定态微扰理论回顾
- 格式:ppt
- 大小:906.50 KB
- 文档页数:22
§5.1 非简并定态微扰理论重点:微扰的条件,微扰能量二级修正的求解(一)基本方程假设体系的哈密顿算符H不显含时间,所以体系有确定的能量,而且可分为两部分:一部分是,表示体系未受微扰的哈密顿算符;另一部分是,是加于上的微扰(5.1-1)以和表示的本征函数与相应的本征值,对未受扰的体系,薛定谔方程(5.1-2)的解是已知的,对于被微扰的体系有(5.1-3a)即(5.1-3b)(5.1-4)并在最后运算结果令,利用(5.1-4),则(5.1-3b )可写成(5.1-5)由于、E n 都和微扰有关,可把它们看作是表征微扰程度参数的函数,将它们展为的幂级数。
(5.1-6)(5.1-7)式中、依次是体系未受微扰时的能量和波函数,称为零级近似能量和零级近似波函数,和是能量和波函数的一级修正,等等。
将(5.1-6),(5.1-7)式代入(5.1-5)式中,得(5.1-8)空虚等式两边同次幂的系数应相等,由此得到下面一系列方程:(5.1-9)(5.1-10)(5.1-11)将省去,为此在(5.1-4)式中令,得出,故可把,把,理解为能量和波函数的一级修正。
(二)一级微扰(1)能量的一级修正为了求,以左乘(5.1-10)式两边,并对整个空间积分(5.1-12)注意是厄密算符,是实数,则上式左边(5.1-13)于是由(5.1-12)式,注意到的正交归一性,得到(5.1-14)即能量的一级修正值等于在态中的平均值。
(2)波函数的一级修正已知,由(5.1-10)式可求得。
为此我们将按的本征函数系展开(5.1-15)在上式中,若决定,便可求得。
为此,将上式代入(5.1-10)式,并注意,得以左乘上式两边后,对整个空间积分,并注意到的正交归一性:得到(5.1-16)令(5.1-17)称为微扰矩阵元,于是由(5.1-16)式可得(5.1-18)代入(5.1-15)式,得(5.1-19)上式求和号上角加撇表示求和时除去m=n的项。
定态微扰在实际问题中,薛定谔方程大多数是不能够精确求解的,因此要借助一些技巧来近似求解,如果我们能够把哈密顿量分解成两部分H? H?o H,并且H?o能够精确求解,且知其能量本征态方程为H o Ej EjEj,能量本征态并不简并,也就是说,不同的本征态对应着不同的能量,没有两个不同的能量本征态对应着相同的能量值,我们可以把H?'看作是对H?o能量本征值和本征态的一种微扰。
设H? E) E n E),E)是H?能量本征态,而E.为相应的本征值。
由于有H?0|EJ E n|Ej,因此H?o的所有的本征态{EJ}构成一组正交完备的基,体系的任何量子态均可以用这一组基来展开。
) n E n), n (.En )。
n由H? E) E n E”),H ?『可知(E n H?o) E n)旳E")(1)F面介绍微扰的思想,我们将的能量本征态E)和能量本征值En进行逐级展开设En)巳)1 |2(2)其中E n;,1,2;,…分别为零级,1级、2级,…E n E n a1 a2・・・・(3)其中E n.a i.a2,...,分别为零级,1级、2级,…将(2) (3)式分别代入(1)式得到(E n H?0 a i a2 ....)(E n) |1)2 ...)H?'(EJ 1 |2)...)(4)并令(4)式的同级相等,注意E n ?是零级,H?'是一级。
规则是两项相乘等于其级相加,例如(E n H?o) En;』E n.分别为零级和1级,而(E n H o) 14 1分别为1级和2级。
于是有方程两边零级相等为:(E n Ro) Enl 0(5)方程两边1级相等为:(E n R o)|1)ajE n) H?' E n)(6)方程两边2级相等为(E n H?o)|2)a1 1)a2 巴)H?'|1)(7)由零级得到本征方程H?o Ej匕匕)用:;En左乘方程(6)两边得到(匕|侃H?o) 1(E g|E n)(巳|『|巳)这是能量的一级修正值,所以E'在一级修正下为用《E m (m n)左乘方程(6)两边得到求和符号中’的撇是表示不含m n。
简并和非简并定态微扰统一理论与能量二级
修正公式
1简单并和非简单并定态的微扰理论
微扰理论是物理上最重要的框架,用来研究量子多体系统的结构和性质。
简单和非简单并定态的微扰理论是用来描述不可能的多原子系统的极端的应用。
它们的重要性在于能够提供一条整合多种量子效应的清楚的理论框架。
2简单并和非简单并定态微扰统一理论
简单并和非简单并定态的微扰理论是一个统一理论,用来描述在量子多体系统中发生的各种效应。
它使用一般的有效势来说明系统的性质,并预测结果。
它也包含有第一性原理,基准状态,以及不同形式的高阶内部势。
简单并和非简单并定态的微扰理论通过集中许多低能量的可解象的状态而形成的,认为它能够获得较低的能量,而且也能够提供更精确的描述。
3能量二级修正公式
能量二级修正公式是根据简单并和非简单并定态微扰理论建立起来的公式。
它使用一系列数学符号来表示量子系统的位置和力应力,以及它们之间的关系。
它的核心是一种叫做单自由维度的方法,用来对多体系统的有效势进行无穷展开,从而发现能量级修正的效应。
经
过此种修正,结果可以优化到更高的能量水平,从而更好地描述多原子系统的性质。
4结论
简单并和非简单并定态的微扰理论和能量二级修正公式是用来描述量子多体系统的重要框架。
它们统一了许多量子效应,提供了较低的能量水平,以及更可靠的结果。
它们对于更好地描述和预测多体系统的性质至关重要。
§5.1 非简并定态微扰理论重点:微扰的条件,微扰能量二级修正的求解(一)基本方程假设体系的哈密顿算符H不显含时间,所以体系有确定的能量,而且可分为两部分:一部分是,表示体系未受微扰的哈密顿算符;另一部分是,是加于上的微扰(5.1-1)以和表示的本征函数与相应的本征值,对未受扰的体系,薛定谔方程(5.1-2)的解是已知的,对于被微扰的体系有(5.1-3a)即(5.1-3b)(5.1-4)并在最后运算结果令,利用(5.1-4),则(5.1-3b)可写成(5.1-5)、E n都和微扰有关,可把它们看作是表征微扰程度参数的函数,将它们展为由于的幂级数。
(5.1-6)(5.1-7)式中、依次是体系未受微扰时的能量和波函数,称为零级近似能量和零级近似波函数,和是能量和波函数的一级修正,等等。
将(5.1-6),(5.1-7)式代入(5.1-5)式中,得(5.1-8)同次幂的系数应相等,由此得到下面一系列方程:空虚等式两边(5.1-9)(5.1-10)(5.1-11)将省去,为此在(5.1-4)式中令,得出,故可把,把,理解为能量和波函数的一级修正。
(二)一级微扰(1)能量的一级修正为了求,以左乘(5.1-10)式两边,并对整个空间积分(5.1-12)注意是厄密算符,是实数,则上式左边(5.1-13)于是由(5.1-12)式,注意到的正交归一性,得到(5.1-14)即能量的一级修正值等于在态中的平均值。
(2)波函数的一级修正已知,由(5.1-10)式可求得。
为此我们将按的本征函数系展开(5.1-15)在上式中,若决定,便可求得。
为此,将上式代入(5.1-10)式,并注意,得以左乘上式两边后,对整个空间积分,并注意到的正交归一性:得到(5.1-16)令(5.1-17)称为微扰矩阵元,于是由(5.1-16)式可得(5.1-18)代入(5.1-15)式,得(5.1-19)上式求和号上角加撇表示求和时除去m=n的项。
定态微扰理论微扰理论是利用已得的无扰动精确解求出微扰问题的近似解。
假设对于某些势场,我们已经解出了定态薛定谔方程:从而可以得到一套完备的正交本征函数,0ψ,n对应的本征值为0E。
现在,我们在势中加入一个微小扰动。
n0'=+H H H我们期望可以找到新的本征函数和本征值:但是除非我们非常幸运,对于这个有些复杂的势场,一般我们是不可能精确求解薛定谔方程的,必须利用微扰理论来求近似解.能量的一级修正它说明能量的一级近似是微扰在非微扰态中的平均值。
波函数的一级近似,注意到只要无扰动能级是非简并的,上式的分母就不会为零(因为不存在系数m=n)。
但如果两个能态具有相同的能量,我们就会遇到一个大麻烦(分母将为零);因此,就需要一个简并微扰理论,能量二级近似简倂微扰理论上节的讨论只适用于)0(nE 不是简并的情况.我们来讨论简并的情况,假设属于)0(∧H的本征值)0(nE 有k 个本征函数:k φφφ,...,,21k i E Hi n i ,...,2,1,)0()0(==∧φφ在这种情况下,首先遇到的问题是如何从这k 个φ中挑选出零级近似波函数.我们把零级近似波函数)0(nψ写成k 个φ的线性组合:iki incφψ∑==1)0()0(上式代入(5.1-9),有i ki iki i innnH ccEEHφφψ')(1)0(1)0()1()1()0()0(∑∑=∧=∧-=-以*lφ左乘上式两边,并对整个空间积分(左边由厄密性为零),得到k l c E H ili n ki li ,...,2,1,0)()0()1(1'==-∑=δ式中τφφd H Hi lli'*'∧⎰=上式是以系数)0(ic 为未知量的一次方程组, 写成矩阵形式为'''(0)(0)1112111'''(0)(0)(1)2122222'''(0)(0)12.........kk nk k kk k k H HH c c H H H c c E H HH c c ⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭它有不全为零的解的条件是系数行列式为零,0................................)1(''2'1'2)1('22'21'1'12)1('11=---nkk k k k nk nE H H H H E H H H H E H (5.2-5)这个行列式方程称为久期方程,解这个方程可以得到能量一级修正)1(nE 的k 个根)1(nj E ),...2,1(k j =.因为)1()0(nnnE E E+=,若)1(nE 的k 个根都不相等,则一级微扰可以将k 度简并完全消除.若)1(nE 有几个重根,说明简并只是部分消除,必须进一步考虑能量的二级修正,才能使能级完全分裂开来.为了确定能量)1()0(njnjE EE +=所对应的零级近似波函数,可以把)1(njE 的值代入(5.2-3)式中解出一组)0(ic ,再代入(5.2-2)式即可。