自动控制原理_第5章习题解答-
- 格式:doc
- 大小:1.31 MB
- 文档页数:36
五 频域分析法2-5-1 系统单位阶跃输入下的输出)0(8.08.11)(94≥+-=--t e e t c tt ,求系统的频率特性表达式。
【解】: 98.048.11)]([L )(1+++-==-s s s t c s C 闭环传递函数)9)(4(36198.048.11)()()(++=+++-==s s ss s s s R s C s G )9tg 4(tg 2211811636)9)(4(36)(ωωωωωωω--+-+⨯+=++=j ej j j G2-5-2系统时,系统的稳态输出(1))30sin()(0+=t t r ; (2))452cos(2)(0+=t t r ;(3))452cos(2)30sin()(00--+=t t t r 。
【解】:求系统闭环传递函数5tg 21254)5(4)(54)(1)()()()(14)(ωωωω--+=+=+=+==+=j B K K B K ej j G s s G s G s R s C s G s s G根据频率特性的定义,以及线性系统的迭加性求解如下:(1)︒===30,1,11θωr A︒--====-3.1151tg )1(178.0264)1()(1j j j B e eeA j G θωω[])7.18sin(78.0)1(sin )1()sin()(12︒+=++=+=t t A A t A t c r c s θθθ(2)︒===45,2,21θωr A︒--==+=-8.2152tg 274.02544)(1j j B e ej G ωω)2.232cos(48.1)(︒+=t t c s(3))8.662cos(48.1)7.18sin(78.0)(︒--︒+=t t t c s2-5-3 试求图2-5-3所示网络的频率特性,并绘制其幅相频率特性曲线。
【解】:(1)网络的频率特性1)(111)(212212+++=+++=ωωωωωC R R j C jR C j R R C j R j G(2)绘制频率特性曲线)tg (tg 22212121111)(1)(11)(ωωωωωωωT T j eT T jT jT j G ---++=++= 其中1221221,)(,T T C R R T C R T >+==。
自动控制原理卢京潮主编课后习题答案西北工业大学出版社SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第五章 线性系统的频域分析与校正习题与解答5-1 试求题5-75图(a)、(b)网络的频率特性。
(a) (b)图5-75 R-C 网络解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sC R sC R R R s U s U r c ττ (b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sC R s U s U r c)(1111)()(2122222212ττ 5-2 某系统结构图如题5-76图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 和稳态误差)(t e s(1) t t r 2sin )(=(2) )452cos(2)30sin()(︒--︒+=t t t r 解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图 频率特性: 2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时, 2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5-3 若系统单位阶跃响应 试求系统频率特性。
自动控制原理第五章课后习题答案(免费)5-1设单位反馈系统的开环传递函数为对系统进行串联校正,满足开环增益 及 解:① 首先确定开环增益K,00()12lim v s K SG S k →===② 未校正系统开环传函为:012()(1)G s s s =+M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramGm = 70.5 dB (at 200 rad/sec) , P m = 16.5 deg (at 3.39 rad/sec)Frequency (rad/sec)③ 绘制未校正系统的开环对数频率特性,得到幅穿频率 3.4c ω=,对应相位角'0()164,16c G j ωγ∠=-∴=,采用超前校正装置,最大相角 0(180())4016630m c G j ϕγωγ=-+∠+=-+=④ 11sin ,31m αϕαα--=∴=+ 0()(1)KG s s s =+40γ=︒112K s -=⑤ 在已绘图上找出10lg 10lg3 4.77α-=-=-的频率 4.4m ω=弧度/秒 令c m ωω=⑥0.128/,0.385/m T s T s ωα=⇒==∴=校正装置的传函为:110.385()110.128Ts s G s Ts s α++==++校正后的开环传函为:012(10.39)()()()(1)(10.13)c s G s G s G s s s s +==++ 校正后1801374340γ=-=>,满足指标要求.-100-50050100M a g n i t u d e (d B )101010101010P h a s e (d e g )Bode DiagramGm = 99.2 dB (at 1.82e+003 rad/sec) , P m = 42.4 deg (at 4.53 rad/sec)Frequency (rad/sec)5-2设单位反馈系统的开环传递函数为要求 设计串联迟后校正装置。
第 五 章5-2 若系统单位阶跃响应为49()1 1.80.8tth t ee--=-+试确定系统的频率特性。
分析 先求出系统传递函数,用j ω替换s 即可得到频率特性。
解:从()h t 中可求得:(0)0,(0)0h h '==在零初始条件下,系统输出的拉普拉斯变换()H s 与系统输出的拉普拉斯变换()R s 之间的关系为()()()H s s R s =Φ⋅即()()()H s s R s Φ=其中()s Φ为系统的传递函数,又1 1.80.836()[()]49(4)(9)H s L h t s s s s s s ==-+=++++1()[()]R s L r t s ==则()36()()(4)(9)H s s R s s s Φ==++令s j ω=,则系统的频率特性为()36()()(4)(9)H j j R j j j ωωωωωΦ==++5-7 已知系统开环传递函数为)1s T (s )1s T (K )s (G 12++-=;(K、T1、T2>0)当取ω=1时, o180)j (G -=ω∠,|G(jω)|=0.5。
当输入为单位速度信号时,系统的稳态误差为0.1,试写出系统开环频率特性表达式G(jω)。
分析:根据系统幅频和相频特性的表达式,代入已知条件,即可确定相应参数。
解: 由题意知:()G j ω=21()90arctan arctan G j T T ωωω∠=---因为该系统为Ⅰ型系统,且输入为单位速度信号时,系统的稳态误差为0.1,即1()lim ()0.1ss s e E s K→∞===所以:10K =当1ω=时,(1)0.5G j ==21(1)90arctan arctan 180G j T T ∠=---=-由上两式可求得1220,0.05T T ==,因此10(0.051)()(201)j G j j j ωωωω-+=+5-14 已知下列系统开环传递函数(参数K 、T 、T i>0,i=1,2,…,6)(1))1s T )(1s T )(1s T (K)s (G 321+++=(2))1s T )(1s T (s K)s (G 21++=(3))1Ts (s K )s (G 2+=(4))1s T (s )1s T (K )s (G 221++=(5)3s K )s (G =(6)321s)1s T )(1s T (K )s (G ++=(7))1s T )(1s T )(1s T )(1s T (s )1s T )(1s T (K )s (G 432165++++++=(8)1Ts K)s (G -=(9)1Ts K )s (G +--=(10))1Ts (s K)s (G -=其系统开环幅相曲线分别如图5-6(1)~(10)所示,试根据奈氏判据判定各系统的闭环稳定性,若系统闭环不稳定,确定其s 右半平面的闭环极点数。
《自动控制原理》课后习题答案(5章)5.1 系统的结构图如图5-68所示。
试依据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出ss c 和稳态误差ss e 。
⑴()t t r 2sin =⑵()()()︒︒--+=452cos 230sin t t t r图5-1解 系统的传递函数:()()()21+==Φs s R s C s ()()()21++==Φs s s R s E s e 幅频特性及相频特性:()()2,2122ωωωωarctgj j -=Φ+=Φ()()2,21222ωωωωωωarctgarctg j e e -=Φ++=Φ(1)()2,2sin ==ωt t r 稳态输出:()()︒︒-=-+=452sin 221452sin 441t t c ss()︒-≈452sin 354.0t稳态误差:⎪⎭⎫ ⎝⎛-+++=2222sin 2221222arctg arctg t e ss()()︒︒+≈+=43.182sin 791.043.182sin 225t t(2)()()()()()︒︒︒︒+-+=--+=452sin 230sin 452cos 230sin t t t t t r⎪⎪⎭⎫ ⎝⎛+∠+++•-⎪⎪⎭⎫ ⎝⎛+∠+++=︒︒221452sin 221212130sin 211222j t j t c ss ()t t 2sin 225.3sin 55-+=︒ ()t t 2sin 708.05.3sin 447.0-+≈︒⎪⎭⎫ ⎝⎛-++++•-⎪⎭⎫ ⎝⎛-++++=︒︒222452sin 2221221130sin 12112222222arctg arctg t arctg arctg t e ss ()()︒︒︒︒︒︒-++•--++=4543.63452sin 410257.264530sin 510t t ()()︒︒+-+≈43.632sin 582.143.48sin 632.0t t ()()︒︒--+=57.1162sin 582.143.48sin 632.0t t5.2 若系统的单位阶跃响应:()t t e e t h 948.08.11--+-=()0≥t 试求系统的频率特性。
第五章题5-1:试绘制下列开环传递函数的幅相频率特性曲线。
(1) 10G(s)H(s)(s 1)(0.2s 1)=++ (2) 25(s 1)G(s)H(s)(s 3)(s 2s 2)+=+++(3) 100G(s)H(s)(s 1)(s 3)(s 4)=+++ 题5-6:试绘制题5-1各开环传递函数的对数幅频特性渐近线和半对数相频特性曲线。
(1) 2221010122()()(1)(0.21)(1)(10.04)j G j H j j j ωωωωωωωω--==++++实频特性:)04.01)(1(210)(222ωωωω++-=P虚频特性:)04.01)(1(12)(22ωωωω++-=Q 相频特性:()arctan arctan 0.2ϕωωω=-- Nyqist 曲线:起点:0ω=(0)10P ⇒=,(0)0Q =,(0)0ϕ=终点:ω=∞()0P ⇒∞=,()0Q ∞=,()180ϕ∞=- 与虚轴交点:()0P ω= 2.236ω⇒=() 3.73Q ω⇒=- Nyqist 曲线如下:转折频率1:111T ω==;转折频率2:215T ω==对数幅频特性:()20lg ()20lg10L A ωω==-半对数相频特性:()arctan arctan 0.2ϕωωω=-- Bode 图如下:(2) 25(1)()()(3)(22)j G j H j j j ωωωωωω+=+-+ 222222225(3)(2)202(12)(9)[(2)4]j ωωωωωωωω+-+-+=+-+ 实频特性:]4)2)[(9(20)2)(3(5)(2222222ωωωωωωω+-++-+=P 虚频特性:]4)2)[(9()21(10)(22222ωωωωωω+-++-=Q相频特性:2()arctan arctan arctan 310.5ωωϕωωω=--- Nyqist 曲线:起点:0ω=5(0)6P ⇒=,(0)0Q =,(0)0ϕ=终点:ω=∞()0P ⇒∞=,()0Q ∞=,()180ϕ∞=-与虚轴交点:()0P ω= 2.09ω⇒=()0.66Q ω⇒=- Nyqist 曲线如下:225(1)0.83(1)()()(3)(22)(0.331)[(0.7)1]j j G j H j j j j j j ωωωωωωωωωω++==+-++++ 转折频率1:11 1.414T ω==;转折频率2:213T ω==对数幅频特性:5()20lg ()20lg 6L A ωω==+半对数相频特性:2()arctan arctanarctan310.5ωωϕωωω=---Bode 图如下:(3) 23222100100[128(19)]()()(1)(3)(4)(1)(3)(4)j G j H j j j j ωωωωωωωωωωω-+-==++++++实频特性:)4)(3)(1()812(100)(2222ωωωωω+++-=P虚频特性:)4)(3)(1()19(100)(2223ωωωωωω+++-=Q 相频特性:()arctan arctan 0.33arctan 0.25ϕωωωω=--- Nyqist 曲线:起点:0ω=(0)8.33P ⇒=,(0)0Q =,(0)0ϕ= 终点:ω=∞()0P ⇒∞=,()0Q ∞=,()270ϕ∞=- 与虚轴交点:()0P ω= 1.22ω⇒=() 4.77Q ω⇒=- 与实轴交点:()0Q ω= 4.36ω⇒=()0.71P ω⇒=- Nyqist 曲线如下:8.33()()(1)(0.331)(0.251)G j H j j j j ωωωωω=+++转折频率1:111T ω==;转折频率2:213T ω==;转折频率3:314T ω==对数幅频特性:()20lg ()18.4L A ωω==-半对数相频特性:()arctan arctan 0.33arctan 0.25ϕωωωω=--- Bode 图如下:题5-2:已知某一控制系统的单位阶跃响应为4t 9t c(t)1 1.8e 0.8e --=-+试求该系统的开环频率特性。
四 根轨迹分析法2-4-1 【解】:题2-4-1解图2-4-2 设负反馈系统的开环传递函数分别如下: (1))1)(5.0)(2.0()(+++=s s s Ks G (2))12()1()(++=s s s K s G(3))52()2()(2+++=s s s K s G (4))136)(5)(1()(2++++=s s s s Ks G试绘制K 由+∞→0变化的闭环根轨迹图。
【解】:(1)系统有三个开环极点 1,5.0,2.0321-=--=--=-p p p 。
① 0,3==m n ,有三条根轨迹,均趋于无穷远。
② 实轴上的根轨迹在区间]][2.0,5.01,(----∞。
③ 渐近线 ()()2,1,0180,6031801257.0315.02.0=︒︒±=︒⋅+=-=---=-k k θσ ④ 分离点。
方法一 由0)()()()(='-'s Q s P s Q s P 得33.0,8.008.04.332,12--=⇒=++s s s8.01-=s 不在根轨迹上,舍去。
分离点为33.0-。
分离点处K 值为 014.0)()(33.0=-=-=s s P s Q K方法二 特征方程为:01.08.07.123=++++K s s s重合点处特征方程:0)2()2()()(22232=+++++=++b a s a ab s b a s b s a s 令各项系数对应相等求出重合点坐标和重合点处增益取值。
题2-4-2(1)解图⑤ 根轨迹与虚轴的交点。
系统的特征方程为01.08.07.1)(23=++++=K s s s s D方法一 令ωj s +,得⎪⎩⎪⎨⎧=±=⇒⎪⎩⎪⎨⎧=++-=+-⇒=+++--26.18.001.07.108.001.08.07.12323K K K j j ωωωωωωω 方法二 将特征方程列劳斯表为Ks K s Ks s ++-+1.07.11.08.01.07.18.010123令1s 行等于0,得26.1=K 。
第五章一、单项选择题1-5:D 、B 、D 、A 、B 6-10:B 、D 、C 、A 、C 11-13:D 、A 、B二、分析计算题5-1解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sCR sC R R R s U s U r c ττ ωωτωωωωω11121212121)1()()()(jT j K C R R j R R C R R j R j U j U j G r c a ++=+++==(b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sCR s U s U r c )(1111)()(2122222212ττ ωωτωωωωω2221211)(11)()()(jT j C R R j C R j j U j U j G r c b ++=+++==5-2解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图 频率特性:2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-= 系统误差传递函数: ,21)(11)(++=+=Φs s s G s e则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时,2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω)452sin(35.0)2sin()2(-=-Φ=t t j r c m ss ϕ )4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m s ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m s ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-4解 ()()()12G j K j K e j ==-+ωωπω=→∞00,()G j ω→∞∞=,()G j 0ϕωπ()=-2幅频特性如图解5-4(a)。
第五章 频率响应法习题及解答5-1 设系统开环传递函数为1)(+=Ts K s G今测得其频率响应,当ω=1rad/s 时,幅频2/12)(=j G ,相频︒-=45)(j ϕ。
试问放大系数K 及时间常数T 各为多少? 解:已知系统开环传递函数()1K G s Ts =+则频率特性:()1K G j Tj ωω=+幅频特性:()G j ω=相频特性:()arctan T ϕωω=-当1/rad s ω=时,()G j ==()arctan 45j T ϕ=-=-则有12K =,1T =。
5-2 设单位反馈系统的开环传递函数为11)(+=s s G当闭环系统作用有以下输入信号时,试求系统的稳态输出。
(1) t t r sin )(= (2))2cos(2)(t t r =(3) )2cos(2sin )(t t t r -=解:系统闭环传递函数为:1()2s s φ=+频率特性:2212()244j j j ωφωωωω-==++++幅频特性:()j φω=相频特性:()arctan()2ωϕω=- (1) 当()sin r t t =时,则1ω=,11R =则 1()0.45j ωφω===,1(1)arctan()26.52j ϕ=-=-[]1()(1)sin (1)0.45sin(26.5)s C t R j t j t φϕ=⋅+=-(2) 当()2cos(2)r t t =时,则2ω=,22R =则1(2)0.35j ωφ===,2(2)arctan()452j ϕ=-=-[]2()(2)cos 2(2)0.7cos(245)s C t R j t j t φϕ=⋅+=-(3) 当()sin 2cos 2r t t t =-时,[][]12()(1)sin (1)(2)cos 2(2)s C t R j t j R j t j φϕφϕ=+-+0.45sin(26.5)0.7cos(245)t t =---5-3 若系统单位阶跃响应为t t e e t h 948.08.11)(--+-=0≥t试求系统的频率特性。
第五章习题与解答5-1 试求题5-1图(a)、(b)网络的频率特性。
u rR 1u cR 2CCR 2R 1u ru c(a) (b)题5-1图 R-C 网络解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sCR sC R R R s U s U r c ττ ωωτωωωωω11121212121)1()()()(jT j K C R R j R R C R R j R j U j U j G r c a ++=+++==(b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sC R s U s U r c )(1111)()(2122222212ττ ωωτωωωωω2221211)(11)()()(jT j C R R j C R j j U j U j G r c b ++=+++==5-2 某系统结构图如题5-2图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 和稳态误差)(t e s (1) t t r 2sin )(=(2) )452cos(2)30sin()(︒--︒+=t t t r题5-2图 反馈控制系统结构图解 系统闭环传递函数为: 21)(+=Φs s 频率特性: 2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时, 2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω )452sin(35.0)2sin()2(-=-Φ=t t j r c m ss ϕ)4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ(2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ )]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m ss ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m ss ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-3 若系统单位阶跃响应h t e e t tt()..=-+≥--11808049试求系统频率特性。
第5章频率特性法教材习题同步解析一放大器的传递函数为:G (s )=1+Ts K测得其频率响应,当ω=1rad/s 时,稳态输出与输入信号的幅值比为12/2,稳态输出与输入信号的相位差为-π/4。
求放大系数K 及时间常数T 。
解:系统稳态输出与输入信号的幅值比为A ==222172K T ω=+ 稳态输出与输入信号的相位差arctan 45T ϕω=-=-︒,即1T ω=当ω=1rad/s 时,联立以上方程得T =1,K =12放大器的传递函数为:G (s )=121s +已知单位负反馈系统的开环传递函数为5()1K G s s =+ 根据频率特性的物理意义,求闭环输入信号分别为以下信号时闭环系统的稳态输出。
(1)r (t )=sin (t +30°); (2)r (t )=2cos (2t -45°);(3)r (t )= sin (t +15°)-2cos (2t -45°); 解:该系统的闭环传递函数为65)(+=Φs s 闭环系统的幅频特性为365)(2+=ωωA闭环系统的相频特性为6arctan )(ωωϕ-=(1)输入信号的频率为1ω=,因此有37375)(=ωA ,()9.46ϕω︒=- 系统的稳态输出537()sin(20.54)37ss c t t ︒=+ (2)输入信号的频率为2ω=,因此有10()A ω=,()18.43ϕω︒=- 系统的稳态输出10()cos(263.43)2ss c t t ︒=- (3)由题(1)和题(2)有对于输入分量1:sin (t +15°),系统的稳态输出如下5371()sin( 5.54)37ss c t t ︒=+ 对于输入分量2:-2cos (2t -45°),系统的稳态输出为102()cos(263.43)ss c t t ︒=-- 根据线性系统的叠加定理,系统总的稳态输出为)4363.632cos(210)537.5sin(37375)(︒︒--+=t t t c ss绘出下列各传递函数对应的幅相频率特性与对数频率特性。
(1) 11.010)(±=s s G (2) G (s )=101) (3) )2(4)(+=s s s G(4) )2)(1(4)(++=s s s G (5))02.0(2.0)(++=s s s s G(6))1)(1(10)(2+++=s s s s G (7)1)(2.0+=-s e s G 解: (1)11.010)(±=s s G幅相频率特性 开环系统110()0.11G s s =-是一个不稳定的惯性环节,频率特性为110()10.1G j j ωω=-+相频特性为1()(180arctan 0.1)arctan 0.1180ϕωωω=-︒-=-︒相频特性从-180连续变化至-90。
可以判断开环奈氏曲线起点为(-10,j0)点,随的增加,A 1()逐渐减小至0,而1()逐渐增加至-90°,绘制出系统开环频率特性G 1(j )的轨迹,如图(a )虚线所示,是一个直径为10的半圆。
而开环系统210()0.11G s s =+则是一个典型的惯性环节,其幅相频率特性G 2(j )如图(a )实线所示。
对数频率特性(a) 幅相频率特性Im-10 Re →0→0→(b) 对数频率特性图 题(1)系统频率特性10/ (rad ·sL ()/(dB ) 20()/-90 -45 0 0 [-20]/ (rad ·s101001[0]-1801351()G j ω2()G j ω2()1()开环系统110()0.11G s s =-与210()0.11G s s =+的对数幅频特性完全相同,仅对数相频特性不同,如图(b )所示。
(2)G (s )=101)幅相频率特性开环系统G 1(s )=10-1)的频率特性为1()10(0.11)G j j ωω=-,其相频特性为1()180arctan 0.1ϕωω=︒-相频特性从180连续变化至90。
其开环频率特性G 1(j )的轨迹,如图(a )虚线所示。
而开环系统G 2(s )=10+1) 则是一个典型的一阶微分环节,其幅相频率特性G 2(j )如图(a )实线所示。
对数频率特性同题(1),二者的对数幅频特性完全相同,仅对数相频特性不同,如图(b )所示。
(3))2(4)(+=s s s G系统开环传递函数的时间常数表达式为2()(0.51)G s s s =+幅相频率特性1)系统为Ⅰ型系统,A (0)=∞,(0)=-90º,低频特性始于平行于负虚轴的无穷远处。
低频渐近线如(a) 幅相频率特性Im-10Re→0 →0 →(b) 对数频率特性图 题(2)系统频率特性10/ (rad ·sL ()/(dB ) 20()/90 45 00 [-20]/ (rad ·s10 1001 [0]180135 1()G j ω2()G j ω2()1()→下确定:将频率特性表达式分母有理化为22222(10.5)2()(0.51)(10.5)(10.5)(10.25)1210.25(10.25)j j j G j j j j j j ωωωωωωωωωωωωω----===++-+-=-++则低频渐近线为20001lim Re[()]lim ()lim110.25x G j R ωωωσωωω+++→→→-====-+ 同时可知,频率特性实部与虚部均<0,故曲线只在第三象限。
2)n -m =2,则()=-180,幅相特性沿负实轴进入坐标原点。
3)此系统无开环零点,因此在由0增大到过程中,特性的相位单调连续减小,从-90º连续变化到-180。
奈氏曲线是平滑的曲线,从低频段开始幅值逐渐减小,沿顺时针方向连续变化最后终于原点。
系统的幅相频率特性G (j )见图(a )。
对数频率特性1)可知系统包含有放大、积分、一阶惯性环节,转折频率为T=2 rad ·s -1。
低频段斜率为-20dB/dec ,低频段表达式为L (ω)=20lg2-20lg ω,并通过点L (2)= 0dB 。
经过转折频率T后斜率为-40dB/dec 。
2)系统的相频特性为积分环节(-90º)与惯性环节(0º ~-90º)相频特性的叠加,为()90arctan 0.5ϕωω=-︒-转折频率处相位为(2)=-135°,对数相频特性曲线对应于该点斜对称。
(a) 幅相频率特性Im-1Re→0→(b) 对数频率特性图 题(3)系统频率特性/ (rad ·sL ()/(dB )20()/-90[-20]/ (rad ·s1102-180-135 ()G j ω[-40]110绘制开环伯德图L ()、(),如图(b )所示。
(4))2)(1(4)(++=s s s G系统开环传递函数的时间常数表达式为2()(1)(0.51)G s s s =++幅相频率特性1)系统为0型系统,A (0)=2,(0)= 0º,开环奈氏曲线起点为(2,j0)点;n -m =2,则()=-180。
随的增加,A ()逐渐单调连续减小至0,而()滞后逐渐增加至-180°,幅相特性沿负实轴进入坐标原点。
2)将频率特性表达式分母有理化为222222222(1)(10.5)()(1)(10.5)(1)(10.25)2(10.5)3(1)(10.25)(1)(10.25)j j G j j j jωωωωωωωωωωωωω--==++++-=-++++频率特性虚部均<0,故曲线在第三、第四象限。
3)相位有()=-90,因此与虚轴的交点为22222(10.5)Re[()]0(1)(10.25)2/,Im[()]0.94G j rad s G j ωωωωωωω=-==++==此系统无开环零点,因此在由0增大到过程中,奈氏曲线是平滑的曲线,G (j )见图(a )。
对数频率特性(a) 幅相频率特性Im-Re→0→(b) 对数频率特性图 题(4)系统频率特性2 / (rad·sL ()/(dB )20 ()/-18090 0 0[-20]/ (rad·s110[0]()G j ω62 [-40]1)可知系统包含有放大、两个一阶惯性环节,转折频率分别为1=1 rad·s -1、2=2 rad·s -1。
系统为0型,低频段斜率为0dB/dec ,低频段表达式为L (ω)=20lg2=6dB 。
经过转折频率1、2后斜率分别为-20、-40dB/dec 。
2)系统的相频特性是两个惯性环节相频特性的叠加,为()arctan arctan 0.5ϕωωω=--两个转折频率处相位分别为(1)=-72°,(2)=-109°。
绘制开环伯德图L ()、(),如图(b )所示。
(5))02.0(2.0)(++=s s s s G系统开环传递函数的时间常数表达式为0.2(51)10(51)()0.02(501)(501)s s G s s s s s ++==++幅相频率特性1)系统为Ⅰ型系统,A (0)=∞,(0)=-90º,低频特性始于平行于负虚轴的无穷远处。
低频渐近线如下确定:22210(51)10(51)(150)45010(2501)()(501)(150)(150)12500(12500)j j j j j G j j j j j j ωωωωωωωωωωωωω+-+-+===--++-++(a) 幅相频率特性(b) 对数频率特性图 题(5)系统频率特性/ (rad ·sL ()/(dB )20()/-180[-20]/ (rad ·s-90 [-40]4060 [-20]-135 ImRe→0→()G j ω-450低频渐近线为2000450lim Re[()]lim ()lim 45012500x G j R ωωωσωωω+++→→→===-=-+同时可知,频率特性实部、虚部均<0,故曲线只在第三象限。
2)n -m =1,则()=-90,幅相特性沿负虚轴进入坐标原点。
3)此系统有开环零点,因此在由0增大到过程中,特性曲线有凹凸,最后终于原点。
系统的幅相频率特性G (j )见图(a )。
对数频率特性1)系统转折频率分别为1= rad·s -1、2= rad·s -1。
系统为I 型,低频段斜率为-20dB/dec ,低频段表达式为L (ω)=20lg10-20lg ω,因此L =54dB 。