南京大学1996年数学分析和高等代数考研试题
- 格式:pdf
- 大小:46.46 KB
- 文档页数:6
1996年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分,把答案填在题中横线上.) (1) 设2lim()8xx x a x a→∞+=-,则a =___________. (2) 设一平面经过原点及点(6,-3,2),且与平面428x y z -+=垂直,则此平面方程为___________.(3) 微分方程22xy y y e '''-+=的通解为___________.(4) 函数ln(u x =+在(1,0,1)A 点处沿A 点指向(3,2,2)B -点方向的方向导数为___________.(5) 设A 是43⨯矩阵,且A 的秩()2r A =,而102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则()r AB =___________.二、选择题(本题共5个小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) 已知2()()x ay dx ydyx y +++为某函数的全微分,则a 等于 ( ) (A) -1 (B) 0 (C) 1 (D) 2 (2) 设()f x 有二阶连续导数,且(0)0f '=,0()lim 1||x f x x →''==,则 ( ) (A) (0)f 是()f x 的极大值 (B) (0)f 是()f x 的极小值(C) (0,(0))f 是曲线()y f x =的拐点(D) (0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点(3) 设0(1,2,)n a n >=,且1n n a ∞=∑收敛,常数(0,)2πλ∈,则级数21(1)(tan )n n n n a n λ∞=-∑( )(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 收敛性与λ有关 (4) 设()f x 有连续的导数,(0)0f =,(0)0f '≠,220()()()xF x x t f t dt =-⎰,且当0x →时,()F x '与kx 是同阶无穷小,则k 等于 ( )(A) 1 (B) 2 (C) 3 (D) 4(5) 四阶行列式112233440000000a b a b b a b a 的值等于 ( ) (A) 12341234a a a a b b b b - (B) 12341234a a a a b b b b +(C) 12123434()()a a b b a a b b -- (D) 23231414()()a a b b a a b b -- 三、(本题共2小题,每小题5分,满分10分.)(1) 求心形线(1cos )r a θ=+的全长,其中0a >是常数. (2) 设110x =,11,2,)n x n +==,试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分.) (1) 计算曲面积分(2)Sx z dydz zdxdy ++⎰⎰,其中S 为有向曲面22(01)z xy z =+≤≤,其法向量与z 轴正向的夹角为锐角.(2) 设变换2,u x y u x ay=-⎧⎨=+⎩可把方程2222260z z z x x y y ∂∂∂+-=∂∂∂∂化简为20zu v ∂=∂∂,求常数a ,其中(,)z z x y =有二阶连续的偏导数. 五、(本题满分7分)求级数221(1)2nn n ∞=-∑的和. 六、(本题满分7分)设对任意0x >,曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01()xf t dt x⎰,求()f x 的一般表达式. 七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件|()|f x a ≤,|()|f x b ''≤,其中,a b 都是非负常数,c 是(0,1)内任一点,证明|()|22b fc a '≤+. 八、(本题满分6分)设TA E ξξ=-,其中E 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置,证明:(1) 2A A =的充要条件是1Tξξ=;(2) 当1Tξξ=时,A 是不可逆矩阵.九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2.(1) 求参数c 及此二次型对应矩阵的特征值; (2) 指出方程123(,,)1f x x x =表示何种二次曲面. 十、填空题(本题共2小题,每小题3分,满分6分.)(1) 设工厂A 和工厂B 的产品的次品率分别为1%和 2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是__________. (2) 设ξ、η是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量 ξη-的数学期望()E ξη-=__________.十一、(本题满分6分.)设ξ、η是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为{}13P i ξ==, i =1,2,3,又设max(,)X ξη=,min(,)Y ξη=.(1) 写出二维随机变量(,)X Y 的分布律:(2) 求随机变量X 的数学期望()E X .1996年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分,把答案填在题中横线上.) (1)【答案】ln 2【解析】这是1∞型未定式求极限.方法一: 3323lim()lim(1)x a axx a xax x x a a x a x a-⋅-→∞→∞+=+-- ,令3at x a=-,则当x →∞时,0t →,则 1303lim(1)lim(1)x aa t x t a t e x a -→∞→+=+=-, 即 33lim lim 312lim()x x ax ax a x a x x a e e e x a→∞→∞-→∞+===-. 由题设有38ae=,得1ln8ln 23a ==.方法二:2223()2221lim 112lim lim lim 11lim 1x xa xaxa x a x x a x x x a a x a a a x a e x x x e a x a e a a x x x ⋅→∞-→∞→∞→∞-⋅-→∞⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪+⎛⎫⎝⎭⎝⎭===== ⎪ ⎪-⎝⎭⎛⎫ ⎪-⎛⎫- ⎪-⎝⎭ ⎪⎝⎭⎝⎭, 由题设有38ae=,得1ln8ln 23a ==.(2)【答案】2230x y z +-=【解析】方法一:所求平面过原点O 与0(6,3,2)M -,其法向量{}06,3,2n OM ⊥=-;平面垂直于已知平面428x y z -+=,它们的法向量也互相垂直:{}04,1,2n n ⊥=-;由此, 00//632446412ij kn OM n i j k ⨯=-=--+-.取223n i j k =+-,则所求的平面方程为2230x y z +-=.方法二:所求平面即为过原点,与两个不共线的向量(一个是从原点到点0(6,3,2)M -的向量{}06,3,2OM =-,另一是平面428x y z -+=的法向量{}04,1,2n =-)平行的平面,即 6320412xy z-=-,即 2230x y z +-=.(3)【答案】12(cos sin 1)xe c x c x ++【解析】微分方程22xy y y e '''-+=所对应的齐次微分方程的特征方程为2220r r -+=,解之得1,21r i =±.故对应齐次微分方程的解为12(cos sin )x y e C x C x =+.由于非齐次项,1xe αα=不是特征根,设所给非齐次方程的特解为*()xy x ae =,代入22x y y y e '''-+=得1a =(也不难直接看出*()x y x e =),故所求通解为1212(cos sin )(cos sin 1)x x x y e C x C x e e C x C x =++=++.【相关知识点】① 二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程 ()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.② 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ; 分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2) 两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.③ 对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),x m f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()k xm y x x Q x e λ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1. (4)【答案】12【分析】先求方向l 的方向余弦和,,u u ux y z∂∂∂∂∂∂,然后按方向导数的计算公式cos cos cos u u u u l x y zαβγ∂∂∂∂=++∂∂∂∂求出方向导数. 【解析】因为l 与AB 同向,为求l 的方向余弦,将{}{}31,20,212,2,1AB =----=-单位化,即得 {}{}12,2,1cos,cos ,cos 3||AB l AB αβγ==-=. 将函数ln(u x =+分别对,,x y z 求偏导数得12Au x ∂==∂,0Au y∂==∂,12Au z∂==∂, 所以cos cos cos AA A A u u u ulx y z αβγ∂∂∂∂=++∂∂∂∂ 1221110()233232=⨯+⨯-+⨯=. (5)【答案】2【解析】因为10220100103B ==≠-,所以矩阵B 可逆,故()()2r AB r A ==.【相关知识点】()min((),())r AB r A r B ≤.若A 可逆,则1()()()[()]()r AB r B r EB r A AB r AB -≤==≤.从而()()r AB r B =,即可逆矩阵与矩阵相乘不改变矩阵的秩.二、选择题(本题共5个小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)【答案】(D)【解析】由于存在函数(,)u x y ,使得 22()()()x ay dx ydydu x y x y +=+++, 由可微与可偏导的关系,知2()u x ay x x y ∂+=∂+,2()u y y x y ∂=∂+, 分别对,y x 求偏导数,得2243()()2()(2)()()u a x y x ay x y a x ayx y x y x y ∂+-+⋅+--==∂∂++, 232()u yy x x y ∂-=∂∂+. 由于2u y x ∂∂∂与2u x y ∂∂∂连续,所以22u uy x x y∂∂=∂∂∂∂,即33(2)2()()a x ay yx y x y ---=++2a ⇒=, 故应选(D).(2)【答案】(B)【解析】因为()f x 有二阶连续导数,且0()lim10,||x f x x →''=>所以由函数极限的局部保号性可知,在0x =的空心领域内有()0||f x x ''>,即()0f x ''>,所以()f x '为单调递增. 又由(0)0f '=,()f x '在0x =由负变正,由极值的第一充分条件,0x =是()f x 的极小值点,即(0)f 是()f x 的极小值.应选(B).【相关知识点】极限的局部保号性:设0lim ().x x f x A →=若0A >(或0A <)⇒0,δ∃>当00x x δ<-<时,()0f x >(或()0f x <).(3)【答案】(A) 【解析】若正项级数1nn a∞=∑收敛,则21nn a∞=∑也收敛,且当n →+∞时,有tanlim (tan )limn n n n n nλλλλλ→+∞→+∞=⋅=. 用比较判别法的极限形式,有22tanlim0nn nn a na λλ→+∞=>.因为21n n a ∞=∑收敛,所以2lim tann x n a nλ→+∞也收敛,所以原级数绝对收敛,应选(A).【相关知识点】正项级数比较判别法的极限形式:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则(1) 当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2) 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3) 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.(4)【答案】(C)【解析】用洛必达法则.由题可知 220()()()xxF x xf t dt t f t dt =-⎰⎰,对该积分上限函数求导数,得220()2()()()2()x xF x x f t dt x f x x f x x f t dt '=+-=⎰⎰,所以 01002()2()()limlim limxxk kk x x x x f t dtf t dtF x xxx-→→→'==⎰⎰23002()2()limlim (1)(1)(2)k k x x f x f x k x k k x --→→'---洛洛.因为()F x '与kx 是同阶无穷小,且(0)0f '≠,所以302()lim(1)(2)k x f x k k x -→'--为常数,即3k =时有 300()2()limlim (0)0(1)(2)k k x x F x f x f x k k x-→→'''==≠--, 故应选(C).【相关知识点】设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim()x l x αβ=,(1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (5)【答案】(D)【解析】可直接展开计算,22221414232314143333()()a b a b a a b b a a b b a a b b b a b a =-=--,所以选(D).三、(本题共2小题,每小题5分,满分10分.) (1)【解析】由极坐标系下的弧微分公式得2cos2a a d θθθ==.由于()(1cos )r r a θθ==+以2π为周期,因而θ的范围是[0,2]θπ∈. 又由于()()r r θθ=-,心形线关于极轴对称.由对称性,24cos 8sin 822s ds a d a a πππθθθ⎡⎤====⎢⎥⎣⎦⎰⎰.(2)【解析】用单调有界准则.由题设显然有0n x >,数列{}n x 有下界.证明n x 单调减:用归纳法.214x x ==<;设1n n x x -<,则1n n x x +<=.由此,n x 单调减.由单调有界准则,lim n n x →+∞存在.设lim ,(0)n n x a a →+∞=≥,在恒等式1n x +=两边取极限,即1lim lim n n n x a +→+∞=⇒=解之得3a =(2a =-舍去).【相关知识点】1.单调有界准则:单调有界数列必有极限.2. 收敛数列的保号性推论:如果数列{}n x 从某项起有0n x ≥(或0n x ≤),且lim n n x a →∞=,那么0a ≥(或0a ≤).四、(本题共2小题,每小题6分,满分12分.)(1)【分析一】见下图所示,S 在xOy 平面与yOz 平面上的投影均易求出,分别为22:1xy D x y +≤;2:11,1yz D y y z -≤≤≤≤,或01,z y ≤≤≤≤ 求S⎰⎰被积函,z =. 这里,213P Q Rx y z∂∂∂++=+=∂∂∂,若用高斯公式求曲面积分I ,则较简单.因S 不是封闭曲面,故要添加辅助曲面.【解析】方法一:均投影到平面xOy 上,则22(2)[(2)()()]xySD zI x z dydz zdxdy x z x y dxdy x∂=++=+-++∂⎰⎰⎰⎰, 其中22z x y =+,22:1xy D x y +≤.把2zx x∂=∂代入,得 2222242()()xyxyxyD D D I x dxdy x x y dxdy x y dxdy =--+++⎰⎰⎰⎰⎰⎰,由对称性得222()0xyD x x y dxdy +=⎰⎰,22242()xyxyD D x dxdy x y dxdy =+⎰⎰⎰⎰, 所以 22()xyD I x y dxdy =-+⎰⎰. 利用极坐标变换有121340001242I d r dr r ππθπ⎡⎤=-=-=-⎢⎥⎣⎦⎰⎰.方法二:分别投影到yOz 平面与xOy 平面.投影到yOz 平面时S要分为前半部分1:S x =2:S x =(见图1),则12(2)(2)S S SI x z dydz x z dydz zdxdy =++++⎰⎰⎰⎰⎰⎰.由题设,对1S 法向量与x 轴成钝角,而对2S 法向量与x 轴成锐角.将I 化成二重积分得 或21101.24yzD dz dz ππ===⎰⎰⎰⎰(这里的圆面积的一半.)22()2xyD x y dxdy π+=⎰⎰(同方法一).因此, 4.422I πππ=-⋅+=-方法三:添加辅助面221:1(1)S z x y =+≤,法方向朝下,则11(2)1S S Dx z dydz zdxdy dxdy dxdy π++==-=-⎰⎰⎰⎰⎰⎰,其中D 是1S 在平面xy 的投影区域:221x y +≤.S 与1S 即22z x y =+与1z =围成区域Ω,S 与1S 的法向量指向Ω内部,所以在Ω上满足高斯公式的条件,所以11()3332D z dz dxdy zdz ππ=-=-=-⎰⎰⎰⎰, 其中,()D z 是圆域:22x y z +≤,面积为z π. 因此,133(2)()222S I x z dydz zdxdy ππππ=--++=---=-⎰⎰. (2)【解析】由多元复合函数求导法则,得z z u z v z zx u x v x u v∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂, 2z z u z v z z a y u y v y u v∂∂∂∂∂∂∂=+=-+∂∂∂∂∂∂∂,所以 22222222()()z z z z u z v z v z ux x u x v u x u v x v x v u x ∂∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂ 222222z z zu u v v ∂∂∂=++∂∂∂∂, 222222(2)z z z a a u u v v∂∂∂=-+-+∂∂∂∂,代入2222260z z zx x y y∂∂∂+-=∂∂∂∂,并整理得 2222222226(105)(6)0z z z z z a a a x x y y u v v∂∂∂∂∂+-=+++-=∂∂∂∂∂∂∂. 于是,令260a a +-=得3a =或2a =-.2a =-时,1050a +=,故舍去,3a =时,1050a +≠,因此仅当3a =时化简为20zu v∂=∂∂. 【相关知识点】多元复合函数求导法则:若(,)u u x y =和(,)v v x y =在点(,)x y 处偏导数存在,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数[(,),(,)]z f u x y v x y =在点(,)x y 处的偏导数存在,且,z f u f v z f u f v x u x v x y u y v y∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂. 五、(本题满分7分) 【解析】先将级数分解, 令 1221311,22n nn n A A nn ∞∞+====⋅⋅∑∑, 则 12A A A =-.由熟知ln(1)x +幂级数展开式,即11(1)ln(1)(11)n nn x x x n -∞=-+=-<≤∑,得 1121111(1)1111()ln(1)ln 2242424n n n n n A n n -∞∞+==-==--=--=⋅∑∑,因此, 1253ln 284A A A =-=-.六、(本题满分7分)【解析】曲线()y f x =上点(,())x f x 处的切线方程为()()()Y f x f x X x '-=-.令0X =得y 轴上的截距()()Y f x f x x '=-.由题意,01()()()xf t dt f x f x x x' =-⎰. 为消去积分,两边乘以x ,得 20()()()xf t dt xf x f x x ' =-⎰, (*)将恒等式两边对x 求导,得2()()()2()()f x f x xf x xf x x f x ''''=+--,即 ()()0xf x f x '''+=.在(*)式中令0x =得00=自然成立.故不必再加附加条件.就是说()f x 是微分方程0xy y '''+=的通解.下面求解微分方程0xy y '''+=.方法一:()100xy y xy xy C ''''''+=⇒=⇒=, 因为0x >,所以1C y x'=, 两边积分得 12()ln y f x C x C ==+.方法二:令()y P x '=,则y P '''=,解0xP P '+=得1C y P x'==. 再积分得12()ln y f x C x C ==+. 七、(本题满分8分)【解析】由于问题涉及到,f f '与f ''的关系,自然应当利用泰勒公式,而且应在点c 展开:2()()()()()()2!f f x f c f x x c x c ξ'''=+-+-,ξ在c 与x 之间. 分别取0,1x =得20()(0)()()(0)(0)2!f f f c f c c c ξ'''=+-+-,0ξ在c 与0之间, 21()(1)()()(1)(1)2!f f f c f c c c ξ'''=+-+-,1ξ在c 与1之间, 两式相减得 22101(1)(0)()[()(1)()]2!f f f c f c f c ξξ'''''-=+--,于是 22101()(1)(0)[()(1)()]2!f c f f f c f c ξξ'''''=----. 由此 221011()(1)(0)()(1)()2!2!f c f f f c f c ξξ'''''≤++-+2212[(1)]222b a bc c a ≤+-+<+.八、(本题满分6分)【解析】(1)因为TA E ξξ=-,Tξξ为数,Tξξ为n 阶矩阵,所以2()()2()(2)T T T T T T T A E E E E ξξξξξξξξξξξξξξ=--=-+=--,因此, 2(2)(1)0TTTTTA A E E ξξξξξξξξξξ=⇔--=-⇔-= 因为ξ是非零列向量,所以0Tξξ≠,故210,TA A ξξ=⇔-=即1Tξξ=.(2)反证法.当1Tξξ=时,由(1)知2A A =,若A 可逆,则121A A A A A E --===.与已知TA E E ξξ=-≠矛盾,故A 是不可逆矩阵. 九、(本题满分8分)【解析】(1)此二次型对应的矩阵为51315333A c -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭.因为二次型秩 ()()2r f r A ==,由 可得3c =.再由A 的特征多项式 求得二次型矩阵的特征值为0,4,9.(2)因为二次型经正交变换可化为222349y y +,故123(,,)1f x x x =,即2223491y y +=.表示椭圆柱面.【相关知识点】主轴定理:对于任一个n 元二次型12(,,,)T n f x x x x Ax =,存在正交变换x Qy =(Q 为n 阶正交矩阵),使得2221122()T T T n n x Ax y Q AQ y y y y λλλ==+++,其中12,,,n λλλ是实对称矩阵A 的n 个特征值,Q 的n 个列向量12,,,n ααα是A 对应于特征值12,,,n λλλ的标准正交特征向量.十、填空题(本题共2小题,每小题3分,满分6分.) (1)【答案】37【解析】设事件C =“抽取的产品是次品”,事件D =“抽取的产品是工厂A 生产的”,则事件D 表示“抽取的产品是工厂B 生产的”,依题意有()0.60,()0.40,(|)0.01,(|)0.02P D P D P C D P C D ====.应用贝叶斯公式可以求得条件概率(|)P D C :()(|)0.60.013(|)0.60.010.40.027()(|)()(|)P D P C D P D C P D P C D P D P C D ⨯===⨯+⨯+.【相关知识点】贝叶斯公式:设试验E 的样本空间为S .A 为E 的事件,12,,,n B B B 为S 的一个划分,且()0,()0(1,2,,)i P A P B i n >>=,则1()(|)(|),1,2,,.()(|)i i i njjj P B P A B P B A i n P B P A B ===∑ (*)(*)式称为贝叶斯公式. (2)【解析】由于ξ与η相互独立且均服从正态分布2)N ,因此它们的线性函数U ξη=-服从正态分布,且()11122DU D D D ξηξη=-=+=+=, 所以有 (0,1)UN .代入正态分布的概率密度公式,有22()u f u du +∞--∞=⎰.应用随机变量函数的期望公式有 由凑微分法,有222(||)2()2u uE dξη+∞--=--⎰22u+∞-==【相关知识点】对于随机变量X与Y均服从正态分布,则X与Y的线性组合亦服从正态分布.若X与Y相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c++=++,22()()()D aX bY c a D X b D Y++=+,其中,,a b c为常数.十一、(本题满分6分.)【解析】易见(,)X Y的可能取值为(1,1),(2,1),(2,2),(3,1),(3,2),(3,3).依题意{}X Y<=∅,故{}0P X Y<=,即{}{}{}1,21,32,30P X Y P X Y P X Y=========,{}{}{}11,1119P P Pξηξη=======.类似地可以计算出所有ijp的值列于下表中,得到随机变量(,)X Y的联合分布律:(2)将表中各行元素相加求出的边缘分布123135999X⎡⎤⎢⎥⎢⎥⎣⎦,由离散型随机变量数学期望计算公式可得135221239999EX=⋅+⋅+⋅=.【相关知识点】1.离散型随机变量的边缘分布计算公式:二维离散型随机变量(,)X Y 关于X 与Y 的边缘概率分布或边缘分布律分别定义为: 它们分别为联合分布律表格中第i 行与第j 列诸元素之和. 2. 离散型随机变量数学期望计算公式:{}1()nkk k E X xP X x ==⋅=∑.。
南京大学硕士学位研究生 入学考试试题 试卷一(1996年) 一、选择题(12分)1. ΔH =Q p 一式适用的过程是( )。
(A) 理想气体从10个大气压反抗恒外压1个大气压膨胀到终点 (B) 273 K ,1个大气压下冰融化成水 (C) 等温、等压下电解CuSO 4水溶液 (D) 气体从T 1,p 1可逆变化到T 2,p 22. 298 K ,Hg 2Cl 2在水中的饱和溶解度为 6.5×10-3 mol· dm -1,且已知f m 22Hg Cl (s),298K G ⎡⎤∆⎣⎦= -210.66 kJ ⋅mol -1, 则从稳定单质形成浓度为c =c =1 mol·dm -1 水溶液时,该过程的Δf G m 应为( )。
(A) -246 kJ ⋅mol -1 (B) -210. 7 kJ ⋅mol -1 (C) 0 (D) 175.4 kJ ⋅mol -13.下列化学反应同时共存并达平衡(温度在900~1 200 K) 32CaCO (s)CaO(s)+CO (g) 222CO (g)+H (g)CO(g)+H O(g) 232H O(g)+CO(g)+CaO(s)CaCO (s)+H (g)该平衡系统的自由度为( )。
(A) l (B) 2 (C) 3 (D) 44. 298 K 时,当从H 2SO 4溶液的质量摩尔浓度从0.01 mol ⋅kg -1增加到0.1 mol ⋅kg -1时,其电导率κ 和摩尔电导率Λm 的变化将( )。
(A) κ 减小,Λm 增加 (B) κ 增加,Λm 增加 (C) κ 减小,Λm 减小 (D )κ 增加,Λm 减小 5. 298 K ,H 2在锌上的超电势为0.7 V ,20763ZnZnV ϕ+=-|.,电解一含有Zn 2+的溶液,为了不使H 2析出,溶液的pH 至少应控制在( )。
(A) pH>2.06 (B) pH>2.72 (C) pH>7.10 (D) pH>8.026. 若两个反应级数相同,且活化能相等,其活化摘相差50 J ⋅mol -1⋅K -1,则在300 K 时两个反应的速率常数之比k 2 / k 1的值为( )。
1996年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设方程yx y =确定y 是x 的函数,则dy =___________.(2)设()arcsin x f x dx x C =+⎰,则1()dx f x =⎰___________..(3)设()00,x y 是抛物线2y ax bx c =++上的一点,若在该点的切线过原点,则系数应满足的关系是___________.(4)设123222212311111231111n n n n n n n a a a a A a a a a a a a a ----⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ ,123n x x X x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ ,1111B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ ,其中(;,1,2,,)i j a a i j i j n ≠≠= .则线性方程组TA XB =的解是___________.(5)设由来自正态总体2~(,0.9)X N μ容量为9的简单随机样本,得样本均值5X =,则未知参数μ的置信度为0.95的置信区间为___________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)累次积分cos 20(cos ,sin )d f r r rdr πθθθθ⎰⎰可以写成()(A)10(,)dy f x y dx⎰(B)10(,)dy f x y dx ⎰(C)1100(,)dx f x y dy⎰⎰(D)1(,)dx f x y dy⎰(2)下述各选项正确的是()(A)若21nn u∞=∑和21nn v∞=∑都收敛,则21()nn n uv ∞=+∑收敛(B)1n nn u v∞=∑收敛,则21nn u∞=∑与21nn v∞=∑都收敛(C)若正项级数1n n u ∞=∑发散,则1n u n≥(D)若级数1nn u∞=∑收敛,且(1,2,)n n u v n ≥= ,则级数1nn v∞=∑也收敛(3)设n 阶矩阵A 非奇异(2n ≥),A *是矩阵A 的伴随矩阵,则()(A)1()n A AA -**=(B)1()n A AA +**=(C)2()n A AA-**=(D)2()n A AA+**=(4)设有任意两个n 维向量组1,,m αα 和1,,m ββ ,若存在两组不全为零的数1,,mλλ 和1,,m k k ,使111111()()()()0m m m m m m k k k k λαλαλβλβ+++++-++-= ,则()(A)1,,m αα 和1,,m ββ 都线性相关(B)1,,m αα 和1,,m ββ 都线性无关(C)1111,,,,,m m m m αβαβαβαβ++-- 线性无关(D)1111,,,,,m m m m αβαβαβαβ++-- 线性相关(5)已知0()1P B <<且()1212[]()()P A A B P A B P A B +=+,则下列选项成立的是()(A)()1212[]()()P A A B P A B P A B +=+(B)()1212()()P A B A B P A B P A B +=+(C)()1212()()P A A P A B P A B +=+(D)()()1122()()()P B P A P B A P A P B A =+三、(本题满分6分)设(),0,()0,0,xg x e x f x xx -⎧-≠⎪=⎨⎪=⎩其中()g x 有二阶连续导数,且(0)1,(0)1g g '==-.(1)求()f x ';(2)讨论()f x '在(,)-∞+∞上的连续性.四、(本题满分6分)设函数()z f u =,方程()()x yu u p t dt ϕ=+⎰确定u 是,x y 的函数,其中(),()f u u ϕ可微;()p t ,()u ϕ'连续,且()1u ϕ'≠.求()()z z p y p x x y∂∂+∂∂.五、(本题满分6分)计算2(1)xx xe dx e -+∞-+⎰.六、(本题满分5分)设()f x 在区间[0,1]上可微,且满足条件120(1)2()f xf x dx =⎰.试证:存在(0,1)ξ∈使()()0.f f ξξξ'+=七、(本题满分6分)设某种商品的单价为p 时,售出的商品数量Q 可以表示成aQ c p b=-+,其中a b 、、c 均为正数,且a bc >.(1)求p 在何范围变化时,使相应销售额增加或减少.(2)要使销售额最大,商品单价p 应取何值?最大销售额是多少?八、(本题满分6分)求微分方程dy dx =的通解.九、(本题满分8分)设矩阵01010000010012A y ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦.(1)已知A 的一个特征值为3,试求y ;(2)求矩阵P ,使()()TAP AP 为对角矩阵.十、(本题满分8分)设向量12,,,t ααα 是齐次线性方程组0AX =的一个基础解系,向量β不是方程组0AX =的解,即0A β≠.试证明:向量组12,,,,t ββαβαβα+++ 线性无关.十一、(本题满分7分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获利润10万元;发生一次故障仍可获得利润5万元;发生两次故障所获利润0元;发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?十二、(本题满分6分)考虑一元二次方程20x Bx C ++=,其中B C 、分别是将一枚色子(骰子)接连掷两次先后出现的点数.求该方程有实根的概率p 和有重根的概率q .十三、(本题满分6分)假设12,,,n X X X 是来自总体X 的简单随机样本;已知(1,2,3,4)kk EX a k ==.证明:当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布,并指出其分布参数.1996年全国硕士研究生入学统一考试数学三试题解析一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.)(1)【答案】()1ln dx x y +【解析】方法1:方程yx y =两边取对数得ln ln ln yx y y y ==,再两边求微分,()()11ln 1ln 1dx y dy dy x x y =+⇒=+()()ln 10x y +≠.方法2:把yx y =变形得ln y yx e=,然后两边求微分得()()()ln ln 1ln 1ln y y y dx e d y y y y dy x y dy ==+=+,由此可得()1.1ln dy dx x y =+(2)【答案】C【解析】由()arcsin x f x dx x C =+⎰,两边求导数有()1()arcsin ()xf x x x f x '===,于是有1()dx f x ⎰212==⎰⎰()2112x =--C =.(3)【答案】0c a≥(或2ax c =),b 任意【解析】对2y ax bx c =++两边求导得()0022y ax b,y x ax b,''=+=+所以过()00x ,y 的切线方程为()()0002y y ax b x x ,-=+-即()()()200002y ax bx c ax b x x .-++=+-又题设知切线过原点()00,,把0x y ==代入上式,得2200002ax bx c ax bx ,---=--即20ax c.=由于系数0a ≠,所以,系数应满足的关系为0c a≥(或2ax c =),b 任意.(4)【答案】()1000T,,, 【解析】因为A 是范德蒙行列式,由i j a a ≠知()0ijA a a =-≠∏.根据解与系数矩阵秩的关系,所以方程组TA XB =有唯一解.根据克莱姆法则,对于2111112122222133332111111111n n n n n n n n x a a a x a a a x a a a x a a a ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ,易见1230n D A ,D D D .===== 所以TA XB =的解为12310n x ,x x x ===== ,即()1000T,,,, .【相关知识点】克莱姆法则:若线性非齐次方程组11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 或简记为112nijji j a xb ,i ,,,n===∑ 其系数行列式1112121222120nn n n nna a a a a a D a a a =≠,则方程组有唯一解12j j D x ,j ,,,n.D==其中j D 是用常数项12n b ,b ,,b 替换D 中第j 列所成的行列式,即1111111121212212111,j ,j n ,j ,j n j n n,j nn,j nna ab a a a a b a a D a a b a a -+-+-+=.(5)【答案】(4.412,5.588)【解析】可以用两种方法求解:(1)已知方差220.9σ=,对正态总体的数学期望μ进行估计,可根据因2(,0.9)X N μ ,设有n 个样本,样本均值11ni i X X n ==∑,有20.9(,X N n μ ,将其标准化,~(0,1)X N 得:)1,0(~1N nX μ-由正态分布分为点的定义21P u αα⎫⎪<=-⎬⎪⎭可确定临界值2αu ,进而确定相应的置信区间22(x u x u αα-+.(2)本题是在单个正态总体方差已知条件下,求期望值μ的置信区间问题.由教材上已经求出的置信区间22x u x u αα⎛-+ ⎝,其中21,(0,1)P U u U N αα⎧⎫<=-⎨⎬⎩⎭,可以直接得出答案.方法1:由题设,95.01=-α,可见.05.0=α查标准正态分布表知分位点.96.12=αu 本题9n =,5X =,因此,根据95.0}96.11{=<-nX P μ,有1.96}0.95P <=,即{4.412 5.588}0.95P μ<<=,故μ的置信度为0.95的置信区间是(4.412,5.588).方法2:由题设,95.01=-α,22222{}{}2()10.95,()0.975P U u P u U u u u ααααα<=-<<=Φ-=Φ=查得.96.12=αu 20.9σ=,9n =,5X=代入22(x u x u αα-+得置信区间(4.412,5.588).二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)【答案】(D)【解析】方法1:由题设知,积分区域在极坐标系cos ,sin x r y r θθ==中是(),|0,0cos ,2D r r πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭即是由221124x y ⎛⎫-+= ⎪⎝⎭与x 轴在第一象限所围成的平面图形,如右图.由于D 的最左边点的横坐标是0,最右点的横坐标是1,下边界方程是0y ,=上边界的方程是y =,从而D的直角坐标表示是(){010D x,y |x ,y ,=≤≤≤≤故(D)正确.方法2:采取逐步淘汰法.由于(A)中二重积分的积分区域的极坐标表示为()1,|0,0sin ,2D r r πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭而(B)中的积分区域是单位圆在第一象限的部分,(C)中的积分区域是正方形(){}0101x,y |x ,y ,≤≤≤≤所以,他们都是不正确的.故应选(D).(2)【答案】(A)【解析】由于级数21nn u∞=∑和21nn v∞=∑都收敛,可见级数()221nn n uv ∞=+∑收敛.由不等式222n n n nu v u v ≤+及比较判别法知级数12n nn u v∞=∑收敛,从而12n nn u v∞=∑收敛.又因为()2222n n nnn n u v u v u v ,+=++即级数()21n n n u v ∞=+∑收敛,故应选(A).设()21112n n u ,v n ,,n === ,可知(B)不正确.设()21112n u n ,,n n=-= ,可知(C)不正确.设()()11112n nn u ,v n ,,nn--==-= ,可知(D)不正确.注:在本题中命题(D)“若级数1nn u∞=∑收敛,且(1,2,)n n u v n ≥= ,则级数1nn v∞=∑也收敛.”不正确,这表明:比较判别法适用于正项级数收敛(或级数绝对收敛)的判别,但对任意项级数一般是不适用的.这是任意项级数与正项级数收敛性判别中的一个根本区别.(3)【答案】(C)【解析】伴随矩阵的基本关系式为AA A A A E **==,现将A *视为关系式中的矩阵A ,则有()A A A E ****=.方法一:由1n A A-*=及1()AA A*-=,可得121()().n n A A A A AA A A--****-===故应选(C).方法二:由()A A A E ****=,左乘A 得1()()n AA A AA -***=,即1()()n A E A AA -**=.故应选(C).(4)【答案】(D)【解析】本题考查对向量组线性相关、线性无关概念的理解.若向量组12,,,s γγγ 线性无关,即若11220s s x x x γγγ+++= ,必有120,0,,0s x x x === .既然1,,m λλ 与1,,m k k 不全为零,由此推不出某向量组线性无关,故应排除(B)、(C).一般情况下,对于1122110,s s s s k k k l l αααββ++++++= 不能保证必有11220,s s k k k ααα+++= 及110,s s l l ββ++= 故(A)不正确.由已知条件,有()()()()1111110m m m m m m k k λαβλαβαβαβ+++++-++-= ,又1,,m λλ 与1,,m k k 不全为零,故1111,,,,,m m m m αβαβαβαβ++-- 线性相关.故选(D).(5)【答案】(B)【解析】依题意()()()()()12121212)(,.()()()()()P A A B P A B P A B P A B A B P A B P A B P B P B P B P B P B +⎡⎤++⎣⎦=+=因()0P B >,故有()()1212)(P A B A B P A B P A B +=+.因此应选(B).注:有些考生错误地选择(D).他们认为(D)是全概率公式,对任何事件B 都成立,但是忽略了全概率公式中要求作为条件的事件12,A A 应满足12()0,()0P A P A >>,且12,A A 是对立事件.【相关知识点】条件概率公式:()(|)()P AB P B A P A =.三、(本题满分6分)【解析】(1)由于()g x 有二阶连续导数,故当0x ≠时,()f x 也具有二阶连续导数,此时,()f x '可直接计算,且()f x '连续;当0x =时,需用导数的定义求(0)f '.当0x ≠时,22[()]()()()(1)().x x xx g x e g x e xg x g x x e f x x x ---''+-+-++'==当0x =时,由导数定义及洛必达法则,有2000()()()(0)1(0)lim lim lim 222x x x x x x g x e g x e g x e g f x x ---→→→'''''-+--'==洛洛.所以2()()(1),0,()(0)1,0.2xxg x g x x e x x f x g x -'⎧-++≠⎪⎪'=⎨''-⎪=⎪⎩(2)()f x '在0x =点的连续性要用定义来判定.因为在0x =处,有200()()(1)lim ()lim xx x xg x g x x e f x x -→→'-++'=0()()()(1)lim 2x xx g x xg x g x e x e x --→''''+-+-+=0()(0)1lim (0)22x x g x e g f -→''''--'===.而()f x '在0x ≠处是连续函数,所以()f x '在(,)-∞+∞上为连续函数.四、(本题满分6分)【解析】由()z f u =可得(),()z u z uf u f u x x y y∂∂∂∂''==∂∂∂∂.在方程()()x yu u p t dt ϕ=+⎰两边分别对,x y 求偏导数,得()(),()().u u u u u p x u p y x x y yϕϕ∂∂∂∂''=+=-∂∂∂∂所以()(),1()1()u p x u p y x u y u ϕϕ∂∂-==''∂-∂-.于是()()()()()()()01()1()z z p x p y p x p y p y p x f u x y u u ϕϕ⎡⎤∂∂'+=-=⎢⎥''∂∂--⎣⎦.五、(本题满分6分)【分析】题的被积函数是幂函数与指数函数两类不同的函数相乘,应该用分部积分法.【解析】方法1:因为21(1)111x x xx xxe x dxdx xd e e e e -----=-++++⎰⎰⎰分部积分1(1)1111ln(1),1x xx x x x xx x e x dx d e e e e ex e C e---=-=-+++++=-+++⎰⎰所以20lim ln(1)ln 2.(1)1x x x x x x xe xe dx e e e -+∞-→+∞⎡⎤=-++⎢⎥++⎣⎦⎰而lim ln(1)lim ln (1)11x x x x xx x x x xe xe e e e e e -→+∞→+∞⎡⎤⎧⎫⎡⎤-+=-+⎨⎬⎢⎥⎣⎦++⎣⎦⎩⎭lim ln(1)1x x xx xe x e e -→+∞⎧⎫=--+⎨⎬+⎩⎭lim001xx xe →+∞-=-=+,故原式ln 2=.方法2:220001(1)(1)1x x x x xxe xe dx dx xd e e e -+∞+∞+∞-==-+++⎰⎰⎰0000011111(1)ln(1)ln 2.1xx x x xx x xx dx dx e dx e e e e d e e e +∞-+∞+∞+∞-+∞+∞---=-+==++++=-+=-+=+⎰⎰⎰⎰六、(本题满分5分)【分析】由结论可知,若令()()x xf x ϕ=,则()()()x f x xf x ϕ''=+.因此,只需证明()x ϕ在[0,1]内某一区间上满足罗尔定理的条件.【解析】令()()x xf x ϕ=,由积分中值定理可知,存在1(0,2η∈,使112201()()()2xf x dx x dx ϕϕη==⎰⎰,由已知条件,有1201(1)2()2()(),2f xf x dx ϕηϕη==⋅=⎰于是(1)(1)(),f ϕϕη==且()x ϕ在(,1)η上可导,故由罗尔定理可知,存在(,1)(0,1),ξη∈⊂使得()0,ϕξ'=即()()0.f f ξξξ'+=【相关知识点】1.积分中值定理:如果函数()f x 在积分区间[ ,]a b 上连续,则在[ ,]a b 上至少存在一个点ξ,使下式成立:()()()()baf x dx f b a a b ξξ=-≤≤⎰.这个公式叫做积分中值公式.2.罗尔定理:如果函数()f x 满足(1)在闭区间[ ,]a b 上连续;(2)在开区间()a,b 内可导;(3)在区间端点处的函数值相等,即()()f a f b =,那么在()a,b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.七、(本题满分6分)【分析】利用函数的单调性的判定,如果在x 的某个区间上导函数()0f x '≥,则函数()f x 单调递增,反之递减.【解析】(1)设售出商品的销售额为R ,则()()22(),().ab c p b aR pQ p c R p p b p b -+'==-=++令0,R '=得00p b =-=>.当0p <<时,0R '>,所以随单价p 的增加,相应销售额R 也将增加.当p >时,有0R '<,所以随单价p 的增加,相应销售额R 将减少.(2)由(1)可知,当p =时,销售额R 取得最大值,最大销售额为2maxR b c ⎡⎤⎫⎥=-=⎪⎪⎥⎭⎥⎦.八、(本题满分6分)【解析】令y z x =,则dy dz z x dx dx=+.当0x >时,原方程化为dz z xz dx +=-,dxx =-,其通解为1ln(ln z x C +=-+或Cz x=.代回原变量,得通解(0)y C x +=>.当0x <时,原方程的解与0x >时相同,理由如下:令t x =-,于是0t >,而且dy dy dx dydt dx dt dx =⋅=-=-从而有通解(0)y C t =>,即(0)y C x +=<.综合得,方程的通解为y C +=.注:由于未给定自变量x 的取值范围,因而在本题求解过程中,引入新未知函数yz x=后得=,从而,应当分别对0x >和0x <求解,在类似的问题中,这一点应当牢记.九、(本题满分8分)【分析】本题的(1)是考查特征值的基本概念,而(2)是把实对称矩阵合同于对角矩阵的问题转化成二次型求标准形的问题,用二次型的理论与方法来处理矩阵中的问题.【解析】(1)因为3λ=是A 的特征值,故31001300313138(2)0,00311311011y E A y y ------==⋅=-=-----所以2y =.(2)由于T A A =,要2()()T T AP AP P A P ==Λ,而21000010000540045A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦是对称矩阵,故可构造二次型2Tx A x ,将其化为标准形Ty y Λ.即有2A 与Λ合同.亦即2T P A P =Λ.方法一:配方法.由于22222123434558T x A x x x x x x x =++++22222212334444222212344816165()55255495(),55x x x x x x x x x x x x x =+++++-=++++那么,令1122334444,,,,5y x y x y x x y x ===+=即经坐标变换1122334410000100,400150001x y x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦有222221234955T x A x y y y y =+++.所以,取10000100400150001P ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,有211()()595T T AP AP P A P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎢⎣⎦.方法二:正交变换法.二次型22222123434558Tx A x x x x x x x =++++对应的矩阵为21000010000540045A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,其特征多项式2310000100(1)(9)00540045E A λλλλλλλ---==------.2A 的特征值12341,1,1,9λλλλ====.由21()0E A x λ-=,即1234000000000044000440x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,和24()0E A x λ-=,即12348000080000044000440x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,分别求得对应1,2,31λ=的线性无关特征向量123(1,0,0,0),(0,1,0,0),(0,0,1,1)T T T ααα===-,和49λ=的特征向量4(0,0,1,1)Tα=.对123,,ααα用施密特正交化方法得123,,βββ,再将4α单位化为4β,其中:1234(1,0,0,0),(0,1,0,0),(0,0,,(0,0,T T T ββββ===-=.取正交矩阵[]1234100001000000,,,P ββββ⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎢⎢⎢⎣,则1221119T P A P P A P -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦,即211()()19T T AP AP P A P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦.十、(本题满分8分)【解析】证法1:(定义法)若有一组数12,,,,,t k k k k 使得1122()()()0,t t k k k k ββαβαβα+++++++= (1)则因12,,,t ααα 是0AX =的解,知0(1,2,,)i A i t α== ,用A 左乘上式的两边,有12()0t k k k k A β++++= .(2)由于0A β≠,故120t k k k k ++++= .对(1)重新分组为121122()0t t t k k k k k k k βααα++++++++= .(3)把(2)代入(3)得11220t t k k k ααα+++= .由于12,,,t ααα 是基础解系,它们线性无关,故必有120,0,,0t k k k === .代入(2)式得:0k =.因此向量组12,,,,t ββαβαβα+++ 线性无关.证法2:(用秩)经初等变换向量组的秩不变.把第一列的-1倍分别加至其余各列,有()()1212,,,,,,,,.t t ββαβαβαβααα+++→ 因此()()1212,,,,,,,,.t t r r ββαβαβαβααα+++= 由于12,,,t ααα 是基础解系,它们是线性无关的,秩()12,,,t r t ααα= ,又β必不能由12,,,t ααα 线性表出(否则0A β=),故()12,,,,1t r t αααβ=+ .所以()12,,,, 1.t r t ββαβαβα+++=+ 即向量组12,,,,t ββαβαβα+++ 线性无关.十一、(本题满分7分)【解析】设一周5个工作日内发生故障的天数为X ,则X 服从二项分布即(5,0.2)B .由二项分布的概率计算公式,有{}500.80.32768,P X ==={}14510.80.20.4096,P X C ==⋅={}232520.80.20.2048,P X C ==⋅={}{}{}{}310120.05792.P X P X P X P X ≥=-=-=-==设一周内所获利润Y (万元),则Y 是X 的函数,且10,0,5,1,()0,2,2,3.X X Y f X X X=⎧⎪=⎪==⎨=⎪⎪-≥⎩若若若若由离散型随机变量数学期望计算公式,100.3276850.409620.05792 5.20896EY =⨯+⨯-⨯=(万元).【相关知识点】1.二项分布的概率计算公式:若(,)Y B n p ~,则{}(1)kkn kn P Y k C p p -==-,0,1,,k n = .2.离散型随机变量数学期望计算公式:{}1()nkk k E X xP X x ==⋅=∑.十二、(本题满分6分)【解析】一枚色子(骰子)接连掷两次,其样本空间中样本点总数为36.设事件1A =“方程有实根”,2A =“方程有重根”,则{}221404B A B C C ⎧⎫=-≥=≤⎨⎩⎭.用列举法求有利于i A 的样本点个数(1,2i =),具体做法见下表:有利于的意思就是使不等式24B C ≤尽可能的成立,则需要B 越大越好,C 越小越好.当B 取遍1,2,3,4,5,6时,统计C 可能出现的点数有多少种.B123456有利于1A 的样本点数012466有利于2A 的样本点数11由古典型概率计算公式得到11246619(),3636p P A ++++===2111()3618q P A +===【相关知识点】古典型概率计算公式:().i i A P A =有利于事件的样本点数样本空间的总数十三、(本题满分6分)【解析】依题意,12,,,n X X X 独立同分布,可见22212,,,n X X X 也独立同分布.由(1,2,3,4)k k EX a k ==及方差计算公式,有224222242222242211,(),111,().i i i i n n n i n i i i EX a DX EX EX a a EZ EX a DZ DX a a n n n====-=-====-∑∑因此,根据中心极限定理n U =的极限分布是标准正态分布,即当n 充分大时,n Z 近似服从参数为2422(,)a a a n-的正态分布.【相关知识点】1.列维-林德伯格中心极限定理,又称独立同分布的中心极限定理:设随机变量12,,,n X X X 独立同分布,方差存在,记μ与2σ()0σ<<+∞分别是它们相同的期望和方差,则对任意实数x ,恒有1lim )(),ni n i P X n x x μ→∞=⎫-≤=Φ⎬⎭∑其中()x Φ是标准正态分布函数.2.方差计算公式:22()()()D X E X E X =-.。
1996年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分,把答案填在题中横线上.)(1)【答案】ln 2【解析】这是1∞型未定式求极限.方法一:3323lim()lim(1)x a axx a xax x x a a x a x a-⋅-→∞→∞+=+--,令3at x a=-,则当x →∞时,0t →,则1303lim(1)lim(1)x aa t x t a t e x a -→∞→+=+=-,即33lim lim 312lim()x x ax ax a x a x x a ee e x a →∞→∞-→∞+===-.由题设有38ae=,得1ln 8ln 23a ==.方法二:2223()2221lim 112lim lim lim 11lim 1x xa xax a x ax x ax x x a a x a a a x a e x x x e a x a e a a x x x ⋅→∞-→∞→∞→∞-⋅-→∞⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪+⎛⎫⎝⎭⎝⎭===== ⎪ ⎪-⎝⎭⎛⎫ ⎪-⎛⎫- ⎪-⎝⎭ ⎪⎝⎭⎝⎭,由题设有38ae=,得1ln 8ln 23a ==.(2)【答案】2230x y z +-=【解析】方法一:所求平面过原点O 与0(6,3,2)M -,其法向量{}06,3,2n OM ⊥=-;平面垂直于已知平面428x y z -+=,它们的法向量也互相垂直:{}04,1,2n n ⊥=-;由此,00//632446412i j kn OM n i j k ⨯=-=--+- .取223n i j k =+-,则所求的平面方程为2230x y z +-=.方法二:所求平面即为过原点,与两个不共线的向量(一个是从原点到点0(6,3,2)M -的向量{}06,3,2OM =- ,另一是平面428x y z -+=的法向量{}04,1,2n =-)平行的平面,即6320412xy z-=-,即2230x y z +-=.(3)【答案】12(cos sin 1)xe c x c x ++【解析】微分方程22xy y y e '''-+=所对应的齐次微分方程的特征方程为2220r r -+=,解之得1,21r i =±.故对应齐次微分方程的解为12(cos sin )x y e C x C x =+.由于非齐次项,1xe αα=不是特征根,设所给非齐次方程的特解为*()xy x ae =,代入22x y y y e '''-+=得1a =(也不难直接看出*()x y x e =),故所求通解为1212(cos sin )(cos sin 1)x x x y e C x C x e e C x C x =++=++.【相关知识点】①二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.②二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ;分三种情况:(1)两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2)两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3)一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.③对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),xm f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()kxm y x x Q x eλ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x mm y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1.(4)【答案】12【分析】先求方向l 的方向余弦和,,u u ux y z ∂∂∂∂∂∂,然后按方向导数的计算公式cos cos cos u u u u l x y zαβγ∂∂∂∂=++∂∂∂∂求出方向导数.【解析】因为l 与AB 同向,为求l的方向余弦,将{}{}31,20,212,2,1AB =----=- 单位化,即得{}{}12,2,1cos ,cos ,cos 3||AB l AB αβγ==-=.将函数ln(u x =+分别对,,x y z求偏导数得12Au x ∂==∂,0Au y ∂==∂,12Au z∂==∂,所以cos cos cos AA AA u u u ulx y z αβγ∂∂∂∂=++∂∂∂∂1221110()233232=⨯+⨯-+⨯=.(5)【答案】2【解析】因为10220100103B ==≠-,所以矩阵B 可逆,故()()2r AB r A ==.【相关知识点】()min((),())r AB r A r B ≤.若A 可逆,则1()()()[()]()r AB r B r EB r A AB r AB -≤==≤.从而()()r AB r B =,即可逆矩阵与矩阵相乘不改变矩阵的秩.二、选择题(本题共5个小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)【答案】(D)【解析】由于存在函数(,)u x y ,使得22()()()x ay dx ydydu x y x y +=+++,由可微与可偏导的关系,知2()u x ay x x y ∂+=∂+,2()u yy x y ∂=∂+,分别对,y x 求偏导数,得2243()()2()(2)()()u a x y x ay x y a x ayx y x y x y ∂+-+⋅+--==∂∂++,232()u yy x x y ∂-=∂∂+.由于2u y x ∂∂∂与2u x y ∂∂∂连续,所以22u u y x x y∂∂=∂∂∂∂,即33(2)2()()a x ay yx y x y ---=++2a ⇒=,故应选(D).(2)【答案】(B)【解析】因为()f x 有二阶连续导数,且0()lim10,||x f x x →''=>所以由函数极限的局部保号性可知,在0x =的空心领域内有()0||f x x ''>,即()0f x ''>,所以()f x '为单调递增.又由(0)0f '=,()f x '在0x =由负变正,由极值的第一充分条件,0x =是()f x 的极小值点,即(0)f 是()f x 的极小值.应选(B).【相关知识点】极限的局部保号性:设0lim ().x x f x A →=若0A >(或0A <)⇒0,δ∃>当00x x δ<-<时,()0f x >(或()0f x <).(3)【答案】(A)【解析】若正项级数1nn a∞=∑收敛,则21nn a∞=∑也收敛,且当n →+∞时,有tanlim (tan lim n n n n n nλλλλλ→+∞→+∞=⋅=.用比较判别法的极限形式,有22tanlim0n n nn a n a λλ→+∞=>.因为21n n a ∞=∑收敛,所以2lim tann x n a nλ→+∞也收敛,所以原级数绝对收敛,应选(A).【相关知识点】正项级数比较判别法的极限形式:设1nn u∞=∑和1nn v∞=∑都是正项级数,且lim,nn nv A u →∞=则(1)当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2)当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3)当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.(4)【答案】(C)【解析】用洛必达法则.由题可知220()()()xxF x xf t dt t f t dt =-⎰⎰,对该积分上限函数求导数,得220()2()()()2()x xF x x f t dt x f x x f x x f t dt '=+-=⎰⎰,所以1002()2()()limlim limxxk kk x x x x f t dtf t dtF x xxx -→→→'==⎰⎰23002()2()limlim(1)(1)(2)k k x x f x f x k x k k x --→→'---洛洛.因为()F x '与kx 是同阶无穷小,且(0)0f '≠,所以302()lim(1)(2)k x f x k k x -→'--为常数,即3k =时有300()2()limlim(0)0(1)(2)kk x x F x f x f x k k x -→→'''==≠--,故应选(C).【相关知识点】设在同一个极限过程中,(),()x x αβ为无穷小且存在极限()lim()x l x αβ=,(1)若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小;(2)若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ ;(3)若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=.若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较.(5)【答案】(D)【解析】可直接展开计算,22221331334400000000a b a b D a b a b b a a b =-22221414232314143333()()a b a b a a b b a a b b a a b b b a b a =-=--,所以选(D).三、(本题共2小题,每小题5分,满分10分.)(1)【解析】由极坐标系下的弧微分公式得ds a θθ==⋅2cos2a a d θθθ==.由于()(1cos )r r a θθ==+以2π为周期,因而θ的范围是[0,2]θπ∈.又由于()()r r θθ=-,心形线关于极轴对称.由对称性,24cos 8sin 822s ds a d a a πππθθθ⎡⎤====⎢⎥⎣⎦⎰⎰.xyz1O xyOxyD yOz 12z y =yzD (2)【解析】用单调有界准则.由题设显然有0n x >,数列{}nx 有下界.证明n x单调减:用归纳法.214x x ==<;设1nn x x -<,则1n n x x +=<.由此,n x 单调减.由单调有界准则,lim n n x →+∞存在.设lim ,(0)n n xa a →+∞=≥,在恒等式1nx +=两边取极限,即1lim lim n n n x a +→+∞→+∞==,解之得3a =(2a =-舍去).【相关知识点】1.单调有界准则:单调有界数列必有极限.2.收敛数列的保号性推论:如果数列{}n x 从某项起有0n x ≥(或0n x ≤),且lim n n x a →∞=,那么0a ≥(或0a ≤).四、(本题共2小题,每小题6分,满分12分.)(1)【分析一】见下图所示,S 在xOy 平面与yOz 平面上的投影均易求出,分别为22:1xy D x y +≤;2:11,1yz D y y z -≤≤≤≤,或01,z y ≤≤≤≤.图1求Szdxdy ⎰⎰,自然投影到xOy 平面上.求(2)Sx z dydz +⎰⎰时,若投影到xOy 平面上,被积函数较简单且可利用对称性.【分析二】令(,,)2,(,,)0,(,,)P x y z x z Q x y z R x y z z =+==,则SI Pdydz Rdxdy =+⎰⎰.这里,213P Q R x y z∂∂∂++=+=∂∂∂,若用高斯公式求曲面积分I ,则较简单.因S 不是封闭曲面,故要添加辅助曲面.【解析】方法一:均投影到平面xOy 上,则22(2)[(2)()()]xySD zI x z dydz zdxdy x z x y dxdy x∂=++=+-++∂⎰⎰⎰⎰,其中22z x y =+,22:1xy D x y +≤.把2zx x∂=∂代入,得2222242()()xyxyxyD D D I x dxdy x x y dxdy x y dxdy =--+++⎰⎰⎰⎰⎰⎰,由对称性得222()0xyD x x y dxdy +=⎰⎰,22242()xyxyD D x dxdy x y dxdy =+⎰⎰⎰⎰,所以22()xyD I x y dxdy =-+⎰⎰.利用极坐标变换有121340001242I d r dr r ππθπ⎡⎤=-=-=-⎢⎥⎣⎦⎰⎰.方法二:分别投影到yOz 平面与xOy 平面.投影到yOz 平面时S要分为前半部分1:S x =2:S x =(见图1),则12(2)(2)S S SI x z dydz x z dydz zdxdy =++++⎰⎰⎰⎰⎰⎰.由题设,对1S 法向量与x 轴成钝角,而对2S 法向量与x 轴成锐角.将I化成二重积分得2222)()()4().yzyzxyyzxyD D D D D I z dydz z dydz x y dxdyx y dxdy =-+-++=-++⎰⎰⎰⎰⎰⎰⎰⎰2213111221131242200sin 2()344(1)cos 3343,34224yzz y D z y y tdy z y dyy dy tdt πππ=--====-=-=⋅⋅=⋅⎰⎰⎰⎰⎰⎰⎰或21101.24yzD dz dz ππ===⎰⎰⎰⎰(这里的圆面积的一半.)22()2xyD x y dxdy π+=⎰⎰(同方法一).因此,4.422I πππ=-⋅+=-方法三:添加辅助面221:1(1)S z x y =+≤,法方向朝下,则11(2)1S S Dx z dydz zdxdy dxdy dxdy π++==-=-⎰⎰⎰⎰⎰⎰,其中D 是1S 在平面xy 的投影区域:221x y +≤.S 与1S 即22z x y =+与1z =围成区域Ω,S 与1S 的法向量指向Ω内部,所以在Ω上满足高斯公式的条件,所以1(2)3S S x z dydz zdxdy dVΩ++=-⎰⎰⎰⎰⎰ 11()3332D z dz dxdy zdz ππ=-=-=-⎰⎰⎰⎰,其中,()D z 是圆域:22x y z +≤,面积为z π.因此,133(2)()222S I x z dydz zdxdy ππππ=--++=---=-⎰⎰.(2)【解析】由多元复合函数求导法则,得z z u z v z zx u x v x u v ∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂,2z z u z v z z a y u y v y u v∂∂∂∂∂∂∂=+=-+∂∂∂∂∂∂∂,所以22222222((z z z z u z v z v z ux x u x v u x u v x v x v u x∂∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂222222z z zu u v v ∂∂∂=++∂∂∂∂,2222222()()z z z z u z v z v z u x y y u y v u y u v y v y v u y∂∂∂∂∂∂∂∂∂∂∂∂∂=+=+⋅+⋅⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂222222(2)z z za a u u v v ∂∂∂=-+-+∂∂∂∂,222222222222222()()2()()44.z z z a y y u y vz u z v z v z ua u y u v y v y v u yz z z a a u u v v∂∂∂∂∂=-+∂∂∂∂∂∂∂∂∂∂∂∂∂=-⋅+⋅++⋅∂∂∂∂∂∂∂∂∂∂∂∂∂=-+∂∂∂∂代入2222260z z zx x y y ∂∂∂+-=∂∂∂∂,并整理得2222222226(105)(6)0z z z z z a a a x x y y u v v∂∂∂∂∂+-=+++-=∂∂∂∂∂∂∂.于是,令260a a +-=得3a =或2a =-.2a =-时,1050a +=,故舍去,3a =时,1050a +≠,因此仅当3a =时化简为20zu v∂=∂∂.【相关知识点】多元复合函数求导法则:若(,)u u x y =和(,)v v x y =在点(,)x y 处偏导数存在,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数[(,),(,)]z f u x y v x y =在点(,)x y 处的偏导数存在,且,z f u f v z f u f vx u x v x y u y v y∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂.五、(本题满分7分)【解析】先将级数分解,212211222131111)(1)2211111111.212122n n n n n n n n n n n n A n n n n n n n ∞∞+==∞∞∞∞+++======---+=⋅-⋅=--+⋅⋅∑∑∑∑∑∑令122131122n nn n A A nn ∞∞+=== =⋅⋅∑∑,则12A A A =-.由熟知ln(1)x +幂级数展开式,即11(1)ln(1)(11)n nn x x x n -∞=-+=-<≤∑,得1121111(1)1111()ln(1)ln 2242424n n n n n A n n -∞∞+==-==--=--=⋅∑∑,12331211(1)1(22(1)11111115(()ln(1)ln 2,22222288n nn n n n n n A n n n -∞∞==-∞=-==--⋅-=-----=----=-∑∑∑因此,1253ln 284A A A =-=-.六、(本题满分7分)【解析】曲线()y f x =上点(,())x f x 处的切线方程为()()()Y f x f x X x '-=-.令0X =得y 轴上的截距()()Y f x f x x '=-.由题意,1()()()xf t dt f x f x x x ' =-⎰.为消去积分,两边乘以x ,得20()()()xf t dt xf x f x x ' =-⎰,(*)将恒等式两边对x 求导,得2()()()2()()f x f x xf x xf x x f x ''''=+--,即()()0xf x f x '''+=.在(*)式中令0x =得00=自然成立.故不必再加附加条件.就是说()f x 是微分方程0xy y '''+=的通解.下面求解微分方程0xy y '''+=.方法一:()100xy y xy xy C ''''''+=⇒=⇒=,因为0x >,所以1C y x'=,两边积分得12()ln y f x C x C ==+.方法二:令()y P x '=,则y P '''=,解0xP P '+=得1C y P x'==.再积分得12()ln y f x C x C ==+.七、(本题满分8分)【解析】由于问题涉及到,f f '与f ''的关系,自然应当利用泰勒公式,而且应在点c 展开:2()()()()()()2!f f x f c f x x c x c ξ'''=+-+-,ξ在c 与x 之间.分别取0,1x =得20()(0)()()(0)(0)2!f f f c f c c c ξ'''=+-+-,0ξ在c 与0之间,21()(1)()()(1)(1)2!f f f c f c c c ξ'''=+-+-,1ξ在c 与1之间,两式相减得22101(1)(0)()[()(1)()]2!f f f c f c f c ξξ'''''-=+--,于是22101()(1)(0)()(1)()]2!f c f f f c f c ξξ'''''=----.由此221011()(1)(0)()(1)()2!2!f c f f f c f c ξξ'''''≤++-+2212[(1)]222b a b c c a ≤+-+<+.八、(本题满分6分)【解析】(1)因为TA E ξξ=-,Tξξ为数,Tξξ为n 阶矩阵,所以2()()2()(2)T T T T T T T A E E E E ξξξξξξξξξξξξξξ=--=-+=--,因此,2(2)(1)0T T T T T A A E E ξξξξξξξξξξ=⇔--=-⇔-=因为ξ是非零列向量,所以0Tξξ≠,故210,TA A ξξ=⇔-=即1Tξξ=.(2)反证法.当1Tξξ=时,由(1)知2A A =,若A 可逆,则121A A A A A E --===.与已知T A E E ξξ=-≠矛盾,故A 是不可逆矩阵.九、(本题满分8分)【解析】(1)此二次型对应的矩阵为51315333A c -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭.因为二次型秩()()2r f r A ==,由513440400153153163333336A c c c -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--→--→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭可得3c =.再由A 的特征多项式513||153(4)(9)333E A λλλλλλλ---=-=----求得二次型矩阵的特征值为0,4,9.(2)因为二次型经正交变换可化为222349y y +,故123(,,)1f x x x =,即2223491y y +=.表示椭圆柱面.【相关知识点】主轴定理:对于任一个n 元二次型12(,,,)T n f x x x x Ax = ,存在正交变换x Qy =(Q 为n 阶正交矩阵),使得2221122()T T T n n x Ax y Q AQ y y y y λλλ==+++ ,其中12,,,n λλλ 是实对称矩阵A 的n 个特征值,Q 的n 个列向量12,,,n ααα 是A 对应于特征值12,,,n λλλ 的标准正交特征向量.十、填空题(本题共2小题,每小题3分,满分6分.)(1)【答案】37【解析】设事件C =“抽取的产品是次品”,事件D =“抽取的产品是工厂A 生产的”,则事件D 表示“抽取的产品是工厂B 生产的”,依题意有()0.60,()0.40,(|)0.01,(|)0.02P D P D P C D P C D ====.应用贝叶斯公式可以求得条件概率(|)P D C :()(|)0.60.013(|)0.60.010.40.027()(|)()(|)P D P C D P D C P D P C D P D P C D ⨯===⨯+⨯+.【相关知识点】贝叶斯公式:设试验E 的样本空间为S .A 为E 的事件,12,,,n B B B 为S 的一个划分,且()0,()0(1,2,,)i P A P B i n >>= ,则1()(|)(|)1,2,,.()(|)i i i njjj P B P A B P B A i n P B P A B ===∑ (*)(*)式称为贝叶斯公式.【解析】由于ξ与η相互独立且均服从正态分布2)N ,因此它们的线性函数U ξη=-服从正态分布,且()0,EU E E E ξηξη=-=-=()11122DU D D D ξηξη=-=+=+=,所以有(0,1)U N .代入正态分布的概率密度公式,有22()u f u du +∞--∞=⎰.应用随机变量函数的期望公式有22(||)(||)||u E E U u du ξη+∞--∞-= =⎰222u u +∞-=⎰由凑微分法,有222(||)2()2u u E d ξη+∞--=--⎰22u +∞-==.【相关知识点】对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.十一、(本题满分6分.)【解析】易见(,)X Y 的可能取值为(1,1),(2,1),(2,2),(3,1),(3,2),(3,3).依题意{}X Y <=∅,故{}0P X Y <=,即{}{}{}1,21,32,30P X Y P X Y P X Y =========,{}{}1,1max(,)1,min(,)1P X Y P ξηξη====={}{}{}11,1119P P P ξηξη=======.类似地可以计算出所有ij p 的值列于下表中,得到随机变量(,)X Y 的联合分布律:XY123119002291903292919(2)将表中各行元素相加求出X 的边缘分布123135999X ⎡⎤⎢⎥⎢⎥⎣⎦,由离散型随机变量数学期望计算公式可得135221239999EX =⋅+⋅+⋅=.【相关知识点】1.离散型随机变量的边缘分布计算公式:二维离散型随机变量(,)X Y 关于X 与Y 的边缘概率分布或边缘分布律分别定义为:{}{},,1,2,i i i j ij jjp P X x P X x Y y p i ⋅=======∑∑{}{},,1,2,j j i j ij iip P Y y P X x Y y p j ⋅=======∑∑它们分别为联合分布律表格中第i 行与第j 列诸元素之和.2.离散型随机变量数学期望计算公式:{}1()nkk k E X xP X x ==⋅=∑.。
1996年全国硕士研究生入学统一考试数学试题参考解答及评分标准数 学(试卷一)一、填空题:(本题共5小题,每小题3分,满分15分)(1) 设2lim()8xx x a x a→∞+=-,则a = ln2 .(2) 设一平面经过原点及点)2,3,6(-,且与平面824=+-z y x 垂直,则此平面方程为2x +2y –3z = 0 .(3) 微分方程''2'2xy y y e -+=的通解为)1sin cos (21++=x c x c e y x(4) 函数)ln(22 +zy x u +=)在A (1,0,1)处沿点A 指向点B (3,-2,2)方向的方向导数为12.(5) 设A 是4 ⨯3矩阵,且A 的秩r(A)=2,而B = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-301020201,则r(AB) = 2 .二、选择题:(本题共5小题,每小题3分,满分15分) (1) 已知2)()(y x ydydx ay x +++ 为某函数的全微分,则a 等于 (D)(A) –1. (B) 0 . (C) 1 . (D) 2.(2) 设()x f 有二阶连续导数, 且(0)0f '=,0()lim 1x f x x→''=,则 (B)(A) )0(f 是()x f 的极大值 (B) )0(f 是()x f 的极小值(C) (0,(0))f 是曲线()y f x =的拐点(D) )0(f 不是()x f 的极值, (0,(0))f 也不是曲线y =()x f 的拐点.(3) 设0n a >(1,2,)n = ,且∑∞=1n n a 收敛,常数(0,)2πλ∈,则级数21(1)(tan )n n n n a n λ∞=-∑ (A)(A) 绝对收敛 (B) 条件收敛 (C ) 发散 (D) 敛散性与λ有关.(4) 设()x f 有连续的导数,(0)0f =,)0('f ≠0,F ()x =,)()(202dt t f t x x-⎰且当0→x 时,)('x F 与k x 同阶无穷小,则k 等于 (C)(A) 1. (B )2. (C) 3. (D) 4.(5) 四阶行列式 4433221100000000a b a b b a b a 的值等于 (D)(A) 4321a a a a -4321b b b b (B) 4321a a a a +4321b b b b (C)(2121b b a a -)(4343b b a a -) (D) (3232b b a a -)(4141b b a a -) 三、(本题共2小题,每小题5分,满分10分) (1) 求心形线)cos 1(θ+=a r 的全长,其中0>a .解:()sin r a θθ'=-,……2分22()ds r r d θ'=+22(1cos )(sin )2|cos |2a d a d θθθθθ=++-=……3分 利用对称性,所求心形线的全长0022cos 8sin822s a d a a ππθθθ===⎰. ……5分(2) 设101=x ,n n x x +=+61(n=1,2,…),试证数列{}n x 极限存在,并求此极限.证:由110x =及216164x x =+==,知12x x >.假设对某正整数k 有1k k x x +>,则有11266k k k k x x x x +++=+>+=,故由归纳法知,对一切正整数n ,都有1n n x x +>.即{}n x 为单调减少数列. ……3分又由16n n x x +=+,显见0(1,2,)n x n >= ,即{}n x 有下界. 根据极限存在准则,知lim n n x →∞存在.……4分令lim n n x a →∞=,对16n n x x +=+两边取极限,得6a a =+从而260a a --=.因此32a a ==-或.因为0(1,2,)n x n >= ,所以0a ≥.舍去2a =-,故极限值3a =. ……5分四、(本题共2小题,每小题6分,满分12分)(1) 计算曲面积分⎰⎰++Szdxdy dydz z x )(2,其中S 为有向曲面22y x z +=,(10≤≤z ),其法向量与z 轴正向的夹角为锐角.解一: 以1S 表示法向量指向z 轴负向的有向平面221(1)z x y =+≤,D 为1S 在XOY平面上的投影区域,则1(2)()S Dx z dxdy zdxdy dxdy π++=-=-⎰⎰⎰⎰.……2分记Ω表示由S 和1S 所围的空间区域,则由高斯公式知1(2)(21)S S x z dxdy zdxdy dv +Ω++=-+⎰⎰⎰⎰⎰212421113000336()6242r r r d rdr dz r r dr ππθππ⎡⎤=-=--=--=-⎢⎥⎣⎦⎰⎰⎰⎰. ……5分 因此13(2)()22S x z dxdy zdxdy πππ++=---=-⎰⎰. ……6分解二: 以,yz xy D D 表示S 在,YOZ XOY 平面平面上的投影区域,则(2)Sx z dxdy zdxdy ++⎰⎰2222(2)()(2)()yzyzxyD D D z y z dydz z y z dydz x y dxdy =--+--++⎰⎰⎰⎰⎰⎰2224()yzxyD D z y dydz x y dxdy =--++⎰⎰⎰⎰……2分其中3111222214(1)3yzyD z y dydz dy z y dz y dy--=-=-⎰⎰⎰4204431sin cos 334224y t tdt πππ==⋅⋅⋅=⎰;21222()2xyD x y dxdy d r rdr ππθ+=⋅=⎰⎰⎰⎰,……5分所以1(2) 4.222S x z dxdy zdxdy πππ++=-+=-⎰⎰. ……6分(2) 设变换⎩⎨⎧+=-=ay x v y x u 2 可把方程0622222=∂∂-∂∂∂+∂∂y z y x z x x 简化为02=∂∂∂v u z,求常数a .解:,2z z z z z z a x u v y u v∂∂∂∂∂∂=+=-+∂∂∂∂∂∂.……1分 22222222z z z z x u u v v ∂∂∂∂=++∂∂∂∂∂,2222222(-2)zz z z a a x yu u v v ∂∂∂∂=-++∂∂∂∂∂∂, 2222222244z z z z a a y u u v v ∂∂∂∂=-+∂∂∂∂∂. ……4分将上述结果代入原方程,经整理后得2222(105)(6)0z z a a a u v v∂∂+++-=∂∂∂. 依题意知a 应满足260,1050a a a +-=+≠且,解之得3a =.……6分五、(本题满分7分) 求级数∑∞=-222)1(1n nn 的和.解:设22()(||1)1nn x S x x n ∞==<-∑,……1分则2111()()211n n S x x n n ∞==--+∑,其中122111111n n n n n n x x x x x n n n ∞∞∞-=====--∑∑∑. 23111(0)1n nn n x x x n x n ∞∞===≠+∑∑.……3分设11()n n g x x n∞==∑,则11111()(||1)1n n n n g x x x x n x ∞∞-=='⎛⎫'===< ⎪-⎝⎭∑∑. 于是00()()(0)()ln(1)(||1)1x x dtg x g x g g t dt x x t'=-===--<-⎰⎰.从而21()[ln(1)][ln(1)]222x x S x x x x x =-------221ln(1)(||10)42x x x x x x+-=+-<≠且.……5分 因此221153ln 2(1)2284nn s n ∞=⎛⎫==- ⎪-⎝⎭∑. ……7分六、(本题满分7分)设对任意0>x ,曲线)(x f y =上点))(,(x f x 处的切线在y 轴上的截距等于⎰xdt t f x0)(1,求)(x f 的一般表达式. 解:曲线()y f x =上点(,())x f x 处的切线方程为()()()Y f x f x X x '-=-. ……1分 令0X =,得截距()()Y f x xf x '=-.……3分由题意,知01()()()xf t dt f x xf x x '=-⎰. 即0()[()()]x f t dt x f x xf x '=-⎰.上式对x 求导,化简得()()0xf x f x ''+=, ……5分即('())0d xf x dx=,积分得1'()x f x C =. 因此12()ln f x C x C =+(其中12,C C 为任意常数).……7分七、(本题满分8分)设)(x f 在[]1,0上具有二阶导数,且满足条件a x f ≤)(,b x f ≤)('',其中b a ,都是非负常数,c 是()0,1内的任意一点.证明22)('b a c f +≤.证:2()()()()()(),(*)2!f x c f x f c f c x c ξ''-'=+-+其中(),01c x c ξθθ=+-<<. ……2分在(*)式中令0x =,则有211()(0)(0)()()(0),01;2!f c f f c f c c c ξξ''-'=+-+<<<在(*)式中令1x =,则有222()(1)(1)()()(1),01;2!f c f f c f c c c ξξ''-'=+-+<<<上述两式相减得22211(1)(0)()()(1)()2!f f f c f c f c ξξ'''''⎡⎤-=+--⎣⎦. ……5分 于是22211|()|(1)(0)()(1)()2!f c f f f c f c ξξ'''''⎡⎤=----⎣⎦ 222111(1)|(0)||()|(1)|()|2!2!f f f c f c ξξ''''≤++-+22[(1)]2ba a c c ≤++-+. ……7分又因22(0,1),(1)1c c c ∈-+≤,故|()|22bf c a '≤+. ……8分八、(本题满分6分)设T A I ξξ=-,其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明: (1) A A =2的充要条件是1=ξξT ;(2) 当1=ξξT 时,A 是不可逆矩阵. 证:(1) 2()()2T T T T T A I I I ξξξξξξξξξξ=--=-+(2)(2)T T T T I I ξξξξξξξξ=--=--.A A =2即(2)T T T I I ξξξξξξ--=-,亦即()T T I ξξξξ-=O ,因为ξ是非零列向量,0T ξξ≠,故A A =2的充要条件是10T ξξ-=,即1T ξξ=.……3分 (2) 用反证法:当1T ξξ=时A A =2.若A 可逆,则有121A A A A --=,从而A I =.这与T A I I ξξ=-≠矛盾,故A 是不可逆矩阵.……6分九、(本题满分8分)已知二次型32312132132166255),,(x x x x x x cx x x x x x f -+-++=的秩为2. (1) 求参数c 及此二次型对应矩阵的特征值; (2) 指出方程123(,)4f x x x =表示何种二次曲面.解:(1) 此二次型对应矩阵为A =51315333c -⎛⎫ ⎪-- ⎪ ⎪-⎝⎭, ……1分因()2r A =,故513||153033A c-=--=-,解得3c =.容易验证此时A 的秩的确是2. ……3分这时,||(4)(9)I A λλλλ-=--,故所求特征值为0,4,9λλλ===.……6分 (2) 由上述特征值可知,123(,,)1f x x x =表示椭圆柱面. ……8分十、填空题 (本题共2小题,每小题3分,满分6分)(1) 设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是37.(2) 设,ξη是两个相互独立且均服从正态分布2))2N 的随机变量,则随机变量||ξη- 的数学期望(||)E ξη-=2π.十一、(本题满分6分)设,ξη是相互独立且服从同一分布的随机变量,已知ξ的分布律为1(),1,2,33P i i ξ===. 又设max{,},min{,}X Y ξηξη==.(1) 写出二维随机变量(,)X Y 发分布律;(2) 求随机变量X 的数学期望.解:(1)Y X1 2 3 11 / 9 0 02 2 / 9 1 / 9 032 / 92 / 91 / 9……4分(2) 13522()1239999E X =⋅+⋅+⋅=……6分 注:写对分布律中的1个数得1分,2~4个得2分,5~7个得3分,8~9个得4分.数 学(试卷二)一、填空题【 同数学一 第一题 】 二、选择题【 同数学一 第二题 】三、(本题共2小题,每小题5分,满分10分) (1) 计算积分dxdy y x D⎰⎰+22,其中D=(){}x y x x y y x 2,0,22≤+≤≤ .解:原式2cos 40d r rdr πθθ=⋅⎰⎰3408cos 3d πθθ=⎰……3分 42340088110(1sin )sin sin sin 23339d ππθθθθ⎡⎤=-=-=⎢⎥⎣⎦⎰……5分(2) 【 同数学一 第三、(1)题 】 (3) 【 同数学一 第三、(2)题 】四 ~ 七、【 同数学一 第四 ~ 七题 】 八、(本题共2小题,每小题6分,满分12分)(1) 求齐次线性方程组⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的基础解系.解:110011100111100001010011100010⎛⎫⎛⎫⎪ ⎪-→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭……3分解得基础解系为12(1,0,1,0,1),(1,1,0,0,0)ξξ=--=-. ……6分(2) 【 同数学一 第八题 】九、(本题满分8分)【 同数学一 第九题 】数 学(试卷三)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 设322)(x e x y -+=, 则==|'x y 1/3.(2)=-+⎰-1122)1(dx x x 2 .(3) 052=+'+''y y y 的通解为)2sin 2cos (21x c x c e y x +=-. (4) =+-+∞→)]11ln(sin )31ln([sin lim xx x x 2 .(5) 由曲线1y x x =+,2x =及2y =所围图形的面积S =1ln 22-. 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 设当0→x 时,)1(2++-bx ax e x 是比2x 高阶的无穷小,则 (A )(A) 121==b a , (B) 11==b a , (C) 121=-=b a , (D) 11=-=b a ,. (2) 设函数()f x 在区间),(δδ-内有定义,若当),(δδ-∈x 时,恒有2()f x x ≤,则0x = 必是()f x 的 (C )(A) 间断点(B) 连续而不可导的点 (C) 可导的点,且(0)0f '=.(D) 可导的点,且(0)0f '≠(3) 设()f x 处处可导,则 (D )(A) 当lim ()x f x →-∞=-∞时,必有lim ()x f x →-∞'=-∞.(B) 当lim ()x f x →-∞'=-∞时,必有lim ()x f x →-∞=-∞.(C) 当lim ()x f x →+∞=+∞时,必有lim ()x f x →+∞'=+∞.(D) 当lim ()x f x →+∞'=+∞时,必有lim ()x f x →+∞=+∞.(4) 在区间),(∞-∞内,方程 0cos 2141=-+x x x(C )(A) 无实根 (B) 有且仅有一个实根 (C) 有且仅有二个实根 (D) 有无穷多个实根 (5) 设()()f x g x 、在区间[,]a b 上连续,且()()g x f x m <<(m 为常数),则曲线()y g x =,()y f x =,x a =及x b =所围成图形绕直线y m =旋转而成的旋转体体积为 (B )(A)⎰-+-badx x g x f x g x f m .)]()()][()(2[π(B)⎰---ba dx x g x f x g x f m .)]()()][()(2[π (C)⎰-+-b adx x g x f x g x f m .)]()()][()([π (D)⎰---badx x g x f x g x f m .)]()()][()([π三、(本题共6小题,每小题5分,满分30分) (1) 计算⎰--2ln 021dx e x解一:原式2ln 2ln 22220111x x xxee dx ee e --=-=--+-⎰⎰……3分 ln 22033ln(1)ln(23)x x e e --=-=++.……5分解二:令sin xet -=,则cos sin tdx dt t-=, 原式2222666cos 1sin sin sin t dt dt tdt t t ππππππ==-⎰⎰⎰……3分 2633ln(csc cot )ln(23)t t ππ=-+=+-. ……5分(2) 求⎰+x dxsin 1解一:原式21sin cos x dx x-=⎛⎜⎠ ……2分 1tan cos x C x=-+.……5分解二:原式222sec 2(cos sin )(1tan )222x dxdx x x x ==++⎛⎛⎜⎜⎜⎜⎜⎠⎠ ……3分2(1tan )222(1tan )1tan 22x d C x x+-==+++⎛⎜⎜⎜⎠.……5分(3) 设2022()[()]tx f u duy f t ⎧=⎪⎨⎪=⎩⎰,其中()f u 具有二阶导数,且()0f u ≠,求22d y dx .解:222(),4()(),dx dy f t tf t f t dt dt'==所以22224()()4()()dydy tf t f t dt tf t dx dx f t dt''===. ……2分 22222214[()2()]()d y d dy f t t f t dx dx dt dx f t dt '''+⎛⎫== ⎪⎝⎭. ……5分 (4) 求函数()f x =xx+-11在0x =点处带拉格朗日型余项的n 阶泰勒展开式.解:2()11f x x=-+,()1(1)2!()(1,2,,1)(1)k k k k f x k n x +-⋅==++ . ……3分 所以12122()122(1)2(1)(1)n n n n n x f x x x x ξ+++=-+++-+-+ (ξ在0与x 之间).……5分 (5) 求微分方程2'''x y y =+的通解.解一:对应的齐次方程的特征方程为20λλ+=,解之得0,1λλ==-,故齐次方程的通解为12xy C C e -=+.……2分设非齐次方程的特解为2()x ax bx C ++,代入原方程得1,1,23a b c ==-=. 因此,原方程的通解为3212123x y x x x C C e -=-+++. ……5分 解二:令p y '=,代入原方程得2p p x '+=,……2分故()()220022xxxxx x p ex e dx C e x exe e C --=+=-++⎰.再积分得到20(22)xy x x c e dx -=-++⎰3212123x x x x C C e -=-+++. ……5分 解三:原方程为2()y y x ''+=,两边积分得3013y y x C '+=+. ……3分30213x x y e x C e dx C -⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦⎛⎜⎠()320213663x x x x x x e x e x e xe e C e C -⎡⎤=-+-++⎢⎥⎣⎦3212123x x x x C C e -=-+++. ……5分 (6) 设有一正椭圆柱体,其底面的长、短轴分别为22a b 、,用过此柱体底面的短轴且与底面成α解(20πα<<)的平面截此柱体,得一楔形体(如图),求此楔形体的体积V.解一:底面椭圆的方程为22221x y a +=,以垂直于y 轴的平行平面截此楔形体所得的截面为直角三角形,其一直角边长为221y a b -,另一直角边长为221y a bα-,故截面面积222()1tan 2a y S y b α⎛⎫=- ⎪⎝⎭,……3分 楔形体的体积为22220221tan tan 23ba y a bV dy b αα⎛⎫=-=⎪⎝⎭⎰. ……5分解二:底面椭圆的方程为22221x y +=,以垂直于x 轴的平行平面截此楔形体所得的截面为矩形,其一边长为22221x y b a=-tan x α,故截面面积22()21x S x bx aα=-,……3分楔形体的体积为32222222002221tan 1tan 33ab x a x a b V dx b a a ααα⎡⎤⎛⎫-⎢⎥=-=-= ⎪⎢⎥⎝⎭⎢⎥⎣⎦⎰. ……5分 四、(本题满分8分) 计算不定积分⎰+.)1(22dx x x arctgx解一:原式22arctan arctan 1x x dx dx x x =-+⎛⎛⎜⎜⎠⎠……2分 22arctan 1(arctan )(1)2x dx x x x x =-+-+⎛⎜⎠ ……4分 2222arctan 1111()(arctan )212x d x x x x x ⎛⎫=-+-- ⎪+⎝⎭⎛⎜⎠ ……6分 222arctan 11(arctan )ln 221x x x C x x=--+++. ……8分解二:令tan x t =,则原式2(csc 1)t t dt -⎰=……2分 2cos 1cot sin 2t t t dt t t =-+-⎰……4分21cot ln |sin |2t t t t C =-+-+……6分 22arctan 1(arctan )21x x C x x =-+++.……8分五、(本题满分8分)设函数⎪⎩⎪⎨⎧>-≤≤--<-=.2,1612,21,,1,21)(32x x x x x x x f(1) 写出()f x 的反函数()g x 的表达式;(2) 问()g x 是否有间断点与不可导点,若有,指出这些点.解:(1) 由题设,()f x 的反函数为3112()1816812x x g x x x x x ⎧--<-⎪⎪⎪=-≤≤⎨⎪+⎪>⎪⎩. ……4分(2) ()g x 在(,)-∞+∞内处处连续,没有间断点.……5分 ()g x 的不可导点是01x x ==-及.……8分 (注:多写一个不可导点8x =扣1分)六、(本题满分8分)设函数()y y x =由方程1222223=-+-x xy y y 所确定. 试求()y y x =的驻点,并判 别它们是否为极值点.解:对原方程两边求导可得2320()y y yy xy y x '''-++-=*……2分令0y '=,得y x =.将此代入原方程有32210x x --=.从而解得唯一的驻点1x =. ……5分()*式两边求导,得22(32)2(31)210y y x y y y y ''''-++-+-=.因此(1,1)1|02y ''=>,故驻点1x =是()y y x =的极小值点. ……8分七、(本题满分8分)设()f x 在区间[,]a b 上具有二阶导数,且()()0f a f b ==,'()'()0.f a f b >证明存在(,)a b ξ∈和),(b a ∈η,使()0f ξ=及0)(''=ηf .证一:先用反证法证明存在(,)a b ξ∈,使()0f ξ=. 若不存在(,)a b ξ∈,使()0f ξ=,则在区间(,)a b 内恒有()0f x >或()0f x <. 不妨设()0f x >(对()0f x <,类似可证),则()()()()lim lim 0x b x b f x f b f x f b x b x b--→→-'==≤--, ……3分 ()()()()lim lim 0x a x a f x f a f x f a x ax a ++→→-'==≥--.从而()()0f a f b ''≤,这与已知条件矛盾. 这即证得存在(,)a b ξ∈,使得()0f ξ=. ……5分再由()()()f a f f b ξ==及罗尔定理,知存在12(,)(,)a b ηξηξ∈∈和,使得12()()0f f ηη''==. 又在区间12[,]ηη上对()f x '应用罗尔定理知,存在12(,)(,)a b ηηη∈⊂,使()0f η''=.……8分证二:不妨设()0,()0f a f b ''>>(对()0,()0f a f b ''<<类似可证),即()lim 0x a f x x b +→>-,()lim 0x b f x x b-→>-. 故存在11(,)x a a δ∈+和22(,)x b b δ∈-,使1()0f x >及2()0f x <,其中12,δδ为充分小的正数. 显然12x x <,在区间12[,]x x 上应用介值定理知,存在一点12(,)(,)x x a b ξ∈⊂,使得()0f ξ=. ……5分 以下同证一. 八、(本题满分8分) 设()f x 为连续函数.(1) 求初值问题0'()0|x y ay f x y -+=⎧⎪⎨=⎪⎩的解()y y x =,其中a 是正常数; (2) 若()f x k ≤(k 为常数),证明:当0≥x 时,有()(1).ax k y x e a-≤-证一:(1) 原方程的通解为()[()][()]axax ax y x ef x e dx C e F x C --=+=+⎰, ……2分其中()F x 是()axf x e 的任一原函数.由(0)0y =得(0)C F =-,故()[()(0)]()xax ax at y x e F x F e f t e dt --=-=⎰.……4分 (2) 0()()xaxat y x ef t e dt -≤⎰……6分 0xaxat kee dt -≤⎰(1)(1),0ax ax ax k k e e e x a a--≤-=-≥. ……8分证二:在原方程的两端同乘以ax e ,得()ax ax ax y e aye f x e '+=.从而()()ax axye f x e '=,……2分 所以0()xaxat yef t e dt =⎰或0()xaxat y ef t e dt -=⎰.……4分(2)同证一数 学(试卷四)一、填空题:(本题共5小题,每小题3分,满分15分)(1) 设方程yy x =确定y 是x 的函数,则dy =(1ln )dxx y +.(2) 设⎰+=c x dx x xf arcsin )(,则=⎰)(x f dx 231(1)3x C -. (3) 设(00,y x )是抛物线c bx ax y ++=2上的一点,若在该点的切线过原点,则系数,,a b c应满足的关系是200(),c a ax c b ≥=或任意.(4) 设 123222212311111231111n n n n n n n a a a a A a a a a a a a a ----⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,123n x x X x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1111B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ ,其中(;,1,2,,)i j a a i j i j n ≠≠= ,则线性方程组B X A T=的解是(1,0,,0)T X =(5) 设由来自正态总体X ~)9.0,(2μN 容量为9的简单随机样本,得样本均值5=X ,则未知参数μ的置信度为0.95的置信区间是 ( 4.412 , 5.588 ) 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 累次积分dr r r r f d ⎰⎰20cos 0)sin ,cos (πθθθθ可以写成 (D)(A) dx y x f dy y y ⎰⎰-102),(. (B)dx y x f dy y ⎰⎰-1102),(. (C)dy y x f dx ⎰⎰101),(. (D)dy y x f dx x x ⎰⎰-12),(.(2) 下述各选项正确的是 (A)(A) 若21nn u∞=∑和21nn v∞=∑都收敛,则21()nn n uv ∞=+∑收敛(B) 若1n nn u v∞=∑收敛,则21nn u∞=∑和21nn v∞=∑都收敛(C) 若级数1n n u ∞=∑发散,则1n u n≥ (D) 若级数1nn u∞=∑收敛,且n n u v ≥(1,2,)n = ,则级数1nn v∞=∑也收敛(3) 设n 阶矩阵A 非奇异),2(≥n A *是矩阵A 的伴随矩阵,则 (C)(A) (A *)*=A A n 1- (B) (A *)*=A A n 1+(C) (A *)*=A An 2-(D) (A *)*=A An 2+(4) 设有任意两个n 维向量组12,,,m ααα 和12,,,m βββ ,若存在两组不全为零的12,,,mλλλ 和12,,,m k k k ,使111111()()()()0m m m m m m k k k k λαλαλβλβ+++++-++-= ,则 (D)(A) 12,,,m ααα 和 12,,,m βββ 都线性相关 (B) 12,,,m ααα 和 12,,,m βββ 都线性无关 (C) 11221122,,,,,,,m m m m αβαβαβαβαβαβ+++--- 线性无关 (D)11221122,,,,,,,m m m m αβαβαβαβαβαβ+++--- 线性相关(5) 已知0<P (B )<1,且P )()(])[(2121B A P B A P B A A +=+,则下列选项成立的是 (B)(A) )()(])[(2121B A P B A P B A A P +=+ (B) )()()(2121B A P B A P B A B A P +=+ (C) 1212()()()P A A P A B P A B +=+ (D) )()()()()(2211A B P A P A B P A P B P += 三、(本题满分6分)设()f x =()00,0xg x e x x x -⎧-≠⎪⎪⎨⎪⎪=⎩若若,其中()g x 有二阶连续导数,且(0)1g =, (0)1g '=-. (1) 求()f x '; (2) 讨论()f x '-∞+∞在(,)上的连续性.解:(1) 当0x ≠时,有22[()]()()()(1)()x x xx g x e g x e xg x g x x e f x x x---''+-+-++'==. ……1分 当0x =时,有20()(0)lim xx g x e f x-→-'= ……2分 00()()(0)1lim lim 222x x x x g x e g x e g x --→→'''''+--===. ……3分所以2()()(1)0()(0)102x xg x g x x e x x f x g x -'⎧-++≠⎪⎪'=⎨''-⎪=⎪⎩若若.……4分(2) 因为在0x =处,有0lim ()x f x →'00()()()(1)()lim lim22x x xx x g x xg x g x e x e g x e x ---→→''''''+-+-+-== (0)1(0)2g f ''-'==.……5分 从而()f x '在0x ≠处连续,所以()f x '在(,)-∞+∞上为连续函数.……6分四、(本题满分6分)设函数()z f u =,方程()()xyu u p t dt ϕ=+⎰确定u 是x 、y 的函数,其中()f u 、()u ϕ可微;(),()p t u ϕ' 连续,且()1u ϕ'≠. 求 ()()z zp y p x x y∂∂+∂∂. 解:由()z f u =可得();();z u z uf u f u x x y y∂∂∂∂''==∂∂∂∂ ……1分在方程()()x yu u p t dt ϕ=+⎰两边分别对,x y 求偏导数,得()()u uu p x x x ϕ∂∂'=+∂∂, ……2分 ()()u uu p y y yϕ∂∂'=-∂∂. ……3分 所以()(),1()1()u p x u p y x u y u ϕϕ∂∂-==''∂-∂-; ……5分 于是()()()()()()()01()1()z z p x p y p x p y p y p x f u x y u u φφ⎡⎤∂∂'+=-=⎢⎥''∂∂--⎣⎦. ……6分五、(本题满分6分) 计算2(1)xx xe dx e -+∞-+⎰. 解一: 2200(1)(1)x x x x xe xe dx dx e e +∞+∞--=++⎛⎛⎜⎜⎠⎠011xxd e +∞-⎛⎫= ⎪+⎝⎭⎛⎜⎠ ……1分00111xxx dx e e ∞+∞=-+++⎛⎜⎠ ……2分 011x dx e+∞=+⎛⎜⎠. ……3分令x e t =,则1dx dt t=.于是2101(1)(1)x x xe dx dt e t t +∞+∞--=++⎛⎛⎜⎜⎠⎠ ……4分 1111ln 11t dt t t t +∞+∞⎛⎫=-= ⎪++⎝⎭⎛⎜⎠ ……5分 ln 2=.……6分解二:21(1)1x x xxe dx xd e e ---⎛⎫= ⎪++⎝⎭⎛⎛⎜⎜⎠⎠111x xx dx ee --=-++⎛⎜⎠ 11x x x x e dx e e-=-++⎛⎜⎠ln(1)1x x xxe e C e =-+++. ……3分 所以20lim ln(1)ln 2(1)1x x x x x x xe xe dx e e e +∞--→+∞⎡⎤=-++⎢⎥++⎣⎦⎛⎜⎠. ……4分其中lim ln(1)lim ln(1)11x x x x xxx x xe xe e x x e e e →+∞→+∞⎡⎤⎡⎤-+=-+-+⎢⎥⎢⎥++⎣⎦⎣⎦ lim ln 00011x x x x x e e e →+∞⎡⎤=-+=+=⎢⎥++⎣⎦ ……5分 因此20ln 2ln 2(1)x x xe dx e +∞--=+=+⎛⎜⎠. ……6分六、(本题满分5分)设)(x f 在区间[0,1]上可微,且满足条件120(1)2()f xf x dx =⎰,求证:存在ξ)1,0(∈,使0)()(='+ξξξf f .证:设()()F x xf x =. 由积分中值定理,可见存在1(0,)2η∈.使112201()()()2xf x dx F x dx F η==⎰⎰. ……2分由已知条件,有1201(1)2()2()()2f xf x dx F F ηη==⋅=⎰.……3分 由于(1)(1)()F f F η==,……4分并且()F x 在[,1]η上连续,在(,1)η上可导.故由罗尔定理知:存在(,1)(0,1)ξη∈⊂,使得()0F ξ'=,即()()0f f ξξξ'+=.……5分七、(本题满分6分)设某种商品的单价为p 时,售出的商品数量Q 可以表示成c bp aQ -+=,其中,,a b c 均为正数,且a bc >.(1) 求p 在何范围变化时,使相应销售额增加或减少;(2) 要使销售额最大,商品单价p 应取何值?最大销售额是多少? 解:(1) 设售出商品的销售额为R ,则a R PQ P c a b ⎛⎫==-⎪+⎝⎭,令22()0()ab c P b R p b -+'==+. 得00ab bp b a bc c c ==>. ……2分 当0bp a bc c <<时,有0R '>.所以随p 的增加,相应的销售额也增加. ……4分当bp a bc c>时,有0R '<.所以随p 的增加,相应的销售额将减少.……5分 (2) 由(1)知,当bp a bc c=时,销售额R 取得最大值,最大销售额为2max (/)()/R ab c b c a bc ab c==. ……6分八、(本题满分6分)求微分方程x y x y dx dy 22+-=的通解. 解:令y z x =,则dy dzz x dx dx=+. ……1分 当0x >时,原方程化为21dz z x z z dx +=+21dx x z =-+, ……3分 其通解为221ln(1)ln 1C z z x C z z x+=-++或=,……5分代回原变量,得通解22(0)y x y C x +>=.……6分当0x <时,原方程的解与0x >时相同.九、(本题满分8分)设矩阵A= 010010000010012y ⎫⎛⎪ ⎪⎪⎪⎝⎭(1) 已知A 的一个特征值为3,试求y ; (2) 求矩阵P ,使(AP)T(AP)为对角矩阵.解:(1) 因为22||(1)[(2)21]0I A y y λλλλ-=--++-=. 当3λ=时,代入上式解得2y =.……3分于是0100100000210012A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭. (2) 由T A A =,得2()()T T AP AP P A P =.而矩阵21000010000540045A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭, ……4分 考虑二次型22222222212343412344495585()55T X A X x x x x x x x x x x x =++++=++++, ……6分 令1122334444,,,5y x y x y x x y x ===+=,即11223344100001000014/50001x y x y x y x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 取10000100400150001P ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎭-⎪⎪⎝,则有100001000050()(900)05TAP AP ⎛⎫ ⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭.……8分(2) 另解:2A 的特征值为11λ=(三重),29λ=.……5分对应于11λ=的特征向量为123(1,0,0,0),(0,1,0,0),(0,0,1,1),T T T ααα===-经正交标准化后,得向量组123(1,0,0,0),(0,1,0,0),)22T T Tβββ===;……6分 对应于29λ=的特征向量为4(0,0,1,1)T α=,经单位化后,得422Tβ=. ……7分令()123410000100,,,00220022P ββββ⎛⎫ ⎪ ⎪ ⎪== ⎝,则210000100001000()()09T T P A P AP AP ⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭.……8分十、(本题满分8分)设向量12,,,t ααα 是齐次线性方程组AX = 0的一个基础解系,向量β不是方程组 AX= 0的解,即A β≠0. 试证明向量组β,β+1α,β+2α,…,β+t α线性无关. 解:设有一组数12,,,,t k k k k ,使得1()0tiii k k ββα=++=∑,……1分 即11()()t tiiii i k k k βα==+=-∑∑ (1)……2分上式两边同时左乘矩阵A ,有11()()0t tiiii i k k A k A βα==+=-=∑∑.因为0A β≠,故10tii k k=+=∑ (2)……4分从而,由(1)式得1()0tiii k α=-=∑.由于向量组1,.......,t αα是基础解系,所以120t k k k ==== .……6分 因而由(2)式得0k =.因此向量组β,β+1α,……,β+t α线性无关.……8分十一、(本题满分7分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获得利润10万元;发生一次故障仍可获得利润5万元;发生二次故障多获得利润0元;发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?解:以X 表示一周五天内机器发生故障的天数,则X 服从参数为(5,0.2)的二项分布.即55{}0.20.8(0,1,2,3,4,5)kk kP X k C k -==⋅⋅=……2分 于是5{0}0.80.328P X ===, 145{1}0.20.80.410P X C ==⋅⋅=;……3分2235{2}0.20.80.205P X C ==⋅⋅=;{3}1{0}{1}{2}0.057P X P x P x P x ≥=-=-=-==. ……4分以Y 表示所获利润,则()Y f X ==10,05,10,22,3X X X X =⎧⎪=⎪⎨=⎪⎪≥⎩若若若-若,……5分所以100.32850.41000.20520.057 5.216EY =⨯+⨯+⨯-⨯=(万元).……7分十二、(本题满分6分)考虑一元二次方程x 2+ Bx + C = 0,其中B,C 分别是将一枚骰子接连掷两次先后出现的 点数.求方程有实根的概率p 和有重根的概率q .解:一枚色子(骰子)掷两次,其基本事件总数为36. 方程组有实根的充分必要条件是224,4B BC C ≥≤. ……2分B1 2 3 4 5 6 使2/4C B ≤的基本事件个数 0 1 2 4 6 6 使2/4C B =的基本事件个数11……4分因此,使方程组有实根的基本事件个数为1246619++++=.于是1936p =. ……5分 同理,使方程组有重根的基本事件个数为112+=,于是213618q ==. ……6分十三 (本题满分6分)设12,,,n X X X 独立且与X 同分布,k k EX α=(1,2,3,4)k =.求证:当n 充分大时,∑==n i i n X n z 121近似服从正态分布,并求出其分布参数. 解:依题意,12,,,n X X X 独立同分布,于是22212,,,n X X X 也独立同分布.由(1,2,3,4)k k EX k α==,有……1分 22i EX α=,2422242()i i i DX EX EX αα=-=-; ……2分 2211nn i i EZ EX n α===∑,……3分 22422111()n n i i DZ DX n nαα===-∑……4分根据中心极限定理2242()/n n U n αα=-即当n 充分大时,n Z 近似服从参数为2422(,)a a a n-的正态分布.……6分数 学(试卷五)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 【 同数学四 第一、(1) 题 】 (2) 【 同数学四 第一、(2) 题 】 (3) 设)1ln(2x x y ++=,则3x y '''=532(4) 五阶行列式aa a a a a a a a---------11110001100011000123451a a a a a =-+-+-.(5) 一实习生用同一台机器接连独立地制造3个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示3个零件中合格品的个数,则P (X=2)=1124. 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 设0)()(00=''='x f x f ,0)(0>'''x f , 则下列选项正确的是 (D)(A) )(0x f '是)(x f '的极大值 (B) )(0x f 是)(x f 的极大值(C) )(0x f 是)(x f 的极小值 (D) ))(,(00x f x 是曲线)(x f y =的拐点 (2) 【 同数学三 第二、(3) 题 】 (3) 【 同数学四 第二、(3) 题 】 (4) 【 同数学四 第二、(4) 题 】(5) 设A ,B 为任意两个事件,且A ⊂B , P (B )>0,则下列选项必然成立的是 (B)(A) ()()P A P A B < (B) ()()P A P A B ≤ (C) ()()P A P A B > (D) ()()P A P A B ≥ 三、(本题满分6分)【 同数学四 第三题 】 四、(本题满分7分) 设2(,)xyt f x y e dt -=⎰,求222222yfx y y x f x f y x ∂∂+∂∂∂-∂∂解:22x y fye x-∂=∂, ……2分 22x y f xey-∂=∂,222322x y f xy e x -∂=-∂, ……4分 222322x y f x ye y -∂=-∂,22222(12)x y f x y ex y-∂=-∂∂. ……6分 于是222222222x y x f f y f ey x x y x y -∂∂∂-+=-∂∂∂∂. ……7分五、(本题满分6分)【 同数学四 第五题 】六、(本题满分7分)【 同数学四 第七题 分值不同 】 七、(本题满分9分)已知一抛物线通过x 轴上的两点A ( 1, 0 ),B ( 3, 0 ).(1) 求证:两坐标轴与该抛物线所围图形的面积等于x 轴与该抛物线所围图形的面积; (2) 计算上述两个平面图形绕x 轴旋转一周所产生的两个旋转体体积之比. 解:(1) 设过,A B 两点的抛物线方程为(1)(3)y a x x =--, 则抛物线与两坐标轴所围图形的面积为110|(1)(3)|S a x x dx =--⎰……1分1204||(43)||3a x x dx a =-+=⎰. ……2分 抛物线与x 轴所围图形的面积为321|(1)(3)|S a x x dx =--⎰……3分 3214||(43)||3a x x dx a =-+=⎰.……4分所以12S S =.(2) 抛物线与两坐标轴所围图形绕x 轴旋转所得旋转体的体积为12210[(1)(3)]V a x x dx π=--⎰……5分124320[(1)4(1)4(1)]a x x x dxπ=---+-⎰5324120(1)4(1)38[(1)].5315x x a x a ππ--=--+=……6分抛物线与x 轴所围图形绕x 轴旋转所得旋转体的体积为32221[(1)(3)]V a x x dx π=--⎰353241(1)4(1)(1)53x x a x π⎡⎤--=--+⎢⎥⎣⎦ ……7分216.15a π=……8分 所以12198V V =.……9分八、(本题满分5分)设)(x f 在[,]a b 上连续,在(,)a b 内可导,且1()()ba f x dx fb b a=-⎰ 求证:在(,)a b 内至少存在一点ξ, 使 )(ξf ' = 0.证:因为()f x 在[,]a b 上连续,由积分中值定理可知,在(,)a b 内存在一点c ,使得()()()baf x dx f c b a =-⎰. ……2分 即()()()baf x dxf c f b b a==-⎰.……3分因为()f x 在[,]c b 上连续,在(,)c b 内可导,故由罗尔定理,在(,)c b 内至少存在一点出ξ,使得()0f ξ'=,其中(,)(,)c b a b ξ∈⊂.……5分九、(本题满分9分)已知线性方程组 ⎪⎪⎩⎪⎪⎨⎧+t= x - 6x - x - x -1=7x +px + x 2+3x -1= 4x + 6x - x + 2x 0= x 3+2x -x x 4321432143214321,讨论参数p, t 取何值时,方程组有解? 无 解? 当有解时, 试用其导出组的基础解系表示通解.解:方程组系数矩阵A 的增广矩阵为11230104112164101221327100800116100002A p p t t ---⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪=→⎪ ⎪-+ ⎪ ⎪---+⎝⎭⎝⎭……3分(1) 当2t ≠-时,()()A A ≠秩秩,方程组无解. ……4分 (2) 当2t =-时,()()A A =秩秩,方程组有解.……5分(a) 若8p =-,得通解1212141122(,010001x c c c c --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为任意常数).……7分(b) 若8p ≠-得通解1112(0001x c c --⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数).……9分十、(本题满分7分)设有4阶方阵A 满足条件30I A +=,I A A T2=,0A <,其中I 是4阶单位阵,求方阵A 的伴随阵*A 的一个特征值.解:由3|(3)|0I A A I +=--=,得A 的一个特征值3λ=-. ……1分 又4|||2|2||16T AA I I ===,2||||||16T A A A ==.于是||4A =-.……3分由于||0A <,知A 可逆.设A 的对应于特征值3λ=-的特征向量为α,则3A αα=-,由此得11(3)A A A αα--=-.即113A αα-=-,知13-是1A -的特征值. ……5分 由于*114||(4)()33A A A αααα-==--=,所以*A 有特征值43.……7分十一、(本题满分7分)【 同数学四 第十一题 】 十二、(本题满分6分)某电路装有三个同种电气元件,其工作状态相互独立,且无故障工作时间都服从参数为λ> 0的指数分布.当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作的时间T 的概率分布.解:以(1,2,3)i X i =表示第i 个电气元件无故障工作的时间,则123,,X X X 相互独立且同分布,其分布函数为1,0()00x e x F x x λ-⎧->=⎨≤⎩若,若,……1分设()G t 是T 的分布函数.当0t ≤时,()0G t =.当0t >时,有(){}1{}G t P T t P T t =≤=->……3分 1231{,,}P X t X t X t =->>>……4分 1231{}{}{}P X t P X t P X t =->⋅>⋅> ……5分 31[1()]F t =-- ……6分 31t e λ-=-.……7分总之,31,0()00t e t G t t λ-⎧->=⎨≤⎩若,若,于是T 服从参数为3λ的指数分布.。
历年南京大学考研真题试卷与答案汇总-南大考研真题哪里找?金陵南大考研网(南京大学考研在线咨询入口)汇集了南京大学各专业历年考研真题试卷(原版),同时与南京大学专业课成绩前三名的各专业硕士研究生合作编写了配套的真题答案解析,答案部分包括了(解题思路、答案详解)两方面内容。
首先对每一道真题的解答思路进行引导,分析真题的结构、考察方向、考察目的,向考生传授解答过程中宏观的思维方式;其次对真题的答案进行详细解答,方便考生检查自身的掌握情况及不足之处,并借此巩固记忆加深理解,培养应试技巧与解题能力。
具体请点击进入【历年南京大学考研真题答案下载】[金陵南大考研网] 南京大学448汉语写作与百科知识考研真题答案(2010-2017年)[金陵南大考研网] 南京大学建筑设计原理考研真题试卷(2001-2009年)[金陵南大考研网] 南京大学843中外建筑历史与理论考研真题试卷(2001-2009年,不含03)[金陵南大考研网] 南京大学355建筑学基础考研真题(2000、2014-2015年)[金陵南大考研网] 南京大学841分子生物学B考研真题试卷[金陵南大考研网] 南京大学652细胞生物学一考研真题试卷(2000-2011年,不含03、04、10)[金陵南大考研网] 南京大学308护理综合考研真题试卷(2015-2016年)[金陵南大考研网] 南京大学软件基础历年考研真题试卷(2002-2008年)[金陵南大考研网] 南京大学程序设计和数据结构考研真题试卷(1996-2001年)[金陵南大考研网] 南京大学编译原理和操作系统考研真题试卷(1995-2001年)[金陵南大考研网] 南京大学数据结构考研真题试卷(1997-2003年,不含99)[金陵南大考研网] 南京大学操作系统考研真题试卷(1996-2003年,不含01)[金陵南大考研网] 南京大学830工程地质学考研真题试卷(2004-2009年)[金陵南大考研网] 南京大学827构造地质学考研真题试卷(2000-2009年)[金陵南大考研网] 南京大学829地球科学概论考研真题试卷(2002-2009年)[金陵南大考研网] 南京大学826古生物地史学考研真题试卷(2000、2003-2008年)[金陵南大考研网] 南京大学825地球化学考研真题试卷(2003、2005-2009年)[金陵南大考研网] 南京大学824矿床学考研真题试卷(2000、2003-2009、2011年)[金陵南大考研网] 南京大学823矿物学(含结晶学)考研真题试卷(2000、2005-2008年)[金陵南大考研网] 南京大学822地球物理学考研真题试卷(2005-2009年)[金陵南大考研网] 南京大学821岩石学考研真题试卷(2000,2002,2005-2009年)[金陵南大考研网] 南京大学820专业综合考研真题试卷(2003-2009年)[金陵南大考研网] 南京大学856全球变化科学导论考研真题试卷(2007-2008年)[金陵南大考研网] 南京大学857遥感概论考研真题试卷(2007-2009年)[金陵南大考研网] 南京大学847经济地理学考研真题试卷(2005-2009年)[金陵南大考研网] 南京大学816海洋科学导论考研真题试卷(2003-2009年)【历年南京大学考研真题答案下载】[金陵南大考研网] 南京大学811环境科学导论考研真题试卷(2005-2010年)[金陵南大考研网] 南京大学信号与系统考研真题(1995-2002年,不含99、00)[金陵南大考研网] 南京大学艺术/艺术教育理论综合考研真题试卷(08-09)[金陵南大考研网] 南京大学948国际政治学考研真题试卷(2003-2011年,不含10)[金陵南大考研网] 南京大学612法理学考研真题试卷(1996-2015年)[金陵南大考研网] 南京大学中外美术史考研真题试卷(2004-2007年)[金陵南大考研网] 南京大学648艺术综合考研真题与答案(2004-2011年)[金陵南大考研网] 南京大学962管理学与计算机基础考研真题(2005-2013年)[金陵南大考研网] 南京大学961自动控制原理一考研真题(2006-2013年,不含15)[金陵南大考研网] 南京大学922管理与运筹学基础考研真题(2002-2015年,不含13-14)[金陵南大考研网] 南京大学989档案管理理论与方法考研真题试卷(2004-2009)[金陵南大考研网] 南京大学441出版专业基础考研真题与答案[金陵南大考研网] 南京大学335出版综合素质与能力考研真题答案(2011-2012年)[金陵南大考研网] 南京大学619国际关系考研真题试卷(2002-2009年)[金陵南大考研网] 南京大学946研究方法与新闻业务考研真题与部分答案(2005-2011,2015年)[金陵南大考研网] 南京大学959研究方法与传播业务考研真题与部分答案(05-09,11,15-16)[金陵南大考研网] 南京大学620传播史论考研真题与答案(2005-2016年)[金陵南大考研网] 南京大学622新闻传播史论考研真题试卷(2005-2014、2016年)[金陵南大考研网] 南京大学440新闻与传播专业基础考研真题与部分答案(2011-2016)[金陵南大考研网] 南京大学334新闻与传播专业综合能力考研真题试卷(2011-2015)[金陵南大考研网] 南京大学647世界史基础考研真题(2003-2017年)[金陵南大考研网] 南京大学645中国近现代史基础考研真题(2004-2017年)[金陵南大考研网] 南京大学643中国古代史基础考研真题(1995-2016年)[金陵南大考研网] 南京大学348文博综合考研真题试卷与答案(2012、2014年)[金陵南大考研网] 南京大学964英美文学考研真题试卷(2001-2014年)[金陵南大考研网] 南京大学653基础英语考研真题试卷(2002-2015年)[金陵南大考研网] 南京大学211翻译硕士英语考研真题与答案详解(2010-2016年)[金陵南大考研网] 南京大学935语言及论文写作考研真题试卷(2001-2017年)[金陵南大考研网] 南京大学615文学考研真题试卷(1998-2018年)[金陵南大考研网] 南京大学437社会工作实务考研真题试卷(2010-2016年)[金陵南大考研网] 南京大学331社会工作原理考研真题试卷(2010-2016年)[金陵南大考研网] 南京大学954社会保障与社会工作考研真题与答案(2004-2008年)[金陵南大考研网] 南京大学933行政管理学考研真题试卷(1996-2017年)[金陵南大考研网] 南京大学661公共管理基础理论考研真题试卷(2007-2009、2014)[金陵南大考研网] 南京大学976环境与资源保护法学专业综合考研真题试卷(2007-2009年)[金陵南大考研网] 南京大学955诉讼法学专业综合考研真题试卷(2004-2008年)[金陵南大考研网] 南京大学929经济法专业综合二考研真题试卷(1995-2014年)[金陵南大考研网] 南京大学613政治学原理考研真题试卷(1995-2017年)【历年南京大学考研真题答案下载】[金陵南大考研网] 南京大学921管理学原理考研真题试卷(1998-2015年)[金陵南大考研网] 南京大学920会计学考研真题试卷(2003-2018年)[金陵南大考研网] 南京大学919经济学原理考研真题试卷(1994-2017年)[金陵南大考研网] 南京大学434国际商务专业基础考研真题与答案(2011-2017年)[金陵南大考研网] 南京大学938马克思主义发展史考研真题试卷(2007-2008年)[金陵南大考研网] 南京大学918科学思想史(含STS)考研真题试卷(2000-2008年)[金陵南大考研网] 南京大学917宗教艺术考研真题试卷(2000-2008年)[金陵南大考研网] 南京大学914形式逻辑基础考研真题试卷(2000-2009年,不含07)[金陵南大考研网] 南京大学850高分子化学考研真题试卷(2000-2011年)[金陵南大考研网] 南京大学840免疫学考研真题试卷(2000-2009年,不含03)[金陵南大考研网] 南京大学352口腔综合考研真题试卷(2002-2009、2015年)[金陵南大考研网] 南京大学631光学考研真题试卷(2000-2008年)[金陵南大考研网] 南京大学848材料化学基础考研真题试卷(2005-2009年)[金陵南大考研网] 南京大学839材料物理基础考研真题试卷(2000-2009年)[金陵南大考研网] 南京大学833生理学A考研真题试卷(2001-2016年,不含10、11)[金陵南大考研网] 南京大学835生态学考研真题试卷(2000-2009、14-15年)[金陵南大考研网] 南京大学858细胞生物学二考研真题试卷(1999-2010年)[金陵南大考研网] 南京大学669药学基础综合考研真题试卷(2008-2011年)[金陵南大考研网] 南京大学651遗传学考研真题试卷(2005-2011年)[金陵南大考研网] 南京大学642生物化学二考研真题试卷(2000-2011、2016年,不含10)[金陵南大考研网] 南京大学831植物生理学考研真题试卷(2000-2014年)[金陵南大考研网] 南京大学844环境工程学考研真题试卷(2004-2015年)[金陵南大考研网] 南京大学810环境生物学考研真题(2000-2014年)[金陵南大考研网] 南京大学808环境化学考研真题试卷(2000-2013年)[金陵南大考研网] 南京大学634大学化学考研真题试卷(2007-2011年)[金陵南大考研网] 南京大学666仪器分析考研真题试卷(2006-2014年)[金陵南大考研网] 南京大学852有机化学考研真题试卷(1993-2014年)[金陵南大考研网] 南京大学853物理化学考研真题试卷(1997-2011)[金陵南大考研网] 南京大学851信号与系统、模拟电路考研真题(2007-2012年,不含11)[金陵南大考研网] 南京大学804普通物理二考研真题试卷(1999-2009年)[金陵南大考研网] 南京大学803声学基础考研真题试卷(00、02、05-08年)[金陵南大考研网] 南京大学633数理方法二考研真题试卷(2000,2004-2009年)[金陵南大考研网] 南京大学332生物物理考研真题试卷(2001-2009年)[金陵南大考研网] 南京大学629原子核物理考研真题试卷(2000-2010年,不含02)[金陵南大考研网] 南京大学627数学分析考研真题试卷(2006-2013年,不含12)[金陵南大考研网] 南京大学801高等代数考研真题试卷(2005-2014年)[金陵南大考研网] 南京大学432统计学考研真题试卷(2011、2015年)[金陵南大考研网] 南京大学809环境规划与管理考研真题试卷(2004-2011,2016年)[金陵南大考研网] 南京大学930国际法专业综合考研真题(03、04、08、13、15)[金陵南大考研网] 南京大学664体育学综合考研真题试卷(2007-2009年)【历年南京大学考研真题答案下载】[金陵南大考研网] 南京大学813自然地理学考研真题试卷(1997-2011、2014-2016年)[金陵南大考研网] 南京大学663考古学基础考研真题与部分答案(2011-2012年)[金陵南大考研网] 南京大学971日语专业知识综合考研真题试卷(2007-2009年)[金陵南大考研网] 南京大学991西班牙、拉丁美洲文学考研真题(2006-2009年)[金陵南大考研网] 南京大学969德语专业知识综合考研真题试卷(2007-2009年)[金陵南大考研网] 南京大学963英语语言学考研真题与答案(2000-2003,2006-2014年)[金陵南大考研网] 南京大学658基础西班牙语考研真题试卷(2006-2009年)[金陵南大考研网] 南京大学657基础日语考研真题答案(2001-2009年)[金陵南大考研网] 南京大学656基础德语考研真题试卷(2001-2009年)[金陵南大考研网] 南京大学655基础法语考研真题试卷(2010-2010年)[金陵南大考研网] 南京大学654基础俄语考研真题(2003-2009年,不含04、06)[金陵南大考研网] 南京大学264德语考研真题与答案(2001-2009年)[金陵南大考研网] 南京大学262俄语考研真题试卷(2003-2009年)[金陵南大考研网] 南京大学261英语考研真题与答案(2001-2010年)[金陵南大考研网] 南京大学357英语翻译基础考研真题答案(2010-2017年)[金陵南大考研网] 南京大学958东方哲学与宗教概论考研真题试卷(2005-2009年)[金陵南大考研网] 南京大学916宗教学概论(含宗教与文化)考研真题试卷(1995-2009年)[金陵南大考研网] 南京大学915伦理学原理考研真题试卷(2000-2009年,不含04)[金陵南大考研网] 南京大学913现代西方哲学考研真题试卷(2000-2012年,不含04、11)[金陵南大考研网] 南京大学912中国哲学原著(含古代汉语)考研真题试卷(2002-2014年,不含07、10、12、13)[金陵南大考研网] 南京大学911马克思主义哲学史(含原著)考研真题试卷(2004-2009年,不含05)[金陵南大考研网] 南京大学928经济法专业综合一考研真题试卷(2003-2010年)[金陵南大考研网] 南京大学636哲学综合B考研真题试卷(2002-2014年,不含09-10)[金陵南大考研网] 南京大学635哲学综合A考研真题试卷(2002-2014年)[金陵南大考研网] 南京大学265法语考研真题与答案详解(2001-2010年)[金陵南大考研网] 南京大学637哲学综合C考研真题试卷(2002-2014年)[金陵南大考研网] 南京大学926刑法专业综合考研真题试卷(2003-2009、2012年)[金陵南大考研网] 南京大学834分子生物学A考研真题试卷(1996-2013年,不含12)[金陵南大考研网] 南京大学832普通动物学考研真题试卷(2004-2009年)[金陵南大考研网] 南京大学641普通生物学考研真题试卷(2001-2016年)[金陵南大考研网] 南京大学640生物化学一考研真题试卷(1999-2014年,不含11)[金陵南大考研网] 南京大学639普通地质学考研真题试卷(2000-2012年)[金陵南大考研网] 南京大学819土地管理学考研真题(2000-2010年,不含01)[金陵南大考研网] 2019南大815地理信息系统概论考研复习全析(含历年真题,共三册)[金陵南大考研网] 南京大学814人文地理学考研真题(2000-2014年,不含10、12、13年)[金陵南大考研网] 2019南大813自然地理学考研复习全析(含历年真题,共三册)[金陵南大考研网] 南京大学812理论力学考研真题(2000-2009年,不含03))[金陵南大考研网] 2019南大810环境生物学考研复习全析(含历年真题)【历年南京大学考研真题答案下载】[金陵南大考研网] 2019南大808环境化学考研复习全析(含历年真题)[金陵南大考研网] 2019南京大学852有机化学考研复习全析(含历年真题,共三册)[金陵南大考研网] 2019南大853物理化学考研复习全析(含历年真题,共三册)[金陵南大考研网] 南京大学807化工原理考研真题试卷(1998-2014年)[金陵南大考研网] 2019南大考研化工原理重难点与典型题(含考研真题)详解[金陵南大考研网] 2019南大850高分子化学考研复习全析(含历年真题)[金陵南大考研网] 2019南京大学634大学化学考研复习全析(含真题)[金陵南大考研网] 2019南大866信号与通信综合考研复习全析(含真题,共三册)[金陵南大考研网] 2019南大854信号与系统、数字信号处理考研复习全析(共两册)[金陵南大考研网] 2019南大864大学物理一考研复习全析(共四册)[金陵南大考研网] 2019南大867电子技术基础B考研复习全析(共两册)[金陵南大考研网] 2019南京大学802普通物理一考研复习全析(含历年真题)[金陵南大考研网] 2019南京大学648艺术综合考研复习全析(含真题,共两册)[金陵南大考研网] 2019南大961自动控制原理一考研复习全析(含历年真题)[金陵南大考研网] 2019南大922管理与运筹学基础考研复习全析(含历年真题,共三册)[金陵南大考研网] 2019南大962管理学与管理信息系统考研复习全析(含历年真题)(共四册)[金陵南大考研网] 2019南京大学333教育综合考研复习全析(含历年真题)(共六册)[金陵南大考研网] 2019南京大学新闻学考研复习全析(含真题答案,共五册)[金陵南大考研网] 2019南京大学传播学考研复习全析(含真题答案,共五册)[金陵南大考研网] 2019南大348文博综合考研复习全析(含真题与答案)(共四册)[金陵南大考研网] 2019南大653基础英语考研复习全析(含真题与答案)(共五册)[金陵南大考研网] 2019南京大学964英美文学考研复习全析(含真题与答案)[金陵南大考研网] 2019南大357英语翻译基础考研复习全析(含历年真题答案)[金陵南大考研网] 2019南大448汉语写作与百科知识考研复习全析(含真题答案)[金陵南大考研网] 2019南京大学211翻译硕士英语考研复习全析(含真题答案,共五册)[金陵南大考研网] 2019南大考研《影视学专业知识》考试重难点与名校真题详解[金陵南大考研网] 2019南大考研《戏剧戏曲专业知识》考试重难点与名校真题详解[金陵南大考研网] 2019南大考研《艺术理论》考试重难点与名校真题解析[金陵南大考研网] 2019南大934社会学方法考研复习全析(含历年真题)[金陵南大考研网] 南京大学614社会学理论考研真题试卷(2000-2014年)[金陵南大考研网] 2019南大929经济法专业综合二考研复习全析(含历年真题)(共2册)[金陵南大考研网] 2019南大928经济法专业综合一考研复习全析(含历年真题)(共三册)[金陵南大考研网] 2019南大927民商法专业综合考研复习全析(含历年真题)[金陵南大考研网] 2019南大926刑法专业综合考研复习全析(含历年真题)[金陵南大考研网] 2019南大925宪法学与行政法学专业综合考研复习全析(含真题与答案)[金陵南大考研网] 南京大学927民商法专业综合考研真题试卷(2004-2011年)[金陵南大考研网] 《刑事诉讼法学》考试重难点与名校真题详解(陈光中,第五版)[金陵南大考研网] 《宪法》考试重难点与名校真题答案详解(张千帆,法律出版社第二版)[金陵南大考研网] 南京大学925宪法学与行政法学专业综合考研真题与答案(03-09)【历年南京大学考研真题答案下载】[金陵南大考研网] 南京大学924法律史综合考研真题(2003-2009年)[金陵南大考研网] 南京大学923法理专业综合考研真题试卷(2003-2009年)[金陵南大考研网] 南京大学660马克思主义基本原理考研真题试卷(2001-2009年)[金陵南大考研网] 2019南大434国际商务专业基础考研复习全析(含真题与答案)[金陵南大考研网] 2019南京大学431金融学综合考研复习全析(含真题与答案,共五册)[金陵南大考研网] 2019南大911马克思主义哲学史考研复习全析(含历年真题)[金陵南大考研网] 2018南京大学635哲学综合A考研复习全析(含历年真题)[金陵南大考研网] 2019南大445汉语国际教育基础考研复习全析(含真题答案,共三册)[金陵南大考研网] 2019南大354汉语基础考研复习全析(含真题答案,共三册)[金陵南大考研网] 2019南大497法硕联考综合(法学)考研复习全析(含真题答案,共四册)[金陵南大考研网] 2019南大397法硕联考基础(法学)考研复习全析(含真题答案,共三册)[金陵南大考研网] 2019南大498法硕联考综合(非法学)考研复习全析(含真题答案,共四册)[金陵南大考研网] 2019南大398法硕联考基础(非法学)考研复习全析(含真题答案,共三册)[金陵南大考研网] 南京大学263日语考研真题与答案(2001-2010年)[金陵南大考研网] 南京大学431金融学综合考研真题与答案(2002-2017年)[金陵南大考研网] 2019南京大学新闻与传播硕士考研复习全析【含真题答案,共七册】[金陵南大考研网] 2019年南京大学社会保障考研全套资料[金陵南大考研网] 南京大学934社会学方法考研真题试卷(2000-2014,2017年)[金陵南大考研网] 南京大学802普通物理一考研真题试卷(1998-2015年)[金陵南大考研网] 南京大学628量子力学考研真题试卷(1998-2014年)[金陵南大考研网] 2018南京大学考研646国际关系史基础考试解读与真题答案[金陵南大考研网] 2019南京大学考研647世界史基础考试解读与真题答案详解[金陵南大考研网] 南京大学988图书馆学考研真题试卷(2000、2003-2007年)[金陵南大考研网] 南京大学化学专业考研真题试卷(1994-2006年,不含00、03年))[金陵南大考研网] 2019南京大学考研643中国古代史基础考试解读与真题答案详解(共两册)[金陵南大考研网] 2019南京大学考研645中国近现代基础考试解读与真题答案详解[金陵南大考研网] 2019南京大学考研645中国近现代史基础复习全析(含真题答案,共五册)[金陵南大考研网] 2019南京大学考研935语言及论文写作考试解读与真题答案详解[金陵南大考研网] 2019南京大学考研615文学考试解读与真题答案详解[金陵南大考研网] 2019南京大学考研933行政管理学考试解读与真题答案详解[金陵南大考研网] 2019南京大学考研613政治学原理考试解读与真题答案详解[金陵南大考研网] 2019南京大学考研612法理学考试解读与真题答案详解[金陵南大考研网] 2019南京大学考研964英美文学考试解读与真题答案详解[金陵南大考研网] 2019南京大学考研935语言及论文写作复习全析(含真题与答案,共五册) [金陵南大考研网] 2019南京大学考研615文学复习全析(含真题与答案,共六册)[金陵南大考研网] 2019南京大学考研933行政管理学复习全析(含真题与答案,共五册) [金陵南大考研网] 2019南京大学考研613政治学原理复习全析(含真题答案,共三册)[金陵南大考研网] 2019南京大学考研612法理学复习全析(含真题答案,共三册)【历年南京大学考研真题答案下载】[金陵南大考研网] 2019南京大学考研653基础英语考试解读与真题答案详解[金陵南大考研网] 2019南大考研622新闻传播史论应试模拟四套卷与答案详解[金陵南大考研网] 2019南京大学考研622新闻传播史论考试解读与真题答案详解[金陵南大考研网] 2019南京大学考研622新闻传播史论复习全析(含真题与答案) [金陵南大考研网] 2019南京大学考研920会计学考试解读与真题答案详解[金陵南大考研网] 2019南京大学考研920会计学复习全析(含真题与答案)[金陵南大考研网] 2019南京大学考研919经济学原理考试解读与真题答案详解[金陵南大考研网] 2019南大考研919经济学原理复习全析(含真题答案,共五册)[金陵南大考研网] 2019南大考研921管理学原理复习全析(含真题答案,共四册)[金陵南大考研网] 2019南京大学考研921管理学原理考试解读与真题答案详解金陵南大考研网(南京大学考研在线咨询入口)【历年南京大学考研真题答案下载】。
2000年南京大学硕士研究生入学考试数学分析试题一、求下列极限. 1)设nn n x x x ++=+3)1(31,(01>x 为已知),求n n x ∞→lim ; 2)22)(lim 2200y x y x y x +→→;3)201cos lim x xtdt t ++∞→∫; 4)222222021lim cos()xy r x y r e x y dxdy r π+→+≤−∫∫.二、在[]1,1−上有二阶连续导数,0)0(=f ,令xx f x g )()(=,())0()0(,0f g x ′=≠,证明: 1))(x g 在0=x 处连续,且可导,并计算)0(g ′; 2))0(g ′在0=x 处也连续. 二、设t e e t f t ntn 3sin )1()(−−−=,()0≥t ,试证明1)函数序列(){}t f n 在任一有穷区间[]A ,0上和无穷区间[0,)+∞上均一致收敛于0;2)∫+∞−−∞→=−030sin 1lim tdt e e tn t n . 三、设对任一A>0,)(x f 在[]A ,0上正常可积,且0)(0≠∫+∞dt t f 收敛.令(),0,)()()(0≥−=∫∫+∞x dt t f dt t f x x xϕ试证明)(x ϕ在()+∞,0内至少有一个零点.四、计算积分())0(,sin cos ln )(2222>+=∫a dx x x a a I π.五、试求指数λ,使得dy r y x dx r y x λλ22−为某个函数()y x u ,的全微分,并求()y x u ,,其中22y x r +=.六、计算下列曲线积分和曲面积分)1()()()∫+++−++=cdz z y x dy y x dx z y x I ,223其中c 为1222=+y x 与z y x −=+222的交线,从原点看去是逆时针方向.)2()()()2222222:,R c z b y a x S dxdy z dzdx y dydz x I S=−+−+−++=∫∫.七、设()ln nn u x x x =,[]0,1x ∈,(1)试讨论1()n n u x ∞=∑在](0,1上的收敛性和一致收敛性;(2)计算11ln n n x xdx ∞=∑∫.九、设222exp ,0,0(,)0,0,0x t t x f x t t t x−+>> ==> ,0()(,)I x f x t dt ∞=∫ , (0)x > 1)讨论0(,)f x t dt +∞∫在()0,+∞上的一致收敛性,并证明200lim ()2tx I x e dt ++∞−→==∫ 2)计算()I x .2000年南京大学数学分析考研试题的解答一、1、解 设xc x c x f ++=)1()(,),0[+∞=∈I x ,其中常数1>c . 因为111)1()()1()(022<−=−≤+−=′<c cc c x c c c x f ,所以f是I 上的压缩函数.对3(1)()3x f x x +=+,13(1)()3n n n nx x f x x ++==+, 1111|||()()||()()|||n n n n n n n n x x f x f x f x x k x x ξ+−−−′−=−=−≤−, 于是111113(1)3(1)32||||||33(3)(3)n n n n n n n n n n x x x x x x x x x x −+−−−++⋅−=−=−++++12||3n n x x −≤−,{}n x 是压缩迭代序列,所以n n x ∞→lim 存在,设lim n n x A →∞=,易知0A ≥;在n n n x x x ++=+3)1(31两边令∞→n 取极限,得到3(1)3A A A+=+,所以A =;故lim n n x →∞=.2、解 先求其对数的极限:()2222()(00)limln x,y ,x y x y →+, 由于()()()()222222222211ln ln 022x y x y x y x y x y +≤+⋅++→,((,)0x y →); 所以()2222()(00)limln 0x,y ,x y x y→+=,进而()()222222ln 220()(00)()(00)limlim e=1x yx y x y x,y ,x,y ,xye +→→+== . 3、解 由于21cos tdt t+∞∫收敛,于是201cos lim 0x xtdt t++∞→=∫. 4、解 222222021lim cos()xy r x y r ex y dxdy rπ+→+≤−∫∫2222202lim cos()xy r x y r e x y dxdy +→+≤=−∫∫22(0,0)2[cos()]|2xy e x y =−= .二、证明 (1)由于()f x 在[]1,1−上有二阶连续导数, 所以()f x ,(),()f x f x ′′′在[]1,1−上连续; 当0x ≠时, ()()f x g x x=,显然()g x 在0x ≠处是连的; 在0x =处,'00()()(0)lim ()limlim (0)0x x x f x f x f g x f x x →→→−===−. 有)0()(lim 0g x g x =→;所以()g x 在0x =处连续. 故()g x 在[]1,1−上连续.在0x =处, 00()(0)()(0)(0)lim lim x x f x f g x g x g x x→→′−−′==2000()(0)()(0)()1lim lim lim (0)222x x x f x xf f x f f x f x x →→→′′′′′−−′′====.(2)当0x ≠时, ()()f x g x x =, 2()()()f x x f x g x x ′−′=g . 由于()f x 和()f x ′连续, 故当0x ≠时, ()g x ′存在且连续. 而且, 200()()()()()lim ()limlim 2x x x f x x f x f x x f x f x g x x x →→→′′′′′⋅−⋅+−′==0()1lim (0)(0)22x f x x f g x →′′⋅′′′===. ()g x ′在0x =处连续, 进而()g x ′在[]1,1−上连续.三、引用定理 设{()}n f x 在[,)a +∞上有定义,满足:(1)对每一b a >,{()}n f x 在[,]a b 上一致收敛于0;(2)lim ()0n x f x →+∞=,且关于n 是一致的,则{()}n f x 在[,)a +∞上一致收敛于0.1)证明 (1)因为3|()||(1)sin |(1)t t t nnn f t e e t e −−−=−≤−, 显然{}t ne −在任一有穷区间[]A ,0上一致收敛于1, 于是(){}t f n 在任一有穷区间[]A ,0上一致收敛于0;又3|()||(1)sin |t t t nn f t e e t e −−−=−≤,因而lim ()0n t f t →+∞=,且关于n 是一致的,所以(){}t f n 在无穷区间[0,)+∞上一致收敛于0; 2)因为3|()||(1)sin |t ttnn f t e e t e −−−=−≤,且0t e dt +∞−∫收敛,(){}t f n 在任一有穷区间[]A ,0上一致收敛于0利用积分控制收敛定理,得3000lim 1sin lim ()lim ()0tt n n n n n n e e tdt f t dt f t dt +∞+∞+∞−−→∞→∞→∞−=== ∫∫∫. 四、证明 显然0(0)()f t dt a ϕ+∞=−=−∫,0lim ()()x x f t dt a ϕ+∞→+∞==∫;存在0A >,当x A ≥时,有()2ax a ϕ<<; )(x ϕ在[0,]A 上连续,(0)()0A ϕϕ<,由闭区间上连续的零点定理, 得)(x ϕ在()+∞,0内至少有一个零点. 五、解dx x b x a )cos sin ln(222202+∫π,0,>b a .记dx x b x a b a I )cos sin ln(),(222202+=∫π,),(b a I 是连续可微函数. 当b a =时,dx x a x a a a I )cos sin ln(),(222202+=∫πa ln π=; 当b a ≠时,dxx b x a xa b a I a ∫+=∂∂2022222cos sin sin 2),(πdx bx b a b b x b a b a a ∫+−−+−−=2022222222222sin )(sin )(2π]cos sin 2[2202222222dx x b x a b b a a ∫+−−=ππ]tan tan 2[220222222x d bx a b b a a ∫+−−=ππ ]|)tan arctan(2[22022ππx b a a b b a a −−=b a a b b a a +=−−=1]22[222πππ, 于是C b a b a I ++=)ln(),(π,再由a a a I ln ),(π=,得2ln π−=C ,故2ln),(ba b a I +=π. 六、解设22(,),(,)x x P x y r Q x y r y y λλ==−,12(,)yr y r r P x y x yy λλλ−−∂=∂, 2122(,)xxr x r r Q x y xy λλλ−+∂=−∂,令(,)(,)P x y Q x y y x∂∂=∂∂,得1λ=−;由1u x r x y −∂=∂, 得1()u r y y ϕ=+,代入212u x r y y −∂=−∂,得()y C ϕ=,故1(,)u x y r C y =+ . 七、()()()∫+++−++=cdz z y x dy y x dx z y x I ,223其中c 为1222=+y x 与z y x −=+222的交线,从原点看去是逆时针方向. (1) 解 22{(,,):1,21}x y z z x y Σ==−+≤,22{(,):21}D x y x y =+≤(cos ,cos ,cos )n αβγ=r(0,0,1)=, 利用斯托克斯公式,得()()()3cI x z dx x dy x y z dz =++++∫Ñ3cos cos cos dS x y z x zx x y zαβγΣ∂∂∂=∂∂∂+++∫∫3001dS x y z x zx x y zΣ∂∂∂=∂∂∂+++∫∫22(1)(1)Dz dS dxdy Σ=−=+∫∫∫∫2Dy dxdy π=+2122001sin 2d r ππθθ=∫20311cos 2242d πθπθ−=+∫38ππ= . (2)解 区域2222)()()(:R c z b y a x ≤−+−+−Ω,利用高斯公式,得222Sx dydz y dzdx z dxdy ++∫∫dxdydz z y x )(2++=∫∫∫Ωdxdydz c b a c z b y a x )]()()()[(2+++−+−+−=∫∫∫Ωdxdydz c b a )(2++=∫∫∫Ω334)(2R c b a π++=3)(38R c b a π++=.八、解 (1)显然1()n n u x ∞=∑在](0,1上收敛,且10,1()()ln ,011n n x u x S x x xx x∞==== << − ∑, ()n u x 在](0,1上连续,而()S x 在](0,1上不连续,所以1()n n u x ∞=∑在](0,1上不一致收敛;(2)11()()ln 1NNN n n x S x u x x x x =−==−∑,显然,对任意01a b <<<,{()}N S x 在[,]a b 上一致收敛,{()}N S x 在(0,1]上连续, |ln ||()|1N x x S x x ≤−,(01)x <<,10|ln |1x x dx x−∫收敛;于是级数可以逐项积分故112001111ln ln (1)n nn n n x x dx x xdx n ∞∞∞=== == +∑∑∑∫∫ . 九、(1)解 显然(,)f x t 在(0,)(0,)+∞×+∞上连续,且有20(,)t f x t e−<≤,而2t e dt +∞−∫收敛,从而有0(,)f x t dt +∞∫在()0,+∞上一致收敛;对任意0a B <<<+∞,当0x +→时,(,)f x t 在[,]a B 上一致收敛于2t e −,于是2lim ()lim (,)lim (,)2tx x x I x f x t dt f x t dt e dt ++++∞+∞+∞−→→→====∫∫∫; (2)利用等式20(())b f ax dx x +∞−∫201()f x dx a +∞=∫,)0,(>b a .2()0b ax xedx −−+∞∫20112x e dx a a +∞−==∫ ,)0,(>b a . 可知222()()(,)x t t I x f x t dt edt −++∞+∞==∫∫22()22202xt xxu xteedt ee du e −−+∞+∞−−−−===∫∫.南京大学2001年数学分析考研试题一、求下列极限1)设),2(,43,011≥+==−n a a a n n 求n n a ∞→lim ;2)yx y x e y x 12201lim +−→+∞→++;3)设[],,)(,B b a A C x f B A <<<∈试求∫−+→bah dx hx f h x f )()(lim 04)设)(x f 在)1,0(内可导,且),1,0(,1|)(|∈∀<′x x f 令)2)(1(≥=n n f x n ,试证明n n x ∞→lim 存在有限二、设,1)0(,)(),(2=∈+∞−∞g C x g 令≠−=′=时当时当0,cos )(0),0()(x x xx g x g x f 1)讨论处的连续性;在0)(=x x f 2)求.0)(),(处的连续性在并讨论=′′x x f x f 三、设[][],1,0,1)(0,0)0(,)(1,01∈∀≤′<=∈x x f f C x f 试证明对一切[]1,0∈t ,成立[]∫∫≥ tt dx x f dx x f 032)()(四、 求下列积分1)计算反常积分∫+∞−=0sin dx x xe I x ;2)计算曲面积分222I x dydz y dzdx z dxdy Σ=++∫∫,其中Σ为锥面()h z y x ah z ≤≤+=0,22222那部分的外侧.五、求212arctan )(x x x f −=在0=x 处的幂级数展开式,并计算∑∞=+−=012)1(n nn S 之值 六、设nnn x x x ++=+11α,1>α,10x ≥. 1) 证明级数11()n n n x x ∞+=−∑绝对收敛;2)求级数()∑∞=+−11n n n x x 之和.七、设4220(,)exp t I dt αβαβ+∞−= + ∫,其中βα,满足不等式43222−≤+−βαα. 1)讨论含参变量积分),(βαI 在区域432:22−≤+−βααD 上的一致收敛性;2)求),(βαI 在区域D 上的最小值.南京大学2001年数学分析考研试题的解答一、 1、解 易知111||||4n n n n a a a a +−−=−,{}n a 是压缩迭代序列,所以lim n n a →∞存在,设lim n n a A →∞=,则有34A A +=,1A =,所以lim 1n n a →∞=. 2、解令u =,则有0lim x y u +→+∞→=+∞;由424421202uu u x eeu ey e − ≤+≤==,得2201lim 0x y x ey +→+∞→ +=.3、解 ()f x 在[,]A B 上连续,对任何A a x B <<<,因为 dt t f h t f h x a ∫−+))()((1dt h t f h x a ∫+=)(1dt t f h xa ∫−)(1 dt t f h h x h a ∫++=)(1dt t f h x a ∫−)(1dt t f h h x x ∫+=)(1dt t f h ha a∫+−)(1, 由此,即得)()())()((1lim 0a f x f dt t f h t f h xah −=−+∫→,()A a x B <<< .4、解 由题设条件,得 111111|||()(||()()|11(1)n n n x x f f f n n n n n n ξ+′−=−=−≤+++, 121||||||||n p n n n n n n p n p x x x x x x x x +++++−−≤−+−+−L11(1)(1)()111111((1121111n n n p n p n n n n n p n p n n p n<++++−+=−+−++−++++−+=−<+L L 由此即可知{}n x 是一个基本列,所以n n x ∞→lim 存在且有限.二、由于()g x 在(,)−∞+∞上有二阶连续导数,所以()g x ,(),()g x g x ′′′在(,)−∞+∞上连续;0()cos ()sin lim ()limlim (0)(0)1x x x g x x g x xf xg f x →→→′−+′==== 有0lim ()(0)x f x f →=;所以()f x 在0x =处连续. 显然()f x 在0x ≠处连续.故()f x 在(,)−∞+∞上连续.在0x =处, 00()cos (0)()(0)(0)lim lim x x g x xg f x f x f x x→→−′−−′== 200()cos (0)()sin (0)lim lim 2x x g x x xg g x x g x x→→′′′−−+−== 0()cos 1lim ((0)1)22x g x x g →′′+′′==+; (2)当0x ≠时, ()cos ()g x x f x x −=, 2(()sin )(()cos )()g x x x g x x f x x ′+−−′=g . 由于()g x 和()g x ′连续, 故当0x ≠时, ()f x ′存在且连续. 而且, 200(()sin )(()cos )lim ()limx x g x x x g x x f x x →→′+⋅−−′=0(()cos )(()sin )(()sin )lim 2x g x x x g x x g x x x →′′′′+⋅++−+= 0()cos 1lim ((0)1)(0)22x g x x g f →′′+′′′==+= ()f x ′在0x =处连续, 进而()f x ′在(,)−∞+∞上连续.三、假设()f x 在[]0,1上可导,且()0()1,0,1,(0)0f x x f ′<<∀∈=,证明()2300()()>∫∫xxf t dtf t dt ,()0,1∀∈x .证明 令()230()()()=−∫∫xxF x f t dtf t dt ,()320()2()()()()2()()′=−=−∫∫xxF x f x f t dt f x f x f t dt f x ,因()0()1,0,1,(0)0f x x f ′<<∀∈=,所以()0>f x ,令20()2()()=−∫xg x f t dt f x ,则[]()2()1()0′′=−>g x f x f x ,即得()(0)0>=g x g , 所以()0′>F x , 则()230()()()(0)0=−>=∫∫xxF x f t dtf t dt F ,()0,1∀∈x ,于是()230()()xxf t dtf t dt >∫∫,()0,1∀∈x .四、(1)计算dx xaxbx e px∫+∞−−0sin sin ,),0(a b p >>. 解 因为dyxy xaxbx ba∫=−cos sin sin ,所以dx xax bx epx∫+∞−−0sin sin dx dy xy e b a px)cos (0∫∫+∞−=,由于pxpxexy e−−≤|cos |及dx e px ∫+∞−0收敛,根据魏尔斯特拉斯判别法,得dx xy e px ∫+∞−0cos 在],[b a y ∈上一致收敛,又xy e px cos −在],[),0[b a ×+∞上连续, 所以积分可交换次序,即dx dy xy e bapx )cos (0∫∫+∞−xydx e dy px bacos 0∫∫+∞−=∫+=bady yp p 22p ap b arctan arctan −= 故dx x ax bx e px∫+∞−−0sin sin pap b arctan arctan −= ,任何实数a b p ,,0>. 特别地0sin arctan14xx e dx x π+∞−==∫ .(2)解 (由于Σ不是封闭曲面,需要补充一部分曲面,构成一个封闭曲面.)区域Ω:1222()hx y z h a +≤≤,边界1Σ+Σ=Ω∂,方向朝区域外.2221:,x y a z h Σ+≤=,方向朝上.显然dxdy z dzdx y dydz x 2221++∫∫Σ∫∫Σ=12dxdy z 22222222x y a h dxdy h a a h ππ+≤===∫∫,利用高斯公式,得dxdy z dzdx y dydz x222++∫∫Ω∂dxdydz z y x )(2++=∫∫∫Ω222()2()h ax y z hdzx y z dxdy +≤=++∫∫∫202()ha z z dz h π=⋅∫2212a h π=,再由dxdy z dzdx y dydz x 222++∫∫Ω∂dxdy z dzdx y dydz x 222++=∫∫Σdxdy z dzdx y dydz x 2221+++∫∫Σ,得出dxdy z dzdx y dydz x 222++∫∫Σ2212a h π=− . 五、解 212arctan )(x x x f −=,因为2202()2(1)1n nn f x x x ∞=′==−+∑,(0)0f = 所以210(1)()221n n n f x x n ∞+=−=+∑,(11)x −≤≤,显然21(1)21n n n n ∞+=−+∑在[0,1]上一致收敛,∑∞=+−=012)1(n n n S 21110(1)11lim lim ()212224n n x x n x f x n ππ−−∞+→→=−====+∑ . 六、证明 令x x x f ++=1)(α,则有2)1(1)(x x f +−−=′α,αα=)(f , )(x f 在),0(+∞上是严格递减的;当α>x 时,α<)(x f ;当α<x 时,α>)(x f ; 若α>1x ,则有 α>−12n x ,α<n x 2,),2,1(L =n ; 将11n n n x x x α++=+代入1211n n n x x x α++++=+,得22(1)(1)2n n nx x x ααα+++=++, 由n n n n n x x x x x −++++=−+2)1()1(22αααnn x x 2)1()(22++−=αα,得}{12−n x 单调递减,}{2n x 单调递增,设a x n n =−∞→12lim ,b x n n =∞→2lim ,在121221−−++=n n n x x x α,nn n x x x 22121++=+α中,令∞→n 取极限,得 a a b ++=1α,bb a ++=1α,从而有α==b a ,故α=∞→n n x lim .()11111Nn n N n xx x x x ++=−=−→∑,()N →∞,()111n n n x x x ∞+=−=∑;111|||()()||()()|n n n n n n n x x f x f x f x x ξ+−−′−=−=−,其中n ξ位于n x 与1n x −之间,lim n n ξ→∞=,1lim |()|||11n n f f k αξα→∞−′′==≤=<+, 于是存在正整数N ,当n N ≥时,成立11||||n n n n x x K x x +−−≤−,其中常数01K <<, 由此而来,可知级数11||n n n x x ∞+=−∑收敛,故级数11()n n n x x ∞+=−∑绝对收敛;若1x =则有n x =,此时结论显然可得;若10x ≤<,则有2x >然后就与上面的情况类似了. 七、解 (1)43222−≤+−βαα等价于2221(1)()2αβ−+≤,于是有 221944αβ≤+≤,设422(,,)exp t f t αβαβ−=+, 则有44422exp (,,)exp exp 1944t t t f t αβαβ−−−≤=≤ + ,显然40exp 94t dt +∞−∫是收敛的, 于是(,,)f t dt αβ+∞∫在区域432:22−≤+−βααD 上是一致收敛的;(2)),(βαI ()4400exp exp 414t dt t dt +∞+∞−≥=−∫∫11401()4u e u du +∞−−==, ),(βαI 在区域D 上的最小值1(4 .南京大学2002年数学分析考研试题一 求下列极限. (1)(1)cos2lim(sin sin )ln(1)2x x x x xx x →∞+−−+;(2)设()ln()f x x a x =+−,(,)x a ∈−∞,(i)()f x 在(,)a −∞上的最大值;(ii)设1ln x a =,21ln()x a x =−,1()n n x f x +=,(2,3,)n =L ,求lim n n x →∞.二 设1()sin ln f x x x=−,试证明()f x 在[2,)+∞内有无穷多个零点. 三 设()f x 在0x =的某个邻域内连续,且(0)0f =,0()lim 21cos x f x x→=−,(1)求(0)f ′;(2)求20()lim x f x x→;(3)证明()f x 在点0x =处取得最小值.四 设()f x 在0x =的某个邻域内具有二阶连续导数,且0()lim 0x f x x →=,试证明:(1)(0)(0)0f f ′==; (2)级数11()n f n ∞=∑绝对收敛.五 计算下列积分 (1)求x ;(2)SI zxdydz xydzdx yzdxdy =++∫∫,其中S 是圆柱面221x y +=,三个坐标平面及旋转抛物面222z x y =−−所围立体的第一象限部分的外侧曲面.六 设()[,]f x C a b ∈,()f x 在(,)a b 内可导,()f x 不恒等于常数,且()()f a f b =, 试证明:在(,)a b 内至少存在一点ξ,使()0f ξ′>.七 在变力F yzi zxj xyk =++r r r r的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c ++=, 第一象限的点(,,)M ξηζ,问(,,)ξηζ取何值时,F r所做的功W 最大,并求W 的最大值. 八 (1)证明:(1n x xe n −−≤,(,0)n N x n ∗∈≤≤;(2)求20lim (1n n n xx dx n→∞−∫.南京大学2002年数学分析考研试题解答一 (1)解 0(1)cos 2lim (sin sin )2x x xx x x x →+−−+201(1)cos12lim sin sin 2ln(1)x x x x x x x x x x→+−=−+ ln(1)01(ln(1))sin 1222lim2x x x x x e x x x +→+++⋅+=1ln(1)0sin 12lim[(ln(1))12x x x x xe x x x +→=++++ 124=+94=.(2)解 (i)11()1a xf x a x a x−−′=−=−−,当1x a <−时,()0f x ′>,()f x 在(,1]a −∞−上单增, 当1a x a −<<时,()0f x ′<,()f x 在[1,)a a −上单减,所以()f x 在1x a =−处达到最大值,(1)1f a a −=−; (ii)当1a >时,10ln ln(11)1x a a a <==+−<−, 11a x a <−<,210ln()ln 1x a x a a <=−<<−, 32()(1)1x f x f a a =<−=−, 1n x a <−,1n a x <−,1ln()n n n n x x a x x +=+−>,{}n x 单调递增有上界,设lim n n x A →∞=,则有ln()A A a A =+−,1a A −=,1A a =−,所以 lim 1n n x a →∞=−;当1a =时,0n x =,lim 0n n x →∞=;当01a <<时,1ln 0x a =<,1ln ln(11)1x a a a ==+−<−, 11a x <−, 二 证明 因为1(2102ln(22f n n ππππ+=−>+,1(2)102ln(2)2f n n ππππ−=−−<−,(1,2,)n =L ,显然()f x 在[2,)+∞上连续,由连续函数的介值定理知,存在(2,2)22n n n ππξππ∈−+使得 ()0n f ξ= (1,2,)n =L ,即得()f x 在[2,)+∞上有无穷多个零点.三 解 (1)2200()()2lim lim 1cos 1cos x x f x f x x x x x→→==−−,因为20lim21cos x x x →=−,所以20()lim 1x f x x →=, 200()()limlim()0x x f x f x x x x →→=⋅=,00()(0)()lim lim 00x x f x f f x x x→→−==−, 于是(0)0f ′=; (3)由20()lim1x f x x →=知,存在0δ>,当0x δ<<时,2()12f x x >,()(0)f x f >,即知()f x 中在0x =处取得极小值.sup ()x M f x δ≤′′=四 、证明 (1)由0()lim ()lim0x x f x f x x x→→=⋅=,知(0)0f =, 由00()(0)()limlim 00x x f x f f x x x→→−==−知(0)0f ′=. (2)22111111((0)(0)()()22n n f f f f f n n n n ξξ′′′′′=++=,211(2M f n n ≤,已知2112n M n∞=∑收敛,其中sup ()x M f x δ≤′′=,于是11(n f n ∞=∑收敛,结论得证.五 (1)解322[(1)]3xx x e dx ′=−∫32222(1)333x x x e dx =−−+33222222(1)(1)3333x x x x e e =−−⋅−+,所以111)1)22xx xe e C=−−−+11(1)(23x x xxe e e C=−−−.(2)解曲面221x y+=,222z x y=−−事物交线为221x y+=,1z=,22221{(,,):1,02,0,0}x y z x y z x y x yΩ=+≤≤≤−−≥≥,22222{(,,):12,02,0,0}x y z x y z x y x yΩ=≤+≤≤≤−−≥≥,其中S是区域1Ω的边界时,利用高斯公式,SI zxdydz xydzdx yzdxdy=++∫∫1()z x y dxdydzΩ=++∫∫∫2122000(cos sin)rd dr z r r rdzπθθθ−=++∫∫∫212222000(cos sin)rdr dz zr r r dπθθθ−=++∫∫∫212200(2)2rdr zr r dzπ−=+∫∫122221[(2)2(2)]22r r r r drπ=−+−∫11352400[44]2[2]4r r r dr r r drπ=−++−∫∫121(212(4635π=−++−7142415π=+.当S是2Ω的边界时,利用高斯公式SI zxdydz xydzdx yzdxdy=++∫∫2()z x y dxdydzΩ=++∫∫∫222000(cos sin)rdz z r r rdπθθθ−=++∫∫222211(2)2(2)]22r r r r drπ=−+−224111[2(22]243r r r drπ=−−+−35212(2435r rπ=+−14241515π=+−.六证明证法一用反证法,假若结论不成立,则对任意(,)x a b∈,都有()0f x′≤,()f x在[,]a b上单调递减,由于f不恒等于常数,所以()f x′不恒等于零,存在一点(,)x a b∈,使得0()0f x′<,()()lim()0x xf x f xf xx x→−′=<−,存在01x x b<<,使得1010()()f x f xx x−<−,10()()f x f x<,因为()()f x f a≤,1()()f b f x≤,所以10()()()()f b f x f x f a≤<≤,这与()()f a f b=矛盾,从而假设不成立,原结论得证.证法 2 由于f在[,]a b上连续,f在[,]a b上取到最大值M和最小值m,且m M<,由于()()f a f b =,所以f 的最大值M 或最小值m 必在(,)a b 内达到. 若f 在0(,)x a b ∈处达到最大值0()()()f a f b f x =<,存在0(,)a x ξ∈使得00()()()()f x f a f x a ξ′−=−,从而有()0f ξ′>;若f 在1(,)x a b ∈处达到最小值1()()()f x f a f b <=,存在11(,)x b ξ∈使得111()()()()f b f x f b x ξ′−=−,从而有()0f ξ′>; 结论得证.七 解 设u xyz =,则有gradu F =r ,所以F r是有势场,()()OMW Fdr u M u O ξηζ==−=∫r r,由于0,0,0x y z ≥≥≥时,222232222)x y z xyz a b c =++≥=,323xyz abc ≤=,等号成立当且仅当x y z a b c ===,所以(,,)ξηζ=时,W 达到最大值,且W 的最大值.八 证明 (1)由于当0y ≥时,有1ye y −>−,对任意n N ∗∈,0x n ≤≤,取x y n =,1xn xe n−≥−,所以有(1)x n xe n−≥−;(2)取2(1),0()0,n n x x x n f x n n x −≤≤ = <,有20()x n f x e x −≤≤,20x e x dx +∞−∫收敛,对任意0A >,{()}n f x 在[0,]A 上一致收敛于2x e x −,故由函数列积分的黎曼控制收敛定理,20lim (1nn n x x dx n→∞−∫0lim ()n n f x dx +∞→∞=∫0lim ()n n f x dx +∞→∞=∫20x e x dx +∞−=∫20()xx e dx +∞−′=−∫02()x x e dx +∞−′=∫02x e dx +∞−=∫02()x e dx +∞−′=∫2= .南京大学2003年数学分析考研试题一 求下列极限(1)设0a >,求x ;(2)设1x =1n x +=,(1,2,)n =L ,求lim n n x →∞.(3)21lim(1)x x x e x−→∞+⋅. 二 过(1,0)P 点作抛物线y =切线,求(1)切线方程;(2)由抛物线、切线及x 轴所围成的平面图形面积; (3)该平面图形分别绕x 轴和y 轴旋转一周的体积. 三 对任一00y >,求00()(1)y x y x x ϕ=−在(0,1)中的最大值, 并证明该最大值对任一00y >,均小于1e −.四 设()f x 在[0,)+∞上有连续导数,且()0f x k ′≥>,(0)0f <,(k 为常数),试证:()f x 在(0,)+∞内仅有一个零点. 五 计算下列积分(1)设120ln(1)()1ax I a dx x +=+∫,(0)a >,求()I a ′和(1)I ; (2)32222()Sxdydz ydzdx zdxdy I x y z ++=++∫∫,其中S 为上半球面2222x y z a ++=,(0)z >的外侧.六 设(1),01(),10.n n nxx x x e x ϕ −≤≤= −≤≤ ,()f x 在[1,1]−上黎曼可积, (1)求lim ()n n x ϕ→∞,并讨论{()}n x ϕ在[1,1]−上的一致收敛性;(2)求11lim ()()n n f x x dx ϕ−→∞∫,(要说明理由)七 设0()nn n f x a x ∞==∑的收敛半径为R =+∞,令0()nk n k k f x a x ==∑,试证明:(())n f f x 在[,]a b 上一致收敛于(())f f x ,其中[,]a b 为任一有穷闭区间.南京大学2003年数学分析考研试题解答一 (1)解 设max{1,}M a =,则有M ≤≤, 由此知,1,01max{1,},1n a M a a a << === ≥ ;(2)解 由归纳法,易知2n x <,12x x <,1n n x x +−==,由此知,{}n x 单调递增有界,设lim n n x a →∞=,02a <≤,则有a =2a =,故lim 2n n x →∞=.(3)21lim(1)x x x e x −→∞+⋅ 21(1)lim x x x x e →∞+=1(1)lim xx x x e→∞+ =1[ln(1)1]lim x x xx e +−→∞=, 12[ln(1)1]2311111ln(11lim limlim 12x x xx x x x x x x x ex x +−→∞→∞→∞+−−++==−1lim 21x x x →∞=−+12=−, 故21lim(1)x x x e x −→∞+⋅12=−. 3 解(1)y ′=,设切点为00(,)x y,0x x k y =′==,设切点00(,)x y 的切线方程为0)y x x −=−.将1x =,0y =代入,0)x =−, 002(2)1x x −−=−,03x =,01y =,所求切线方程为11(3)2y x −=−,即1(1)2y x =−. (2)解32212001121(1)212233S x dx udu t tdt =−−=−=−=∫∫∫∫.(3) 3321222120011211[(1)]24326x V x dx dx u du tdt πππππππ=−−=−=−=∫∫∫∫,131122224202[2](21)(44)(441)x V y dy y dy y y dy y y dy ππππ=+−+=++−++∫∫∫∫14016(34)(32)55y y dy πππ=+−=+−=∫.三 解 00100()[(1)]y y x y y x x x ϕ−′=−−0100[(1)]y y x y x x −=−−01000[(1)]y y x y y x −=−+, 当0001y x y <<+时,()0x ϕ′>,当0011y x y <<+时,()0x ϕ′<,于是()x ϕ在001yx y =+处达到最大值,000100001000011(((11111(1)y y y y y y y y y y y y ϕ++===+++++.容易证明1()(1)y g y y =+在(0,)+∞上单调递减,11(1)y e y ++>,1111(1)y e y +<+,故有001011(11(1)y y y ey ϕ+=<++.四 证明 对任意(0,)x ∈+∞,1()()(0)(0)()(0)(0)f x f x f f f x f kx f ξ′=−+=+≥+, 当x 充分大时,有()0f x >,又(0)0f <,由连续函数的介值定理,存在(0,)ξ∈+∞,()0f ξ=, 由()0f x k ′≥>,()f x 在[0,)+∞上严格单调递增,所以()f x 在(0,)+∞内仅有一个零点. 五 (1)解 120()(1)(1)xI a dx ax x ′=++∫1122001[]111x a a dx dx a x ax +=−+++∫∫211[ln 2ln(1)]124a a a π=+−++, 显然(0)0I =,1(1)()I I a da ′=∫111222000ln(1)11ln 212141a a da da da a a a π+=−+++++∫∫∫11(1)ln 2ln 22442I ππ=−+⋅+⋅, 因为(1)ln 28I π=,120ln(1)ln 218x dx x π+=+∫.(2)解 2222{(,,):}x y z x y z a Ω=++≤,222{(,,):,0}D x y z x y a z =+≤=,32222()Sxdydz ydzdx zdxdy I x y z ++=++∫∫31Sxdydz ydzdx zdxdy a =++∫∫31[]S D D a =+−∫∫∫∫∫∫31[30]dxdydz a Ω=+∫∫∫331233a a π=⋅⋅2π=. 六、解 1,0lim ()0,[1,1],0n n x x x x ϕ→∞= = ∈−≠,由于极限函数在[1,1]−上不连续,所以{()}n x ϕ在[1,1]−上不一致收敛;但对任何10,01,a b −<<<<{()}n x ϕ在[1,][,1]a b −U 上一致收敛于0;且|()1n x ϕ≤,根据控制收敛定理,对于()f x 在[1,1]−上黎曼可积,有 11lim ()()0n n f x x dx ϕ−→∞=∫.七、 证明 由条件知()f x 在(,)−∞+∞上连续,{()}n f x 在任意有限区间上是一致收敛的, 对任意有限区间[,]a b ,{()}n f x 在[,]a b 上一致收敛于()f x ,{()}n f x 在[,]a b 上一致有界,()n f x M ≤,再由()f x 在[,]M M −上一致连续,于是有{(())}n f f x 在[,]a b 上一致收敛于(())f f x .南京大学2004年数学分析考研试题一.求下列极限 1.设n a =+L 求lim n n a →∞;2.ln 2sin x x x e x →++;3. ()()2200lim ln x y x y x y →→++;4. 设(){}222,:r D x y x y r =+≤,0r >,求()2221lim cos rx y r D e x y dxdy r π+−→+∫∫.二.确定最小正数,使下面的不等式成立:()()2222ln x y A x y +≤+,()0,0x y ∀>>.三.设()()1122f x x x = +−,求()()n f x ,并证明级数()()0!0n n n f ∞=∑收敛.四.求333Sx dydz y dzdx z dxdy ++∫∫其中S 是2221x y z ++=的上半球的下侧.五.设()2cos cos cos n n f x x x x =+++L ,(1)当0,2x π ∈ 时,求()lim n n f x →∞,并讨论(){}n f x 在0,2π的一致收敛性;(2)证明:对任一自然数n ,方程()1n f x =在0,3π内有且仅有一个根;(3)若0,3n x π∈是()n f x 的根,求lim n n x →∞.六.设()22xxt f x xe e dt −=∫,(1) 证明 ()f x 在[)0,+∞上有界;(2) 证明221xt x x e dt e ≤−∫,()(),x ∀∈−∞+∞.南京大学2004年数学分析考研试题解答一.1. 解n a ≤≤,1n n ==,1n n →∞==,所以lim 1n n a →∞=;2. 解0ln 2sin xx x e x →++()0112cos lim 1sin x x x e x x ex→+++=+22410+==+. 3. 解 因为()()()22220ln x y x y x y ≤++≤+22ln 4ln 0r r r r ==→,()0r →,所以()()2200lim ln 0x y x y x y →→++=.4. 解 设(),f x y 在点()0,0的某个邻域内连续,则有 ()()21lim ,0,0rr D f x y dxdy f r π+→=∫∫,()2221lim cos rx y r D e x y dxdy r π+−→+∫∫()220cos 001e −=+=.二.解 设()ln r f r r =,()1r ≥,则()10f =,()lim 0r f r →∞=,()21ln rf r r−′=, 当r e =时,有()0f e ′=,当1r e <<时,有()0f r ′>,从而()f r 在[]1,r 上严格单调递增, 当e r <<+∞时,()0f r ′<,从而()f r 在[),e +∞上严格单调递减, 所以()f r 在r e =处达到最大值,对1r ≤<+∞,有()()1f r f e e ≤=, 1ln r r e ≤,()1r ≥, 对01r <<,显然有1ln r r e≤, 故使不等式()()2222ln x y A x y +≤+,()0,0x y ∀>>,成立的最小的正数A 为1e .三.解 ()()1122f x x x = +− 2111522x x=+ + −,()()()()111!2!5212n n n n n n f x x x ++− =++ −, ()()()()111!2!0522nn n n n n f+−+−=+ ,()()()11!5120122n n n n n n u f ++==−+,115151022122n n n u ++<<−:, 而105122n n ∞+=∑是收敛的,所以()()0!0n n n f ∞=∑收敛. 四.解 设(){}222,,:1,0V x y z x y z z =++≤≥,(){}22,,:1,0D x y z x y z =+≤= 利用高斯公式,得333S x dydz y dzdx z dxdy ++∫∫333333S D x dydz y dzdx z dxdy x dydz y dzdx z dxdy =−+++++∫∫∫∫上侧 333Dx dydz y dzdx z dxdy +++∫∫()22230Vx y z dxdydz =−+++∫∫∫212220003sin d d r r dr ππθϕϕ=−∫∫∫163255ππ=−⋅⋅=−.五.解 (1)()()2cos 1cos cos cos cos 1cos n nn x x f x x x x x−=+++=−L ,当0,2x π ∈ 时,0cos 1x <<,lim cos 0n n x →∞=,于是有()cos lim 1cos n n x f x x →∞=−,0,2x π∈.()n f x 在0,2π 上连续,显然()0n f n =,(){}0n f 发散,从而知(){}n f x 在0,2π上不一致收敛,对任意02πδ<<,(){}n f x 在,2πδ上一致收敛. 五、设2()cos cos cos n n f x x x x =+++L ,求证:(2) 对任意自然数(2)n n ≥,方程()1n f x =在区间(0,)3π内必有唯一根n x , (3) 并求数列{}n x 的极限n n x ∞→lim .证明 (2) 显(0)1n f n =>,2111(13222n n f π=+++<L ,由连续函数的介值定理,存在(0,)3n x π∈,使得()1n n f x =;显然()0n f x ′<,(0,3x π∈,即()n f x 在(0,)3π上严格单调递减,所以()1n f x =的根是唯一的.(3) 显然1()()n n f x f x +>, 111()()()n n n n n n f x f x f x +++=>, 于1n n x x +<,即得{}n x 单调递增, 203n x x π<≤<,从而lim n n x a →∞=存在,且203x a π<≤≤,lim cos cos n n x a →∞=, 21cos cos 12n x x <≤<,lim(cos )0n n n x →∞=;在cos (1(cos ))()cos (cos )11cos n nn n n n n n nx x f x x x x −=++==−L ,令 n →∞,取极限,得cos 11cos 1cos 2a a a =⇒=−,得3a π=,故lim 3n n x π→∞= .六.证明(1)显然 ()f x 是偶函数,()f x 在[)0,+∞上连续,()220lim limxt xx x x e dtf x e→+∞→+∞=∫222lim2xt x x x e dt xe xe→+∞+=∫22221lim 242x x x x e x e e →+∞=++11022=+=, 于是可知,()f x 在[)0,+∞上有界,且()f x 在[)0,+∞上一致连续; (2)对0x >,设()()221xx t g x e x e dt =−−∫,()00g =,()g x 是偶函数,()222222xxx t x x t g x xe e dt xe xe e dt ′=−−=−∫∫,()00g ′=,()222222220x x x x g x x e e e x e ′′=+−=>,从而有()0g x ′>,()0g x >, 故有221xt x x e dt e ≤−∫,()(),x ∀∈−∞+∞.南京大学2005年数学分析考研试题解答1、求n →∞+. 解 解法1 利用几何平均与算术平均不等式,及2!nn n ≥,2224(!)()n n n n n n n n≥=≥=L,limn n→∞+=+∞L .解法2 利用Stolz 定理,原式limn n→∞++=L lim (1)n n n →∞=+−lim n ==+∞.2 、求ln !limln n n n n→∞.解 利用Stolz 定理,原式ln(1)lim (1)ln(1)ln n n n n n n →∞+=++−1ln(1)lim 1ln(1)n n n nn →∞++=+⋅1ln(1)lim 1ln(1)ln n n n nn →∞++=++11lim 1ln(1)ln ln(1)ln(1)n n n n n n →∞+=++++1=. 3 求1lim (1)n x n x x dx →∞+∫. 解 11010(1)21n x n x x dx x dx n <+≤=+∫∫,10lim (1)0n x n x x dx →∞+=∫. 4 设21,1()2,1x x g x x x x −≤− = ++>− ,求11(1)lim (n n i x i x g x n n →∞=−−+∑. 解 原式10()x g x y dy −=+∫,5、当112p <≤时,证明:344sin ||sin n p n x dx x x ππππ++≥+∫. 证明344sin ||sin n p n x dx x x ππππ+++∫344sin()||()sin()p n u du n u n u πππππ+=+++∫344sin |()(1)sin |p n u du n u u πππ=++−∫, 当344u ππ≤≤时, |()(1)sin |()1(1)1p n p p p n u u n n ππππ++−≤++=++,sin sin4u π≥=, 于是sin |()(1)sin |p n u n u u π≥++− 故有344sin ||sin n p n x dx x x ππππ++≥+∫.南京大学2005年数学分析考研试题一 、求下列极限1 设常数1a >,试求极限11lim (1)k nnn k an a k−→∞=+−∑.。
高等代数-考研真题详解1.设Q是有理数域,则P={α+βi|α,β∈Q}也是数域,其中.()[南京大学研]【答案】对查看答案【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b=α2+β2i其中α1,α2,β1,β2为有理数,故a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈Pab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有综上所述得P为数域.2.设f(x)是数域P上的多项式,a∈P,如果a是f(x)的三阶导数f‴(x)的k重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.()[南京大学研]【答案】错查看答案【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f(a)=0,并且f ‴(x)=(k+3)(k+2)(k+1)(x-a)k满足a是f(x)的三阶导数f‴(x)的k重根(k≥1).3.设f(x)=x4+4x-3,则f(x)在有理数域上不可约.()[南京大学研]【答案】对查看答案【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约.二、计算题1.f(x)=x3+6x2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研]解:f′(x)=3(x2+4x+p).且(f(x),f′(x))≠1,则(1)当p=4时,有(f(x),f′(x))=x2+4x+4所以x+2是f(x)的三重因式,即f(x)(x+2)3,这时f(x)的三个根为-2,-2,-2.(2)若p≠4,则继续辗转相除,即当p=-5时,有(f(x),f′(x))=x-1即x-1是f(x)的二重因式,再用(x-1)2除f(x)得商式x+8.故f(x)=x3+bx2-15x+8=(x-1)2(x+8)这时f(x)的三个根为1,1,-8.2.假设f1(x)与f2(x)为次数不超过3的首项系数为1的互异多项式,且x4+x2+1整除f1(x3)+x4f2(x3),试求f1(x)与f2(x)的最大公因式.[上海交通大学研]解:设6次单位根分别为由于x6-1=(x2)3-1=(x2-1)(x4+x2+1),所以ε1,ε2,ε4,ε5是x4+x2+1的4个根.由于ε13=ε53=-1,且x4+x2+1∣f1(x3)+x4f2(x3),所以,分别将ε1,ε5代入f1(x3)+x4f2(x3)可得从而f1(-1)=f2(-1)=0即x+1是f1(x)与f2(x)的一个公因式.同理,将ε2,ε4代入f1(x3)+x4f2(x3)可得f1(1)=f2(1)=0,即x -1是f1(x)与f2(x)的一个公因式.所以(x-1)(x+1)是f1(x)与f2(x)的一个公因式.又因为f1(x),f2(x)为次数不超过3的首项系数为1的互异多项式,所以(f(x),g(x))=x2-1三、证明题1.设不可约的有理分数p/q是整系数多项式f(x)=a0xn+a1xn-1+…+an -1x+an的根,证明:q∣a0,p∣an[华中科技大学研]证明:因为p/q是f(x)的根,所以(x-p/q)∣f(x),从而(qx-p)∣f(x).又因为p,q互素,所以qx-p是本原多项式[即多项式的系数没有异于±l的公因子],且f(x)=(qx-p)(bn-1xn-1+…+b0,bi∈z比较两边系数,得a0=qbn-1,an=-pb0⇒q∣a0,p∣an2.设f(x)和g(x)是数域P上两个一元多项式,k为给定的正整数.求证:f(x)∣g(x)的充要条件是fk(x)∣gk(x)[浙江大学研]证明:(1)先证必要性.设f(x)∣g(x),则g(x)=f(x)h(x),其中h(x)∈P(x),两边k次方得gk(x)=fk(x)hk(x),所以fk(x)∣gk (x)(2)再证充分性.设fk(x)∣gk(x)(i)若f(x)=g(x)=0,则f(x)∣g(x)(ii)若f(x),g(x)不全为0,则令d(x)=(f(x),g(x)),那么f(x)=d(x)f1(x),g(x)=d(x)g1(x),且(f1(x),g1(x))=1①所以fk(x)=dk(x)f1k(x),gk(x)=dk(x)g1k(x)因为fk(x)∣gk(x),所以存在h(x)∈P[x](x),使得gk(x)=fk(x)·h (x)所以dk(x)g1k(x)=dk(x)f1k(x)·h(x),两边消去dk(x),得g1k (x)=f1k(x)·h(x)②由②得f1(x)∣g1k(x),但(f1(x),g1(x))=1,所以f1(x)∣g1k -1(x)这样继续下去,有f1(x)∣g1(x),但(f1(x),g1(x))=1故fl(x)=c,其中c为非零常数.。
得到拟录取消息的前些天一直忐忑不安,想象着自己失败时的沮丧或者自己成功时的兴奋。
终于尘埃落定,内心激动,又面色平静地拿起手机给每一个关心我的家人和朋友发了这个好消息。
也想在这里写下自己考研路上的点点滴滴,给自己留一个纪念,也希望大家能从中得到一些收获。
立大志者得中志,立中志者得小志,立小志者不得志。
所以我建议刚开始大家就朝着自己喜欢的,最好的学校考虑,不要去担心自己能不能考上的问题,以最好的学校的标准来要求自己去学习。
大家可以去自己想报考的学校官网上下过去的录取分数线,报录比之类的信息给自己一个参考和努力目标。
包括找一些学长学姐问下经验也是很有用的。
备考那个时候无论是老师还是同学们都给了我很多的帮助,让我在备考的路上少走了很多的弯路,尤其是那些珍贵的笔记本,现在回想起来依然很是感动,还好现在成功上岸,也算是没有辜负大家对我的期望。
所以想着成功之后可以写一篇经验贴,希望可以帮助大家。
话不多说,下面跟大家介绍一下我的经验吧。
文末有笔记和真题下载,大家可自取。
南京大学数学的初试科目为:(101)思想政治理论(201)英语一(627)数学分析和(801)高等代数参考书目为:南京大学《数学分析》1996-2017年考研历年真题。
近20年真题,来自官方,真实可靠2、南京大学《数学分析》2000-2010年考研历年真题答案。
最全最新的真题答案,本店独家更新。
3、南京大学《高等代数》1996-2017年考研历年真题。
来自官方,同学们可索要截图!4、南京大学《高等代数》历年考研真题部分答案。
该专业近几年学校官方不出售历年试题。
先说英语吧。
词汇量曾经是我的一块心病,跟我英语水平差不多的同学,词汇量往往比我高出一大截。
从初中学英语开始就不爱背单词。
在考研阶段,词汇量的重要性胜过四六级,尤其是一些熟词僻义,往往一个单词决定你一道阅读能否做对。
所以,一旦你准备学习考研英语,词汇一定是陪伴你从头至尾的一项工作。
考研到底背多少个单词足够?按照大纲的要求,大概是5500多个。