视距计算使用手册
- 格式:doc
- 大小:3.39 MB
- 文档页数:22
拇指测距(三角函数与密位) 向前伸直手臂树起拇指,闭上左眼,右眼、拇指、目标形成直线,闭上右眼,睁开左眼,此时记住左眼、拇指延长直线目标右侧那一点,目测那一点与目标的距离并乘以10,即你到目标的大概距离。
"大拇指测距法"是根据直角三角函数来测量的假设距离我们N米有一目标物,测量我们到目标物的距离:1、水平端起我们的右手臂,右手握拳并立起大拇指2、用右眼(左眼闭)将大拇指的左边与目标物重叠在一条直线上;3、右手臂和大拇指不动,闭上右眼,再用左眼观测大拇指左边,会发现这个边线离开目标物右边一段距离;4、估算这段距离(这个也可以测量),将这个距离×10,得数就是我们距离目标物的约略距离。
由于每个人的臂长、两眼瞳孔间距各有不同,因此,这种测距法需要因人而异,进行严格训练,经过普通训练的一般人可以做到200米内正负误差5米。
视距测量的计算公式视距是指视线能够达到的最远距离,是广泛应用于工程、交通、地理、环境、气象等领域的重要参数。
视距的计算公式可以通过多种方式得出,其中较为常用的是利用大气折射系数和地球曲率进行计算。
大气折射系数是指光线在穿过大气时因大气密度变化而发生的折射现象,其大小与大气温度、气压、湿度等因素有关。
大气折射系数通常使用标准大气条件下的数值进行计算,即气压为1013.25 hPa,温度为15℃,湿度为0%。
在标准大气条件下,大气折射系数的计算公式为:n = 1 + 0.000293ρ/(273+T) - 0.0000048h其中,n为大气折射系数,ρ为气压,T为温度,h为海拔高度。
而地球曲率则是指地球表面的弧度,也称为地球球面曲率半径。
在视距的计算中,地球曲率通常采用近似公式进行计算。
对于地球半径为R的球体,在高度为h的地点,地球曲率半径的计算公式为:R1 = R + h/8其中,R1为地球曲率半径。
综合以上两个公式,可以得出视距的计算公式为:L = √(2Rh + h²) + √(2R1h + h²) - 2R其中,L为视距,R为地球半径,h为观察点的高度。
需要注意的是,在实际应用中,大气折射系数和地球曲率的数值可能与标准大气条件存在差别,因此计算结果可能会产生一定的误差。
此外,视距的计算公式也不适用于存在地形起伏或气象条件不稳定的情况下。
在工程、交通、地理、环境、气象等领域中,视距的计算是非常重要的。
通过视距的计算,可以对于建筑物、道路、机场、港口等建筑设施的布局和规划提供重要的参考依据;也可以对于交通运输的安全管理和应急处理提供重要的技术支持;同时,对于气象预报、环境监测等方面也有着重要的应用价值。
因此,视距的计算公式的研究和应用,将对于推动各领域的发展和进步具有重要作用。
视距计算使用手册1. 引言1.1 目的本文档旨在提供关于视距计算的详细指南,以帮助用户正确进行相关计算。
1.2 范围此手册适用于所有需要进行视距计算的个人和组织。
2. 视距概述视距是指从观察者所处位置到目标物体之间可见部分长度。
它对许多领域具有重要意义,如交通规划、建筑设计等。
3. 计算方法介绍在这一章节中我们将介绍几种常用且有效的视角测量方法: - 几何法:通过直接测量或利用已知尺寸来确定两点之间的水平和垂直方向上相对高度差,并应用三角函数得出结果。
- 光学法:基于光线传播原理,在考虑大气折射情况下估计目标物体与观察者之间实际路径长度。
4.几何法示例步骤及公式推导说明这里给出一个简单但常见场景下使用几何法进行视角测量时候可能遇到问题解析过程:a) 确定起始点A(观察者位置)和终点B(目标物体位置)b) 测量A、B两点之间的水平距离Dc) 确定起始点A与目标物体顶部C之间的垂直高度差H1d) 计算角度θ = atan(H1/D)5. 光学法示例步骤及公式推导说明这里给出一个简单但常见场景下使用光学法进行视角测量时候可能遇到问题解析过程:a) 了解大气折射率N,通常在不同条件下有所变化。
b) 根据观察者高度h以及地球曲率半径R计算真实路径长度L0= sqrt(D^2 + (R+h)^2 )c)考虑大气折射情况, 使用修正系数K来估计实际路径长度 L=L0/K6.注意事项在进行视距计算时,请务必留意以下几个方面:- 准确性:选择合适数值并保证输入数据精确无误是获得正确结果的关键。
- 大气影响:要根据具体环境中空气密度等因素调整相应参数或采用更复杂模型。
7.本文档涉及附件请参阅随附的视距计算实例文件,其中包含了几个常见场景下的具体示范和解决方案。
8.法律名词及注释- 视角测量:通过各种方法确定观察者与目标物之间可见部分长度。
- 大气折射率:光线在大气中传播时受到空气密度变化等因素影响而发生弯曲现象。
公路最大横净距(视距)计算程序使用手册二O一四年九月行车视距是汽车在道路上行驶时向前能看得见的路线距离。
为了行车安全,驾驶员应能随时看到汽车前面相当远的一段路程,一旦发现公路上有障碍物或迎面开来的车辆,能及时采取措施,防止汽车与障碍物或汽车与汽车相碰。
不论在道路的平面弯道上或在纵断面的变坡处,都应保证这种必需的最短安全视距。
行车最短安全视距的长度主要取决于车速和汽车在路面上的制动性能。
行车视距包括停车视距、会车视距、错车视距和超车视距,另外还有弯道视距、纵坡视距及平面交叉口视距。
停车视距是指驾驶员发现前方有障碍物,使汽车在障碍物前停住所需要的最短距离;会车视距是在同一车道上有对向的车辆行驶,为避免相碰而双双停下所需要的最短距离;超车视距是快车超越前面的慢车后再回到原来车道所需要的最短距离。
会车视距为停车视距的两倍。
中间无分隔带的道路应能保证会车视距,对有中间分隔带的较高级道路可仅保证停车视距。
对向行驶的双车道道路,根据需要结合地形设置具有足够超车视距的路段。
为此,在道路设计中,在平面弯道和交叉口处应注意清除内侧障碍,在纵断面的凸形变坡处,应注意采用足够大的竖曲线半径。
确定行车视距的定量数值,须研究:①汽车驾驭员的感觉时间和制动反应时间,它因人而异,且随很多自然和人为因素而变化;②汽车制动效率,它随轮胎花纹与气压和路面类型与湿滑程度而异。
视距计算程序则采用基于AutoCAD的VBA编写的应用程序,能够计算各种复杂线形的最大横净距,并能够绘制视距包络图。
本手册参照《公路路线设计规范》JTG D20-2006、《公路路线设计细则》校审稿、湖北省交通规划设计院研发视距计算程序教程等相关资料整理,如有不足之处,请见谅。
视距计算程序下载可至/sjjs下载。
目录一、............................................................................................. 概述11.1行车视距的概念 (1)1.2行车视距的计算 (1)1.3视距:相关技术指标 (3)1.4平曲线视距的保证 (8)二、计算程序简介10三、........................................................................................... 初始化11四、平面文件格式114.1、交点法平面资料 (11)4.2、积木法平面资料 (12)4.3、交点法平面资料举例 (12)4.4、积木法平面资料举例 (12)4.5、交点法应注意的问题 (13)4.6、积木法应注意的问题 (15)五、司机视点距设计线的距离文件格式15六、桩号文件格式16七、最大横净距文件格式16八、视距限值文件格式17九、断链文件格式17十、操作 (18)一、概述1.1行车视距的概念 1.1.1定义行车视距是指汽车在行驶中,当发现障 碍物后,能及时采取措施,防止发生交通事 故所需要的必须的最小距离。
视距测量水平距离是指通过观察目标物体与自身之间的角度差来估算目标物体与观察者之间的水平距离。
在实际应用中,视距测量水平距离被广泛用于地图制作、导航系统、航空和航海等领域。
视距测量水平距离的计算公式可以通过三角法来推导。
假设观察者和目标物体之间的距离为D,观察者与目标物体之间的高度差为H,目标物体所占的视角为α,则可以得到如下公式:D = H / tan(α)其中,tan表示正切函数。
这个公式可以通过下面的步骤来推导:1.假设我们站在地面上观察目标物体,目标物体的高度差为H。
2.我们通过角度差来测量目标物体所占的视角α。
可以使用角度测量仪器如测距仪等工具来获取此值。
3.根据三角函数的性质,我们可以得到观察者和目标物体之间的距离D与高度差H之间的关系:tan(α) = H / D。
4.将上述表达式进行变形,可以得到D = H / tan(α)。
这个公式的应用非常广泛,可以用于计算观察者和目标物体之间的水平距离。
例如,当制作地图时,如果已知地图上某一点的坐标和高程信息,同时也知道地面上观察者的高程信息,就可以利用视距测量水平距离的公式来计算观察者和目标点之间的距离。
此外,这个公式在导航系统中也有重要的应用。
通过测量观察者与目标物体之间的角度差,可以估算出目标物体与观察者之间的水平距离。
这个信息可以用于导航系统中的路线规划和位置定位等功能。
视距测量水平距离的公式也适用于航空和航海领域。
在飞行和航海过程中,通过测量目标物体所占的视角,并利用上述公式,可以估算出观察者与目标物体之间的水平距离。
这对于导航、位置确认和避障等任务非常重要。
在实际应用中,除了使用测距仪等专门仪器来测量目标物体所占的视角外,还可以利用数字图像处理技术来自动化地测量视角。
通过分析图像中目标物体的像素位置,可以利用几何关系来计算目标物体的视角,并进而估算出观察者与目标物体之间的水平距离。
总的来说,视距测量水平距离的公式是通过三角法来推导并计算的。
公路最大横净距(视距)计算程序使用手册二O一四年九月前言行车视距是汽车在道路上行驶时向前能看得见的路线距离。
为了行车安全,驾驶员应能随时看到汽车前面相当远的一段路程,一旦发现公路上有障碍物或迎面开来的车辆,能及时采取措施,防止汽车与障碍物或汽车与汽车相碰。
不论在道路的平面弯道上或在纵断面的变坡处,都应保证这种必需的最短安全视距。
行车最短安全视距的长度主要取决于车速和汽车在路面上的制动性能。
行车视距包括停车视距、会车视距、错车视距和超车视距,另外还有弯道视距、纵坡视距及平面交叉口视距。
停车视距是指驾驶员发现前方有障碍物,使汽车在障碍物前停住所需要的最短距离;会车视距是在同一车道上有对向的车辆行驶,为避免相碰而双双停下所需要的最短距离;超车视距是快车超越前面的慢车后再回到原来车道所需要的最短距离。
会车视距为停车视距的两倍。
中间无分隔带的道路应能保证会车视距,对有中间分隔带的较高级道路可仅保证停车视距。
对向行驶的双车道道路,根据需要结合地形设置具有足够超车视距的路段。
为此,在道路设计中,在平面弯道和交叉口处应注意清除内侧障碍,在纵断面的凸形变坡处,应注意采用足够大的竖曲线半径。
确定行车视距的定量数值,须研究:①汽车驾驭员的感觉时间和制动反应时间,它因人而异,且随很多自然和人为因素而变化;②汽车制动效率,它随轮胎花纹与气压和路面类型与湿滑程度而异。
视距计算程序则采用基于AutoCAD的VBA编写的应用程序,能够计算各种复杂线形的最大横净距,并能够绘制视距包络图。
本手册参照《公路路线设计规范》JTG D20-2006、《公路路线设计细则》校审稿、湖北省交通规划设计院研发视距计算程序教程等相关资料整理,如有不足之处,请见谅。
视距计算程序下载可至。
目录一、概述 (1)1.1行车视距的概念 (1)1.2行车视距的计算 (1)1.3视距:相关技术指标 (4)1.4 平曲线视距的保证 (9)二、计算程序简介 (11)三、初始化 (11)四、平面文件格式 (12)4.1、交点法平面资料 (12)4.2、积木法平面资料 (12)4.3、交点法平面资料举例 (12)4.4、积木法平面资料举例 (13)4.5、交点法应注意的问题 (13)4.6、积木法应注意的问题 (16)五、司机视点距设计线的距离文件格式 (16)六、桩号文件格式 (17)七、最大横净距文件格式 (17)八、视距限值文件格式 (18)九、断链文件格式 (18)十、操作 (19)一、概述1.1行车视距的概念 1.1.1 定义行车视距是指汽车在行驶中,当发现障碍物后,能及时采取措施,防止发生交通事故所需要的必须的最小距离。
在地面起伏较大的地区进行视距测量时,必须使视线倾斜才能读取视距间隔,如图(3)。
由于视线不垂直于视距尺,故不能直接应用上述公式。
如果能将视距间隔MN换算为与视线垂直的视距间隔M'N',这样就可按公式(2)计算视距,也就是图(3)斜距D’,再根据D'和竖直角α算出水平距离D及高差h。
因此解决这个问题的关键在于求出MN与与M'N'之间的关系。
图中φ角很小,约为34',故可把角MM'E和角NN'E 近似地视为直角,容易计算得l’=M'N'=MNcosα=l cosα,则D'=K l cosα。
(4)容易求得水平距离D=K l cosα*cosα,(5)
高差h=K l cosα*sinα+i-v 。
(6)
其实视线水平的时候α为0°,sin0°=0,cos0°=1,带入(4)、(5)、(6)就可得到(2)、(3)式。
其中视线水平的时候视距等于水平距离。
一、目的和要求
1、掌握用普通视距测量法观测水平距离、高差的作业程序和计算方法。
2、熟悉视距尺的刻划和注记形式,练习用十字丝横丝在视距尺上读数。
二、仪器及工具
自动安平水准仪1台,视距尺一把,三角架一个,表格,铅笔等。
三、方法
1.在地面上选定具有一定坡度且距离为50~70m的A和B两点。
2.将水准仪安置于A点,量取仪器高,精确到厘米,整平仪器。
3.瞄准视距尺,消除视差,按下补偿器读取上丝读数a、下丝读数b、中丝读数v并记载记录本上。
4.根据视距测量公式,计算AB之间的水平距离D=k︱a-b︱其中k=100,高差公式h=i-v
5.将仪器搬至B点安置,瞄准A点上的视距尺,同法观测和计算。
6.若A,B往、返测距离的相对误差K≤1/300,取平均值作为最后结果。
否则应重新观测。
四、注意事项
1.在每次读数之前都要按下补偿器。
2.读取上、中、下三丝读数时,要注意消除视差,视距尺要立直并保持稳定,上下丝估读到毫米,中丝读到厘米就可以了。
五、上交资料
每人上交视距测量记录表一份,相对误差的计算过程。
视距测量的记录表。
公路最大横净距(视距)计算程序使用手册二O一四年九月前言行车视距是汽车在道路上行驶时向前能看得见的路线距离。
为了行车安全,驾驶员应能随时看到汽车前面相当远的一段路程,一旦发现公路上有障碍物或迎面开来的车辆,能及时采取措施,防止汽车与障碍物或汽车与汽车相碰。
不论在道路的平面弯道上或在纵断面的变坡处,都应保证这种必需的最短安全视距。
行车最短安全视距的长度主要取决于车速和汽车在路面上的制动性能。
行车视距包括停车视距、会车视距、错车视距和超车视距,另外还有弯道视距、纵坡视距及平面交叉口视距。
停车视距是指驾驶员发现前方有障碍物,使汽车在障碍物前停住所需要的最短距离;会车视距是在同一车道上有对向的车辆行驶,为避免相碰而双双停下所需要的最短距离;超车视距是快车超越前面的慢车后再回到原来车道所需要的最短距离。
会车视距为停车视距的两倍。
中间无分隔带的道路应能保证会车视距,对有中间分隔带的较高级道路可仅保证停车视距。
对向行驶的双车道道路,根据需要结合地形设置具有足够超车视距的路段。
为此,在道路设计中,在平面弯道和交叉口处应注意清除内侧障碍,在纵断面的凸形变坡处,应注意采用足够大的竖曲线半径。
确定行车视距的定量数值,须研究:①汽车驾驭员的感觉时间和制动反应时间,它因人而异,且随很多自然和人为因素而变化;②汽车制动效率,它随轮胎花纹与气压和路面类型与湿滑程度而异。
视距计算程序则采用基于AutoCAD的VBA编写的应用程序,能够计算各种复杂线形的最大横净距,并能够绘制视距包络图。
本手册参照《公路路线设计规范》JTG D20-2006、《公路路线设计细则》校审稿、湖北省交通规划设计院研发视距计算程序教程等相关资料整理,如有不足之处,请见谅。
视距计算程序下载可至。
目录一、概述 (1)1.1行车视距的概念 (1)1.2行车视距的计算 (1)1.3视距:相关技术指标 (4)1.4 平曲线视距的保证 (9)二、计算程序简介 (11)三、初始化 (11)四、平面文件格式 (12)4.1、交点法平面资料 (12)4.2、积木法平面资料 (12)4.3、交点法平面资料举例 (12)4.4、积木法平面资料举例 (13)4.5、交点法应注意的问题 (13)4.6、积木法应注意的问题 (15)五、司机视点距设计线的距离文件格式 (16)六、桩号文件格式 (16)七、最大横净距文件格式 (17)八、视距限值文件格式 (17)九、断链文件格式 (18)十、操作 (18)一、概述1.1行车视距的概念 1.1.1 定义行车视距是指汽车在行驶中,当发现障碍物后,能及时采取措施,防止发生交通事故所需要的必须的最小距离。
1.1.2 存在视距问题的情况 ➢ 夜间行车:设计不考虑 ➢ 平面上:平曲线(暗弯)平面交叉处➢ 纵断面:凸竖曲线凹竖曲线:(下穿式立体交叉)1.1.3 行车视距的分类(1)停车视距 (2)会车视距 (3)错车视距 (3)超车视距上述四种视距中,前三种属于对向行驶,第四种属于同向行驶。
第四种需要的距离最长,需单独研究。
而前三种中,以会车视距最长,只要道路能保证会车视距,停车视距和错车视距也就可以得到保证。
1.2行车视距的计算 1.2.1 停车视距定义:停车视距是指驾驶人员发现前方有障碍物后,采取制定措施使汽车在障碍物前停下来所需要的最短距离。
停车视距构成:1S S S S Z T ++=图 3 停车视距示意图图 1 平面上的视距问题图 2 纵面上的视距问题(1)反应距离 1S :是当驾驶人员发现前方的阻碍物,经过判断决定采取制动措施的那一瞬间到制动器真正开始起作用的那一瞬间汽车所行驶的距离。
感觉时间为1.5s ;制动生效时间为1.0s 。
感觉和制动生效的总时间t=2.5s ,我国采用1.2s 在这个时间内汽车行驶的距离为:t VS 6.31=(2)制动距离:是指汽车从制动生效到汽车完全停住,这段时间内所走的距离。
)(2542i KV S Z±=ϕ(忽略了滚动阻力系数f ) (3)安全距离:5~10m 停车视距:)10~5()(2546.3·201+±+=++=i V tV S S S S Z Tϕ1.2.2 会车视距定义:会车视距是在同一车道上两对向汽车相遇,从相互发现时起,至同时采取制动措施使两车安全停止,所需的最短距离。
会车视距构成:(1)反应距离:双向驾驶员及车辆 (2)制动距离:双向车辆 (3)安全距离:双向车辆保持间距 会车视距约等于2倍停车视距。
1.2.3 错车视距定义:在没有明确划分车道线的双车道道路上,两对向行驶的车辆相遇,自发现后采取减速避让措施至安全错车所需的最短距离。
只要道路能保证会车视距,停车视距和错车视距也就可以得到保证。
1.2.4 超车视距(1)定义:超车视距是指汽车安全超越前车所需的最小通视距离。
图 4 全超车视距示意图(2)超车视距的构成:超车视距的全程可分为四个阶段 ①加速行驶距离S 1当超车汽车经判断认为有超车的可能,于是加速行驶移向对向车道,在进入该车道之前所行驶距离为1S :21101216.3at t V S +=式中:V 0——被超汽车的速度(km/h),较设计速度低10~20km/h ; t 1——加速时间(s), t 1=2.9~4.5s ; a ——平均加速度(m/s 2)。
②超车汽车在对向车道上行驶的距离2S :226.3t VS =(2t =9.3~10.4s )③超车完了时,超车汽车与对向汽车之间的安全距离3S :3S =15~60m ④超车汽车从开始加速到超车完了时对向汽车的行驶距离4S :)(6.3214t t VS +=全超车视距为:43214S S S S S +++=1.3 视距:相关技术指标1.3.1高速公路、一级公路的视距采用停车视距。
二、三、四级公路应满足会车视距要求,会车视距应不小于停车视距的 2 倍。
受地形条件或其它特殊情况限制而采取分道行驶的地段,可采用停车视距,此时该视距路段对向车辆应通过划线等措施分道分向行驶。
停车视距与会车视距不应小于表1的规定。
表1 公路停车视距与会车视距高速公路、一级公路二、三、四级公路设计速度(Km/h)120 100 80 60 80 60 40 30 20 停车视距(m)210 160 110 75 110 75 40 30 20 会车视距(m)- - - - 220 150 80 60 40停车视距的要求。
1.3.2高速公路、一级公路应采用停车视距。
互通式立体交叉区域应具有良好的通视条件。
主线分流鼻之前应保证判断出口所需的识别视距(如图5所示)。
识别视距应大于表2的规定。
条件受限制时,识别视距应大于 1.25 倍的主线停车视距。
匝道全长范围内应具有不小于表3规定的停车视距。
汇流鼻前,匝道与主线间应具有如图6所示的通视三角区。
表2 判别识别视距设计速度(Km/h)120 100 80 60识别视距(m)350~460 290~380 230~300 170~240图 5 互通分流鼻之前所需识别视距表3 匝道停车视距设计速度(Km/h)80 70 60 50 40 35 30停车视距(m)110(135)95(120)75(100)65(70)40(45)35 30注:积雪冰冻地区,应不小于括号内的数值。
图 6 汇流鼻前通视三角区1.3.3高速公路、一级公路及大型车比例高的二级、三级公路,应按规定的货车停车视距进行检验。
货车停车视距计算中的眼高和物高规定为:眼高2.0m ,物高 0.1m 。
(1)货车停车视距应不小于表4的规定值。
表4 货车停车视距坡度修正值设计速度(Km/h)120 110 100 90 80 70 60 50 40 30 20纵坡坡度(%)下坡0 245 210 180 150 125 100 85 65 50 35 203 265 225 190 160 130 105 89 66 50 35 204 273 230 195 161 132 106 91 67 50 35 205 236 200 165 136 108 93 68 50 35 206 169 139 110 95 69 50 35 207 70 50 35 20上坡0 245 210 180 150 125 100 85 65 50 35 203 230 196 168 140 116 94 82 61 44 30 204 226 193 165 138 114 93 80 60 44 30 205 189 162 136 112 91 79 60 44 30 206 133 111 90 79 59 43 30 187 59 43 30 18(2)下列路段应按货车停车视距进行检查:1)减速车道及出口端部;2)主线下坡段纵面竖曲线半径采用小于一般值的路段;3)主线分、汇流处,车道数减少、且该处纵面竖曲线半径采用小于一般值的路段;4)要求保证视距的圆曲线内侧,当圆曲线半径小于 2 倍一般最小半径或路堑边坡陡于1 :1.5的路段;5)公路与公路、公路与铁路平面交叉口附近。