类比前面的内容概括出它们的共同特征吗?学生观察思考,并互相交流,发现其共同特征——每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.教师进一步说明:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.然后教师让学生举出一些两个图形成轴对称的例子.教师提出问题:(1)将教材P58-59图13.1-2和图13.1-3进行比较,轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?学生独立思考后,进行交流,然后学生代表发言.教师根据学生回答的情况进行点评,最后师生共同归纳得出:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.接着,教师继续提出问题:(1)成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?(2)在教材图13.1-3中,你能标出A,B,C的对称点吗?学生独立思考后,再展开讨论,教师参与学生的讨论,并及时指导.然后教师让学生完成:教材P60练习第2题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)最后教师总结:探究3:垂直平分线教师出示问题:(1)观察教材P59图13.1-4,线段AA′,BB′,CC′与直线MN有什么关系?(2)在教材图13.1-5中,你能测量出线段AA′,BB′与直线l的夹角吗?它们与直线l垂直吗?点A与点A′到直线l的距离相等吗?点B与点B′到直线l的距离呢?教师提出问题,学生独立思考,然后小组交流,学生汇报交流结果.教师接着引导学生从观察三条线段与直线MN的位置关系,利用投影动画展示点A与点A′等重合的情形,并指出:经过线段中点并垂直于这条线段的直线,叫作这条线段的垂直平分线.最后师生共同归纳:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.1.概念:轴对称图形、两个图形关于某条直线对称、对称轴、对称点.2.找轴对称图形的对称点.3.垂直平分线.【正式作业】教材P64习题13.1第1-5题。
第十三章轴对称13.1.1 轴对称教学目标:1.了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.3.了解线段垂直平分线的概念.教学重、难点:轴对称的概念和性质教学过程:一、问题导入:引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!二、课本精讲:问题1 如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?问题2观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?两者的联系:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.问题3 如图,△ABC 和△A′B′C′关于直线MN 对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN 有什么关系?教师:你能说明其中的道理吗?上面的问题说明“如果△ABC 和△A′B′C′关于直线MN 对称,那么,直线MN 垂直线段AA′,BB′和CC′,并且直线MN 还平分线段AA′,BB′和CC′”.如果将其中的“三角形”改为“四边形”“五边形”…其他条件不变,上述结论还成立吗?问题3 如图,△ABC 和△A′B′C′关于直线MN 对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN 有什么关系?经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.教师:你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.即对称点所连线段被对称轴垂直平分;对称轴垂直平分对称点所连线段.问题4 下图是一个轴对称图形,你能发现什么结论?能说明理由吗?结论:直线l 垂直线段AA′,BB′,直线l平分线段AA′,BB′(或直线l 是线段AA′,BB′的垂直平分线).教师:你能用数学语言概括前面的结论吗?轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.三、巩固提高:教科书60页练习1、2题。
轴对称教学目标:1、通过生活中的具体实例认识轴对称,让学生掌握轴对称图形和关于直线成轴对称这两个概念。
2、培养学生的观察能力、思维能力、操作能力、归纳能力。
3、让学生体会数学的对称美在生活中的广泛应用和体现。
教学重点:准确掌握轴对称图形和关于直线成轴对称这两个概念的实质。
教学难点:轴对称图形和关于直线成轴对称的区别和联系。
学生课前准备:每人准备一张纸和一把剪刀教学过程:一、情景创设在生活中,许多事物与图形紧密联系在一起。
现在老师给大家准备了一些生活中的常见的事物图案和标志,请大家观赏。
(投影显示)[教学说明:创设情景将生活中的对称图案和标志展示出来,引导学生将生活中的对称美牵引到数学中来]二、探索研讨做一做(活动)将同学们准备好的一张纸对折后,用笔沿着折线画一条直线,然后从折叠处剪出一个你喜欢的图形,想一想,展开后会是一个什么样的图形?[教学说明:让同学们从动手实践中总结出结论:剪出来的图形关于折线对称](引出课题)看一看,想一想细心观察一些日常生活中常见的动物图片如:蝴蝶、蜻蜓、对称简笔画等,能发现它们有什么共同特征?(投影显示)[教学说明:让学生通过观察、讨论得出规律。
]请同学们细心观察动画后,总结出轴对称图形的概念(投影显示)轴对称图形定义:如果一个图形沿着某条直线对折,对折后的两面部分能够完全重合,就称这样的图形为轴对称图形。
这条直线叫做这个图形的对称轴。
在我们的现实生活中有很多物体的平面图形是轴对称图形,你能举例说说吗?3、例题讲解:请同学们细心观察,下列轴对称图形各有多少条对称轴?[教学说明:让学生从本题中总结出轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条等,对称轴的方向不仅仅是垂直的,有可能是水平的或倾斜的。
]练一练判断下列图形哪些是轴对称图形,如果是,请找出所有对称轴。
(1) (2) (3)(4) (5)(结论:一般的三角形,一般的梯形,一般的平行四边形不是轴对称图形(可以通过折纸验证。
第十三章轴对称1.通过让学生进行实例欣赏,了解轴对称、对称轴以及轴对称图形的概念,体验轴对称在现实生活中的运用,掌握轴对称的性质.2.了解“线段垂直平分线上的点与这条线段两个端点的距离相等”.3.了解等腰三角形和等边三角形的概念,掌握等腰三角形和等边三角形的性质和判定方法.4.掌握“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”.1.在直观感知、操作确认的基础上,进一步学会说理,掌握一定的演绎推理能力.2.体会数学在现实生活中的广泛应用,认识数学无处不在,提高学生的学习兴趣和热情.1.通过实例培养学生的观察能力、思维能力、动手能力、总结能力,体验数学与生活的联系,发展学生的空间观念.2.让学生树立挑战困难的信心和勇气,激发他们战胜困难的信心和决心.本章教材注重所学内容与现实生活的联系,强化观察、操作等探索过程.在教学内容的呈现上力求生动有趣,贴近现实生活,对知识的陈述,不仅注重结果,而且尽量给学生提供一定的探索空间和手段,让学生自己去发现结论,在探索的过程中培养学生的各种能力.本章主要内容是围绕等腰三角形展开的,它是继角和线段后接触到的第三个轴对称图形,这部分内容引入了较多的动手操作和直观感知,通过观察、归纳等方法去探索和发现等腰三角形的性质和判定方法.与此同时,采用适当的方式,进行数学说理,让学生进一步体验数学证明的必要性,学会说理,将合情推理和演绎推理两者更好地有机结合.【重点】1.轴对称的概念、性质和判定.2.等腰(或等边)三角形的性质和判定.【难点】1.利用轴对称的性质进行图案设计.2.推理证明过程的书写.1.在轴对称这一节的认识中,教师要注意通过大量的图片,欣赏现实生活中的轴对称图形,体验轴对称在现实生活中的应用,在探索中发现轴对称图形的性质,让学生体会轴对称的思想和由特殊到一般的思想,要注意轴对称与轴对称图形的区别和联系.2.画轴对称图形这一节实质上就是要利用轴对称的性质,通过让学生作轴对称图形,了解关于坐标轴对称点的特征,要注意让学生动手操作,观察发现规律,形成能力.要注意给学生创造一个循序渐进的探索过程.3.等腰三角形这一节中,教师要注意让学生动手操作,通过等腰三角形的轴对称变换得出等腰三角形的一些性质.对于等腰三角形“三线合一”的性质,学生不容易引起重视,但它的应用很广泛,教学中要适当补充例题,让学生巩固对该性质的掌握.对于等边三角形的性质和判定要让学生结合等腰三角形的性质和判定去考虑,要注重这些性质和判定方法在实际生活中的应用.4.本章的课题学习,一定要让学生多讨论、多交流,总结规律,积累经验,掌握解题的思路和方法.教师一定要注意引导,让学生发现最短路径问题的一般规律和特点,从而形成能力.13.1轴对称1.理解和掌握轴对称图形和成轴对称的定义.2.通过学生的自主探究掌握线段的垂直平分线的性质.3.能确定轴对称图形的对称轴,掌握画对称轴的方法.1.在探索的过程中培养学生的观察、操作的能力,发展学生的空间观念.2.通过对图形的观察、发现,总结一些性质,培养学生的归纳能力.1.在小组合作学习的过程中,激发学生的学习热情和积极性.2.在动手实践中体会轴对称在现实生活中的应用,感受数学美.【重点】1.轴对称和轴对称图形的性质.2.线段的垂直平分线的性质.3.轴对称图形的对称轴的确定.【难点】1.轴对称和轴对称图形的性质.2.线段垂直平分线的性质的理解和应用.13.1.1轴对称1.理解轴对称图形和两个图形关于某直线对称的概念.2.了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对称点.3.掌握线段垂直平分线的概念.4.理解和掌握轴对称的性质.1.通过学习轴对称图形和两个图形成轴对称,进一步认识几何图形的本质特征.2.通过学习轴对称图形和两个图形成轴对称的区别和联系,进一步发展学生抽象概括的能力.3.能准确画出一个图形的对称轴,能利用轴对称的性质解决实际问题.通过对轴对称图形和两个图形成轴对称的学习,激发学生学习的欲望,主动参与数学学习活动.【重点】轴对称图形和两个图形关于某直线对称的概念.【难点】轴对称图形和两个图形关于某直线对称的区别与联系.【教师准备】教材章头图及图13.1 - 1,13.1 - 2,13.1 - 3,13.1 - 4,13.1 - 5的投影片.【学生准备】搜集轴对称图形.导入一:我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中有些也具有对称性……对称给我们带来很多美的感受!初步掌握对称的奥妙,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,从这节课开始,我们来学习第十三章:轴对称.导入二:出示图片:青山倒映在水中.这是什么景象呢?(对称)同学们可以想象,当你放学回家,落日、晚霞,还有远处的青山倒映在平静的水中,这样如诗如画的景致怎能不令人难忘!自远古以来,对称形式被认为是和谐美丽的,不论是在自然界中还是在建筑里,甚至最普通的日常生活中,对称的形式随处可见.本节课我们就一起去探究轴对称的奥秘吧.[设计意图]两个导入都是以生活中的轴对称为例,勾勒美好的画面,让学生感受数学中的美,体会数学与生活的密切联系,自然地引入到本节课的学习之中.一、探究轴对称【活动1】展示教材章头图以及图13.1 - 1.教师展示生活中的图片,让学生欣赏图片,感知对称图形;学生列举所见到的图形.活动中,教师明确:(1)对称的多样性,而其中轴对称是重要的一种;(2)本节要探究的内容是轴对称和轴对图形.[设计意图]展示的图片,包含自然景观、分子结构、建筑物、艺术作品、动物、植物、生活用品等与生活实际相关的图形,让学生感知对称图形,激发学生的学习热情.通过展示学生自制的图片,让学生联系生活实际,主动参与数学活动,感知数学与生活的密切相关.【活动2】问题:(1)把一张长方形纸对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?(2)观察剪出的窗花和图13.1 - 2中的图形,你能发现它们有什么共同特征?(3)联系实际,你能举出一个轴对称图形的例子吗?【师生活动】教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个图案,让学生观赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征,教师归纳轴对称图形及轴对称的概念,并板书概念,然后让学生举例.[知识拓展]轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条,甚至是无数条.[设计意图]教师演示剪纸过程起示范作用,学生动手剪纸是让学生参与到活动中去,发展学生的动手能力,通过观察、思考,让学生互相交流,增强发现能力.【活动3】问题:(1)教材图13.1 - 3中,每对图形有什么共同特征?(2)联系实际,你能举出一些生活中两个图形成轴对称的例子吗?【师生活动】学生观察、举例、讨论交流,教师引导得出两个图形关于某直线对称及对称轴、对称点的概念,并板书概念.[设计意图]学生通过观察、举例、主动思考,认识两个图形关于某直线对称的本质特征,鼓励学生善于观察、勇于发现,培养合作意识.【活动4】问题:(1)结合教材图13.1 - 2和13.1 - 3进行比较,轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?【师生活动】学生根据两组图形的比较观察,讨论交流(1),教师引导学生得出区别.教师提出问题后,让学生思考(2),进一步明确轴对称图形与两个图形成轴对称之间的联系.[知识拓展]轴对称包含两层含义:(1)有两个图形,且这两个图形能够完全重合,即形状、大小完全相同;(2)对重合的方式有限制,只能是把它们沿一条直线对折后能够重合.[设计意图]通过学生举例,独自练习进一步认识两个图形成轴对称的本质.通过比较观察、相互讨论进一步认识两种图形的本质特征.让学生运用辩证的观点认识事物,发展学生抽象思维能力.【活动5】问题:(1)成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?(2)在教材图13.1 - 3中,你能标出A,B,C的对称点吗?【师生活动】学生独立思考后,再展开讨论,教师参与学生讨论,及时指导.[设计意图]通过练习进一步巩固两个图形成轴对称和对称点的概念.二、垂直平分线思路一问题:(1)观察教材图13.1 - 4,线段AA',BB',CC'与直线MN有什么关系?(2)在图13.1 - 5中,你能测量出线段AA',BB'与直线l的夹角吗?它们与直线l垂直吗?你能用刻度尺测量出点A与A'到直线l的距离吗?点B与B'到直线l 呢?【师生活动】教师引导学生从位臵上观察三条线段与直线MN的关系,教师利用投影动画展示A与A'等重合的情形,线段垂直平分线的定义揭示了线段与对称轴MN的关系:一是垂直;二是平分.从而归纳出轴对称的性质.[设计意图]利用动画演示,让学生一目了然,便于接受,采用多种方法丰富学习渠道,加深了对知识的理解和掌握.思路二观察教材中图13.1 - 4,线段AA'与直线MN有怎样的位臵关系?你能说明理由吗?引导学生说出如下关系:AP=PA',∠MPA=∠MPA'=90°.类似地,点B与点B',点C与点C'是否也有同样的关系?你能用语言归纳上述发现的规律吗?结合学生发表的观点,教师总结并板书:对称轴经过对称点所连线段的中点,并且垂直于这条线段.在这个基础上,教师给出线段的垂直平分线的概念,然后把上述规律概括成图形轴对称的性质.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对称点的连线与对称轴之间是否也有同样的关系呢?(结合教材图13.1 - 5让学生说明)从而得出:类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.[知识拓展]平面镜看到的影像,也可以理解为是一种对称现象.例如: 一面镜子MN竖直悬挂在墙壁上,人眼O的位臵如图所示,有三个物体A,B,C放在镜子的前面,人眼能从镜子中看见哪个物体?这道题是轴对称在实际中的应用,关键是建立相应的轴对称图形的数学模型,再利用轴对称知识来解决.物体在镜子里面所成的像就是数学问题中的物体关于镜面的对称点,人眼从镜子里所能看见的物体关于镜面的对称点,必须在人眼的视线范围内,所以分别作A,B,C三点关于直线MN的对称点A',B',C'.显然人从镜子里只能看见A,B两个物体.1.轴对称图形.轴对称图形沿对称轴折叠,两旁的部分能够互相重合.轴对称图形的对称轴是经过图形的某直线,可能只有一条,也可能不止一条.2.轴对称图形与两个图形成轴对称既有区别又有联系.区别:轴对称图形是指一个图形的特征,成轴对称是两个图形的位臵关系.联系:二者都有对称轴,如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形;如果把轴对称图形对称轴两旁的部分看成两个图形,那么这两个图形关于这条轴对称.3.轴对称的性质:对称轴垂直平分对应点所连的线段.1.一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线所在直线对称,那么下列图案中不符合要求的是 ()答案:D2.如图所示,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条B.2条C.4条D.8条解析:这是一个正八边形,对称轴有4条.故选C.3.如图所示的是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变解析:∵轴对称变换不改变图形的形状与大小,∴与原图形相比,形状没有改变,大小没有改变.故选A.4.如图所示,由4个大小相同的正方形组成的L形图案.(1)请你改变1个正方形的位臵,使它变成轴对称图形;(2)请你再添加一个小正方形,使它变成轴对称图形.解:(1)(2)答案不唯一,如图所示.13.1.1轴对称一、探究轴对称1.轴对称图形2.轴对称二、垂直平分线1.垂直平分线2.轴对称的性质一、教材作业【必做题】教材第60页练习第1,2题.【选做题】教材第64页习题13.1第1,2,3题.二、课后作业【基础巩固】1.下列图案中,不是轴对称图形的是()2.下面几何图形中,一定是轴对称图形的有()A.1个B.2个C.3个D.4个3.如图所示,下面图形中不是轴对称图形的是()【能力提升】4.如图所示,在下面一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.5.如图所示,在长方形的台球桌面上,选择适当的角度打击白球,可以使白球经过两次反弹后将黑球直接撞入袋中,此时∠1=∠2,∠3=∠4,并且∠2+∠3=90°,∠4+∠5=90°.如果黑球与洞口的连线和台球桌面边缘的夹角∠5=30°,那么∠1应该等于多少度才能保证黑球准确入袋?请说明理由.【拓展探究】6.如图所示,ΔABC与ΔDEF关于直线MN对称,其中∠C=90°,AC=8 cm,DE=10 cm,BC=6 cm.(1)线段AD与MN的关系是什么?(2)求∠F的度数;(3)求ΔABC的周长和ΔDEF的面积.【答案与解析】1.A2.C(解析:圆弧、角、等腰梯形都是轴对称图形.故选C.)3.B4.(解析:从图中可以发现所有的图形都是轴对称图形,而且图形从左到右分别是数字1,2,3,4,5,7,所以画一个轴对称图形且数字为6即可.)5.解:如图所示,∵∠5=30°,∴∠7=∠5=30°,∵∠3=∠4,∴∠7=∠6=30°,∴∠2=∠6=30°,∴∠1=∠2=30°.答:∠1等于30度时,才能保证黑球能准确入袋.6.解:(1)∵ΔABC与ΔDEF关于直线MN对称,∴MN垂直平分AD. (2)由题意得ΔABC≌ΔDEF,∴∠F=∠C=90°. (3)∵AC=8 cm,DE=10 cm,BC=6 cm,∴DE=AB=10 cm,∴ΔABC的周长=6+8+10=24(cm);ΔDEF的面积×6×8=24(cm2).=12轴对称图形是一个较抽象的概念,教师在教学中根据学生的年龄特点,设计了这堂课,在教学中始终以学生为主体,着力引导学生通过操作、观察、比较、思考、交流、讨论等活动,主动获取知识,掌握和理解轴对称图形的概念和基本特点,并在自主探索中体会到探索之趣,成功之乐,培养了学生学习兴趣,更发展了学生的探索能力.1.学生对轴对称图形和轴对称的概念容易混淆,教师分析的不到位.2.对于轴对称和轴对称的性质教师还可以适当的加以延伸.3.对于知识的归纳和总结教师说得多,学生说得少.对于轴对称图形和轴对称这两个概念要指导学生认真地加以区分,可以从两方面考虑:一是概念;二是它们的区别和联系,要让学生明确成轴对称的两个图形如果看成一个整体,它就是一个轴对称图形.对于它们的性质,一定要让学生自己去发现、归纳,在不足的情况下,让学生互相补充,能让学生说出来的,教师绝不包办代替,给学生自由思考和交流的空间,让他们自主探索,全面发展.练习(教材第60页)1.解:(1)(2)(3)(5)是轴对称图形,(1)(2)(3)有一条对称轴;(5)有四条对称轴.2.解:(1)(3)两个图案是轴对称的,对称轴各有一条,对称点略.(2014·泉州中考)正方形的对称轴的条数为()A.1B.2C.3D.4…答案‟ D(2014·兰州中考)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()…答案‟ A(2014·泰安中考)下列四个图形,其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1B.2C.3D.4…答案‟ C(2014·南宁中考)下列图形中,是轴对称图形的是 ()…答案‟ D13.1.2线段的垂直平分线的性质1.理解线段垂直平分线的性质和判定方法.2.能利用轴对称的性质作出一个图形的对称轴.1.在观察、操作、思考的基础上,让学生掌握线段垂直平分线的性质和判定方法.2.掌握作轴对称图形对称轴的方法.增强学生学习的兴趣,培养严谨的学习态度,增强学习的自信心.【重点】1.线段垂直平分线的性质和判定方法.2.轴对称图形的对称轴的确定.【难点】线段的垂直平分线的性质和判定方法的应用.第课时1.掌握线段的垂直平分线的性质和判定.2.能灵活运用线段的垂直平分线的性质和判定解题.通过经历线段的垂直平分线的性质和判定的证明过程,体验逻辑推理的数学方法.通过认识上的升华,使学生加深对命题证明的认识.【重点】1.线段的垂直平分线的性质和判定.2.能灵活运用线段的垂直平分线的性质和判定解题.【难点】灵活运用线段的垂直平分线的性质和判定解题.【教师准备】三角尺、圆规、直尺.【学生准备】三角尺、圆规、直尺.导入一:我们已经知道了线段是轴对称图形,线段的垂直平分线就是它的对称轴.那么线段的垂直平分线有什么性质呢?这节课我们就来研究它.导入二:为方便居民的出行,准备在小河上修建一座桥.为了让A和B两个社区的居民到桥的距离都相等,建桥的位臵应该选在哪?线段垂直平分线的性质思路一1.整体感知请同学们先根据这个命题画出图形(如图所示),写出已知、求证.2.师生互动【互动1】【师】这是证明线段相等的命题,回忆以前证明角的平分线的性质的方法,会得到什么启发?【生】可以利用“SAS”证明ΔPAC≌ΔPBC,从而得到PA=PB.【师】很好,这样就得到了线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.[知识拓展](1)线段垂直平分线的性质是线段垂直平分线上所有点都具有的共同特征,即线段垂直平分线上的每一个点到线段两端的距离都相等.(2)由性质定理的证明可知,要证明一个图形上每一个点都具有这种性质,只需要在图形上任取一点作代表即可.(3)这个定理向我们提供了一个证明线段相等的方法.说明:今后我们可以直接利用这个性质得到有关线段相等,同时这也可以当作等腰三角形的一种判定方法.【互动2】【师】反过来,与一条线段两个端点的距离相等的点是否一定在这条线段的垂直平分线上呢?我们也可以通过“证明”来解决这个问题.【生】画出图形(如图所示),写出已知,求证.【师】为了证明Q点在AB的垂直平分线上,可以过Q作辅助线,先构造“垂直或平分”中的一个关系,去证明另一个.特别要注意防止“过Q 作线段AB的垂直平分线”这种错误.你能根据提示,说出证明过程吗?【生】……【师】在证明过程中,我们又得到了线段垂直平分线的判定方法:与线段两个端点距离相等的点在这条线段的垂直平分线上.【生】判定方法只能判定点在线段的垂直平分线上,那么怎么才能判定这条直线就是线段的垂直平分线呢?【师】这个问题提得很好,大家想一想,几点确定一条直线?【生】两点.【师】所以,只要我们能证明一条直线上有两点满足判定方法的条件,那么这条直线就一定是线段的垂直平分线.[知识拓展](1)要证明某条直线是某条线段的垂直平分线,有两种证明方法:一是根据定义去证明;二是根据“两点确定一条直线”,证明直线上的两个点都在这条线段的垂直平分线上.(2)根据线段垂直平分线的判定定理可以作线段的垂直平分线.【互动3】【师】(出示例1)尺规作图:经过已知直线外一点作这条直线的垂线.已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.【师】指导作法,师生共同完成,让学生思考:为什么直线CF就是所求作的垂线?【生】讨论,小组代表发言.思路二1.线段的垂直平分线的性质(教师出示教材第61页探究,让学生测量,思考有什么发现?)如图所示,直线l垂直平分线段AB,P1,P2,P3,…是l上的点,分别量一量点P,P2,P3,…到点A与点B的距离,你有什么发现?1学生回答,教师小结:线段垂直平分线上的点与这条线段两个端点的距离相等.性质的证明:(教师讲解题意并在黑板上画出图形)上述问题用数学语言可以这样表示:如图所示,设直线MN是线段AB的垂直平分线,点C是垂足,点P是直线MN上任意一点,连接PA,PB,我们要证明的是PA=PB.教师分析证明思路:图中有两个直角三角形,ΔAPC和ΔBPC,只要证明这两个三角形全等,便可证得PA=PB.教师要求学生自己写已知、求证,并证明.(学生证明完后教师板书证明过程供学生对照)已知:MN⊥AB,垂足为点C,AC=BC,点P是直线MN上任意一点.求证:PA=PB.证明:在ΔAPC和ΔBPC中,∵PC=PC(公共边),∠PCB=∠PCA(垂直定义),AC=BC(已知),∴ΔAPC≌ΔBPC(SAS).∴PA=PB(全等三角形的对应边相等).因为点P是线段的垂直平分线上一点,于是就有:线段垂直平分线上的点与这条线段两个端点的距离相等.2.线段的垂直平分线的判定你能写出上面这个命题的逆命题吗?它是真命题吗?这个命题不是“如果……那么……”的形式,要写出它的逆命题,需分析原命题的条件和结论,将原命题写成“如果……那么……”的形式,逆命题就容易写出.鼓励学生找出原命题的条件和结论.原命题的条件是“有一个点是线段垂直平分线上的点”,结论是“这个点与这条线段两个端点的距离相等”.此时,逆命题就很容易写出来,“如果有一个点与线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上”.写出逆命题后,就想到判断它的真假.如果真,那么需证明它;如果假,那么需用反例说明.请同学们自行在练习本上完成.学生给出了如下的四种证法.已知:线段AB,点P是平面内一点,且PA=PB.求证:P点在AB的垂直平分线上.证法1:过点P作已知线段AB的垂线PC,∵PA=PB,PC=PC,∴RtΔPAC ≌RtΔPBC(HL).∴AC=BC,即P点在AB的垂直平分线上.证法2:取AB的中点C,过P,C作直线.∵PA=PB,PC=PC,AC=CB,∴ΔAPC≌ΔBPC(SSS).∴∠PCA=∠PCB(全等三角形的对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,即PC⊥AB,∴P点在AB的垂直平分线上.证法3:过P点作∠APB的平分线,∵PA=PB,∠1=∠2,PC=PC,∴ΔAPC≌ΔBPC(SAS).。