自动控制原理作业参考答案(第五章
- 格式:doc
- 大小:297.50 KB
- 文档页数:8
第五章习题与解答5-1试求题5-1图(a)、(b)网络的频率特性。
u r R1u cR2CR2R1u r u c(a) (b)题5-1图R-C网络解(a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(RRCRRTCRRRRKsTsKsCRsCRRRsUsUrcττωωτωωωωω11121212121)1()()()(jTjKCRRjRRCRRjRjUjUjGrca++=+++==(b)依图:⎩⎨⎧+==++=+++=CRRTCRsTssCRRsCRsUsUrc)(1111)()(2122222212ττωωτωωωωω2221211)(11)()()(jTjCRRjCRjjUjUjGrcb++=+++==5-2某系统结构图如题5-2图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(tcs和稳态误差)(tes(1)tt r2sin)(=(2))452cos(2)30sin()(︒--︒+=ttt r题5-2图反馈控制系统结构图解 系统闭环传递函数为: 21)(+=Φs s 频率特性:2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时,2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω )452sin(35.0)2sin()2(-=-Φ=t t j r c m ss ϕ)4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ(2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ )]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m ss ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m ss ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-3 若系统单位阶跃响应h t e e t tt ()..=-+≥--11808049试求系统频率特性。
5-1 5()0.251G s s =+5()0.251G j j ωω=+()A ω=()arctan(0.25)ϕωω=-输入 ()5cos(430)5sin(460) =4r t t t ω=-︒=+︒(4)A ==(4)arctan(0.25*4)45ϕ=-=-︒系统的稳态输出为()(4)*5cos[430(4)]3045)17.68cos(475)17.68sin(415)c t A t t t t ϕ=-︒+=-︒-︒=-︒=+︒ sin cos(90)cos(90)cos(270)αααα=︒-=-︒=+︒或者,()(4)*5sin[460(4)]6045) 17.68sin(415)c t A t t t ϕ=+︒+=+︒-︒=+︒所以,对于cos 信号输入下的稳态输出计算规律与sin 信号作用下计算相同。
5-3(2)1()(1)(12)G s s s =++ 1()(1)(12)G j j j ωωω=++()A ω=()arctan arctan 2ϕωωω=--起点:0ω= (0)1;(0)0A ϕ==︒ 位于正实轴上。
终点:ω→∞ ()0;()180A ϕ∞=∞=-︒+∆ 从第三象限趋于原点因此,,Nyquist 曲线与虚轴有交点,并且满足:()arctan arctan 290ϕωωω=--=-︒ arctan arctan 290ωω+=︒所以有,1/(2)ωω= 21/2ω=()0.473A ω=== 因此,与虚轴的交点为(0,-j0.47)()ω(3)1()(1)(12)G s s s s =++ 1()(1)(12)G j j j j ωωωω=++()A ω=()90arctan arctan 2ϕωωω=-︒--起点:0ω= (0);(0)90A ϕ=∞=︒∆-- 位于负虚轴(左侧)无穷远方向终点:ω→∞ ()0;()270A ϕ∞=∞=-︒+∆ 从第二象限趋于原点因此,,Nyquist 曲线与实轴有交点,并且满足:()90arctan arctan 2180ϕωωω=-︒--=-︒ arctan arctan 290ωω+=︒1/(2)ωω= 21/2ω=2()0.673A ω===与实轴的交点为(-0.67,-j0))ω(4)21()(1)(12)G s s s s =++ 21()()(1)(12)G j j j j ωωωω=++()A ω=()180arctan arctan 2ϕωωω=-︒--起点:0ω= (0);(0)180A ϕ=∞=︒∆-- 位于负实轴(上侧)无穷远方向终点:ω→∞ ()0;()360A ϕ∞=∞=-︒+∆ 从第一象限趋于原点因此,,Nyquist 曲线与虚轴有交点,并且满足:()180arctan arctan 2270ϕωωω=-︒--=-︒ arctan arctan 290ωω+=︒1/(2)ωω= 21/2ω=()0.94A ω===与虚轴的交点为(0,j0.94))ω=5-4(2)10.5ω=,21ω=,1K =,0ν=(3)10.5ω=,21ω=,1K =,1ν=低频段直线(延长线)与0db 线交点的频率为:1/cK νω'=。
第五章 频率特性法习题5-1 单位反馈控制系统的开环传递函数110)(+=s s G ,当下列信号作用在系统输入端时,求系统的稳态输出。
(1) )30sin()(︒+=t t r (2) )452cos(2)(︒-=t t r (3) )452cos(2)30sin()(︒--︒+=t t t r 解:本题注意事项:一定要用闭环传递函数求模求角,计算角度一定要看象限 (1)1110)(+=Φs s ,1110)(+=Φωωj j , ︒-∠=-∠=+=Φ-19.5905.0111122101110)1(1tg j j )8.24sin(905.0)19.530sin(905.0)(︒+=︒-︒+=t t t c ss(2)︒-∠=+=Φ3.10894.011210)2(j j)3.552cos(788.1)(︒-=t t c ss(3))3.552cos(788.1)8.24sin(905.0︒--︒+=t t c ss5-2 设控制系统的开环传递函数如下,试绘制各系统的开环幅相频率特性曲线和开环对数频率特性曲线。
(1))15)(5(750)(++=s s s s G (2) )1008()1(1000)(2+++=s s s s s G (3) 13110)(++=s s s G解:(1)起点s 10,︒-∞∠90;终点3750s ,︒-∠2700;交点5.0)75(-=j G (2)起点s 10,︒-∞∠90;终点21000s,︒-∠1800;交点)100927()1(1000)(232-++-=s s s s s s G ,)]92()1007[()1(1000)(222ωωωωωω--++=j j j G ,03.13)92(j j G -= (3)起点1;终点,3.33,与坐标轴无交点;曲线在第一象限(1)(2)5-4 最小相位系统对数幅频特性曲线如图所示,试写出他们的传递函数。
解: (a)11.010)(+=s s G (b)105.01.0)(+=s s s G (c))101.0)(1100(100)(++=s s s s G(d))101.0)(11.0)(1(19.251)(+++=s s s s G (书后答案有误)5-5 试由下述幅值和相角计算公式确定最小相位系统的开环传递函数。
五 频域分析法2-5-1 系统单位阶跃输入下的输出)0(8.08.11)(94≥+-=--t e e t c tt ,求系统的频率特性表达式。
【解】: 98.048.11)]([L )(1+++-==-s s s t c s C 闭环传递函数)9)(4(36198.048.11)()()(++=+++-==s s ss s s s R s C s G )9tg 4(tg 2211811636)9)(4(36)(ωωωωωωω--+-+⨯+=++=j ej j j G2-5-2系统时,系统的稳态输出(1))30sin()(0+=t t r ; (2))452cos(2)(0+=t t r ;(3))452cos(2)30sin()(00--+=t t t r 。
【解】:求系统闭环传递函数5tg 21254)5(4)(54)(1)()()()(14)(ωωωω--+=+=+=+==+=j B K K B K ej j G s s G s G s R s C s G s s G根据频率特性的定义,以及线性系统的迭加性求解如下:(1)︒===30,1,11θωr A︒--====-3.1151tg )1(178.0264)1()(1j j j B e eeA j G θωω[])7.18sin(78.0)1(sin )1()sin()(12︒+=++=+=t t A A t A t c r c s θθθ(2)︒===45,2,21θωr A︒--==+=-8.2152tg 274.02544)(1j j B e ej G ωω)2.232cos(48.1)(︒+=t t c s(3))8.662cos(48.1)7.18sin(78.0)(︒--︒+=t t t c s2-5-3 试求图2-5-3所示网络的频率特性,并绘制其幅相频率特性曲线。
【解】:(1)网络的频率特性1)(111)(212212+++=+++=ωωωωωC R R j C jR C j R R C j R j G(2)绘制频率特性曲线)tg (tg 22212121111)(1)(11)(ωωωωωωωT T j eT T jT jT j G ---++=++= 其中1221221,)(,T T C R R T C R T >+==。
《自动控制原理》课后习题答案(5章)5.1 系统的结构图如图5-68所示。
试依据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出ss c 和稳态误差ss e 。
⑴()t t r 2sin =⑵()()()︒︒--+=452cos 230sin t t t r图5-1解 系统的传递函数:()()()21+==Φs s R s C s ()()()21++==Φs s s R s E s e 幅频特性及相频特性:()()2,2122ωωωωarctgj j -=Φ+=Φ()()2,21222ωωωωωωarctgarctg j e e -=Φ++=Φ(1)()2,2sin ==ωt t r 稳态输出:()()︒︒-=-+=452sin 221452sin 441t t c ss()︒-≈452sin 354.0t稳态误差:⎪⎭⎫ ⎝⎛-+++=2222sin 2221222arctg arctg t e ss()()︒︒+≈+=43.182sin 791.043.182sin 225t t(2)()()()()()︒︒︒︒+-+=--+=452sin 230sin 452cos 230sin t t t t t r⎪⎪⎭⎫ ⎝⎛+∠+++•-⎪⎪⎭⎫ ⎝⎛+∠+++=︒︒221452sin 221212130sin 211222j t j t c ss ()t t 2sin 225.3sin 55-+=︒ ()t t 2sin 708.05.3sin 447.0-+≈︒⎪⎭⎫ ⎝⎛-++++•-⎪⎭⎫ ⎝⎛-++++=︒︒222452sin 2221221130sin 12112222222arctg arctg t arctg arctg t e ss ()()︒︒︒︒︒︒-++•--++=4543.63452sin 410257.264530sin 510t t ()()︒︒+-+≈43.632sin 582.143.48sin 632.0t t ()()︒︒--+=57.1162sin 582.143.48sin 632.0t t5.2 若系统的单位阶跃响应:()t t e e t h 948.08.11--+-=()0≥t 试求系统的频率特性。
⾃动控制原理课后习题答案第五章第五章5-2 若系统单位阶跃响应为49()1 1.80.8t t h t e e --=-+试确定系统的频率特性。
分析先求出系统传递函数,⽤j ω替换s 即可得到频率特性。
解:从()h t 中可求得:(0)0,(0)0h h '==在零初始条件下,系统输出的拉普拉斯变换()H s 与系统输出的拉普拉斯变换()R s 之间的关系为()()()H s s R s =Φ?即()()()H s s R s Φ= 其中()s Φ为系统的传递函数,⼜1 1.80.836()[()]49(4)(9)H s L h t s s s s s s ==-+=++++1()[()]R s L r t s == 则()36()()(4)(9)H s s R s s s Φ==++ 令s j ω=,则系统的频率特性为()36()()(4)(9)H j j R j j j ωωωωωΦ==++5-7 已知系统开环传递函数为)1s T (s )1s T (K )s (G 12++-=;(K、T1、T2>0)当取ω=1时, o 180)j (G -=ω∠,|G(jω)|=0.5。
当输⼊为单位速度信号时,系统的稳态误差为0.1,试写出系统开环频率特性表达式G(jω)。
分析:根据系统幅频和相频特性的表达式,代⼊已知条件,即可确定相应参数。
解:由题意知:()G j ω= 021()90arctan arctan G j T T ωωω∠=---因为该系统为Ⅰ型系统,且输⼊为单位速度信号时,系统的稳态误差为0.1,即 01()lim ()0.1ss s e E s K →∞===所以:10K = 当1ω=时,(1)0.5G j ==0021(1)90arctan arctan 180G j T T ∠=---=-由上两式可求得1220,0.05T T ==,因此10(0.051)()(201)j G j j j ωωωω-+=+5-14 已知下列系统开环传递函数(参数K 、T 、T2,…,6) (1) )1s T )(1s T )(1s T (K )s (G 321+++=(2))1s T )(1s T (s K )s (G 21++=(3))1Ts (s K )s (G 2+=(4))1s T (s )1s T (K )s (G 221++=(5)3s K)s (G = (6)321s )1s T )(1s T (K )s (G ++=(7))1s T )(1s T )(1s T )(1s T (s )1s T )(1s T (K )s (G 432165++++++= (8)1Ts K)s (G -=(9)1Ts K )s (G +--= (10))1Ts (s K )s (G -= 其系统开环幅相曲线分别如图5-6(1)~(10)所⽰,试根据奈⽒判据判定各系统的闭环稳定性,若系统闭环不稳定,确定其s 右半平⾯的闭环极点数。
第五章一、单项选择题1-5:D 、B 、D 、A 、B 6-10:B 、D 、C 、A 、C 11-13:D 、A 、B二、分析计算题5-1解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sCR sC R R R s U s U r c ττ ωωτωωωωω11121212121)1()()()(jT j K C R R j R R C R R j R j U j U j G r c a ++=+++==(b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sCR s U s U r c )(1111)()(2122222212ττ ωωτωωωωω2221211)(11)()()(jT j C R R j C R j j U j U j G r c b ++=+++==5-2解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图 频率特性:2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-= 系统误差传递函数: ,21)(11)(++=+=Φs s s G s e则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时,2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω)452sin(35.0)2sin()2(-=-Φ=t t j r c m ss ϕ )4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m s ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m s ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-4解 ()()()12G j K j K e j ==-+ωωπω=→∞00,()G j ω→∞∞=,()G j 0ϕωπ()=-2幅频特性如图解5-4(a)。
108第5章频率特性法教材习题同步解析5.1 一放大器的传递函数为:G (s )=1+Ts K测得其频率响应,当ω=1rad/s 时,稳态输出与输入信号的幅值比为12/2,稳态输出与输入信号的相位差为-π/4。
求放大系数K 及时间常数T 。
解:系统稳态输出与输入信号的幅值比为A ==222172K T ω=+ 稳态输出与输入信号的相位差arctan 45T ϕω=-=-︒,即1T ω=当ω=1rad/s 时,联立以上方程得T =1,K =12放大器的传递函数为:G (s )=121s +5.2 已知单位负反馈系统的开环传递函数为5()1K G s s =+ 根据频率特性的物理意义,求闭环输入信号分别为以下信号时闭环系统的稳态输出。
(1)r (t )=sin (t +30°); (2)r (t )=2cos (2t -45°);(3)r (t )= sin (t +15°)-2cos (2t -45°); 解:该系统的闭环传递函数为65)(+=Φs s 闭环系统的幅频特性为109365)(2+=ωωA闭环系统的相频特性为6arctan )(ωωϕ-=(1)输入信号的频率为1ω=,因此有37375)(=ωA ,()9.46ϕω︒=- 系统的稳态输出()20.54)37ss c t t ︒=+ (2)输入信号的频率为2ω=,因此有()A ω=,()18.43ϕω︒=- 系统的稳态输出()cos(263.43)2ss c t t ︒=- (3)由题(1)和题(2)有对于输入分量1:sin (t +15°),系统的稳态输出如下1() 5.54)37ss c t t ︒=+ 对于输入分量2:-2cos (2t -45°),系统的稳态输出为2()63.43)ss c t t ︒=- 根据线性系统的叠加定理,系统总的稳态输出为)4363.632cos(210)537.5sin(37375)(︒︒--+=t t t c ss5.3 绘出下列各传递函数对应的幅相频率特性与对数频率特性。
第五章题5-1:试绘制下列开环传递函数的幅相频率特性曲线。
(1) 10G(s)H(s)(s 1)(0.2s 1)=++ (2) 25(s 1)G(s)H(s)(s 3)(s 2s 2)+=+++(3) 100G(s)H(s)(s 1)(s 3)(s 4)=+++ 题5-6:试绘制题5-1各开环传递函数的对数幅频特性渐近线和半对数相频特性曲线。
(1) 2221010122()()(1)(0.21)(1)(10.04)j G j H j j j ωωωωωωωω--==++++实频特性:)04.01)(1(210)(222ωωωω++-=P虚频特性:)04.01)(1(12)(22ωωωω++-=Q 相频特性:()arctan arctan 0.2ϕωωω=-- Nyqist 曲线:起点:0ω=(0)10P ⇒=,(0)0Q =,(0)0ϕ=终点:ω=∞()0P ⇒∞=,()0Q ∞=,()180ϕ∞=- 与虚轴交点:()0P ω= 2.236ω⇒=() 3.73Q ω⇒=- Nyqist 曲线如下:转折频率1:111T ω==;转折频率2:215T ω==对数幅频特性:()20lg ()20lg10L A ωω==-半对数相频特性:()arctan arctan 0.2ϕωωω=-- Bode 图如下:(2) 25(1)()()(3)(22)j G j H j j j ωωωωωω+=+-+ 222222225(3)(2)202(12)(9)[(2)4]j ωωωωωωωω+-+-+=+-+ 实频特性:]4)2)[(9(20)2)(3(5)(2222222ωωωωωωω+-++-+=P 虚频特性:]4)2)[(9()21(10)(22222ωωωωωω+-++-=Q相频特性:2()arctan arctan arctan 310.5ωωϕωωω=--- Nyqist 曲线:起点:0ω=5(0)6P ⇒=,(0)0Q =,(0)0ϕ=终点:ω=∞()0P ⇒∞=,()0Q ∞=,()180ϕ∞=-与虚轴交点:()0P ω= 2.09ω⇒=()0.66Q ω⇒=- Nyqist 曲线如下:225(1)0.83(1)()()(3)(22)(0.331)[(0.7)1]j j G j H j j j j j j ωωωωωωωωωω++==+-++++ 转折频率1:11 1.414T ω==;转折频率2:213T ω==对数幅频特性:5()20lg ()20lg 6L A ωω==+半对数相频特性:2()arctan arctanarctan310.5ωωϕωωω=---Bode 图如下:(3) 23222100100[128(19)]()()(1)(3)(4)(1)(3)(4)j G j H j j j j ωωωωωωωωωωω-+-==++++++实频特性:)4)(3)(1()812(100)(2222ωωωωω+++-=P虚频特性:)4)(3)(1()19(100)(2223ωωωωωω+++-=Q 相频特性:()arctan arctan 0.33arctan 0.25ϕωωωω=--- Nyqist 曲线:起点:0ω=(0)8.33P ⇒=,(0)0Q =,(0)0ϕ= 终点:ω=∞()0P ⇒∞=,()0Q ∞=,()270ϕ∞=- 与虚轴交点:()0P ω= 1.22ω⇒=() 4.77Q ω⇒=- 与实轴交点:()0Q ω= 4.36ω⇒=()0.71P ω⇒=- Nyqist 曲线如下:8.33()()(1)(0.331)(0.251)G j H j j j j ωωωωω=+++转折频率1:111T ω==;转折频率2:213T ω==;转折频率3:314T ω==对数幅频特性:()20lg ()18.4L A ωω==-半对数相频特性:()arctan arctan 0.33arctan 0.25ϕωωωω=--- Bode 图如下:题5-2:已知某一控制系统的单位阶跃响应为4t 9t c(t)1 1.8e 0.8e --=-+试求该系统的开环频率特性。
5.1(1))(20)(20)(20)(12)(t r t r t c t c t c+=++ (2)21)10)(2()1(20)(ss s s s C ∙+++==s s s s 4.0110275.02125.02+++-++- 所以 c(t)=4.0275.0125.0102++----t e e t t c(0)=0;c(∞)=∞;(3)单位斜坡响应,则r(t)=t所以t t c t c t c2020)(20)(12)(+=++ ,解微分方程加初始条件 解的: 4.04.02)(102++-+=--t e e t c t t c(0)=2, c(∞)=∞; 5.2(1)t t e e t x 35.06.06.3)(---= (2)t e t x 2)(-= (3)tw n n n tw n n n nn n n e w bw a ew bw a t x )1(22)1(222212)1(12)1()(----+----+-+-+----=ξξωξξωξξξωξξξω(4)t a A t a Aa e a a b t x atωωωωωωωcos sin )()(222222+-++++=-5.3(1)y(kT)=)4(1619)3(45)2(T t T t T t -+-+-δδδ+……(2) 由y(-2T)=y(-T)=0;可求得y(0)=0,y(T)=1;则差分方程可改写为y[kT]-y[(k-1)T]+0.5y[(k-2) T]=0;,k=2,3,4….则有0))0()()((5.0))()(()(121=++++----y T y z z Y z T y z Y z z Y2115.015.01)(---+--=zz z z Y =.....125.025.025.05.015431----++++z z z 则y *(t)=0+)5(25.0)4(25.0)3(5.0)2()(T t T t T t T t T t -+-+-+-+-δδδδδ+… (3)y(kT)=k k k k k TT k T T )1(4)1(4)1(4)1(4++---- 5.4开环传递函数G(s)=11)1(+∙--s s e Ts G (z )=)1)(1(11------e z z z z z =111----ez e 因为系统为单位反馈,所以闭环采样系统传递函数为:W (z )=)(1)()()(z GH z G z R z C +==1111111------+--e z e e z e =)21(111-----e z e 当系统为单位阶跃输入时,C (z )=W(z)R(z)= )21(111-----e z e 1-z z =)21(5.015.01-------e z z z z 所以c(kT)=-0.5(1)k +0.5()ke 121-- ,k=0,1,2… 5.5由电路图可得:Ri+y(t)=x(t) ; i=Cdt t dy )( 由上试得出系统传递函数G(s)=11.0+sG(z)=Tez z--1.0 Y(z)=G(z)X(z)= T e z z --1.0T e z z --100=2)(1010T T T e z ze e z z ----+- 所以y(kT)=10(1.0-e )k +10k(1.0-e )k ,k=0,1,2…5.6 解:对于惯性环节,当4t T =时,输出到达稳态输出的98%,所以由题意得4T=60s ,所以环节参数T=15。
5.7已知系统闭环传递函数,求瞬态性能指标,并画出单位阶跃响应曲线(1)29()39W s s s =++解:由2391232n n n ωωξξω=⎧⎧=⎪⎪⇒⎨⎨==⎪⎩⎪⎩3πϕ==,2d ωω==可得:0.806r dt s πϕω-== 1.209p dt s πω==%100%16.3%e σ=⨯=42.67(2)32(5)s ns nt s t s ξωξω==∆===∆=21.1(2)ln %1.50.83(5)ln %N N σσ-==∆=-==∆=(2)210()10100W s s s =++解:221010110()1010010(0.110)10(0.11)10W s s s s s s s ===⋅++++++所以10,0.1K T ==1012n ωξ⎧==⎪⎪⇒⎨⎪==⎪⎩30.2420.363%100%16.3%40.8(2)30.6(5)21.1(2)ln %1.50.83(5)ln %d r d p ds n s nt st se t s t s N N πϕωωπϕωπωσξωξωσσ====-=====⨯===∆===∆=-==∆=-==∆=5.8解:(1)251()1(25)25(1)125G s s s s s ==++++ 11,25K T ==, 2.51,ξ==>过阻尼,5n ω==11.5d ωω= (2) 2.5>21(s),1,441s C T t T s ξ=∴≈===+ 5.9解:由图得%100%33.3%eσ=⨯=,得0.33ξ=由0.1p d t s πω===,得33.3n ω=1110, 2.257,50,0.045KKT K T T ∴==== 11,K K T a a==,所以1222.2,1111,3a K K ===5.10 解: ()()1121258.02525K s K K s K s C t +++=2111 1.4425360.312250.812n t n t K K K K K ωξω=⎧==⎧⎪∴⇒⎨⎨==+=⎪⎩⎩1=ξ为临界阻尼系统, 8.075.4==ns t ω5.11解:(1)加入速度反馈前12212()()K K C s R s Ts s K K =++ 当1240,0.5,0.2,2K K T τ====时,()()C s R s =21005100s s ++100.25n ωξ====41.6(2)31.2(5)s ns nt s t s ξωξω==∆===∆=%100%44.4%e σ=⨯= 加入速度反馈后122212()()(1)K K C s R s Ts K s K K τ=+++ 当1240,0.5,0.2,2K K T τ====时,()()C s R s =210010100s s ++ 2101000.5210n n n ωωξξω⎧==⎧⎪∴⇒⎨⎨==⎪⎩⎩40.8(2)30.6(5)s ns nt s t s ξωξω==∆===∆=%100%16.3%e σ=⨯=(2)为使加入速度反馈后1ξ=1=,即0.511,64ττ+==临界阻尼时,1210n s s ω==-=- 其调节时间24.750.475s t s s ==- 5.12解:系统为Ι型系统,静态误差系数为:,,02np v a K K K ωξ=∞== 设其开环传递函数为20()(2)n n G s s s s ωω=+其误差传递函数为:222012()1()2n E n ns sW s G s s s ξωξωω+==+++ =222214nn s s ξξωω-++……所以20122,,,214n n K K K ωωξξ=∞==-……5.13解:该系统为一型系统,100,0p v a K K K =∞==。
输入信号为二阶,一型系统不能跟踪二阶信号,所以系统稳态误差为无穷大。
5.14已知单位反馈系统的闭环传递函数和在单位阶跃作用下的误差,求阻尼比,无阻尼自然振荡频率和在单位斜坡输入作用下的稳态误差。
解:单位阶跃信号1()R s s=误差响应21()24E s s s =-++ 误差传递函数2()(6)()()68E E s s s W s R s s s +==++设该系统开环传递函数为0()(1)K G s s Ts =+,其中1,22n nK T ωξξω==其误差函数应为22222126()1()268n E n n s s s s W s G s s s s s ξωξωω++===+++++ 所以28,26n n ωξω==所以4n ξω== 004lim ()3v s K s G s →=⋅=134ss v e K == 5.15解:(1)1122()12s s G s s s-+==+ (2)①2110(),()915W s R s s s s==++ 210()()()(915)C s W s R s s s s ==++02()l i m ()3s c s C s →∞=⋅=②系统的开环传递函数为:01()(2)(7)G s s s =++21155(),5,1591510n W s s s ωξ=⋅==++ 为过阻尼系统,因此不会出现峰值和超调。
01()(2)(7)G s s s =++ , 为0型系统。
()()()()()328721110lim 110limlim lim 00000=+++=+⋅===→→→→s s s G s s s sE t e e s s s t ss。