胡运权运筹学第十一章习题解
- 格式:doc
- 大小:98.00 KB
- 文档页数:3
11.1 某建筑工地每月需用水泥800t ,每t 定价2000元,不可缺货。
设每t 每月保管费率为0.2%,每次订购费为300元,求最佳订购批量。
解:每月需求量R=800t/月,每次订购费3003=C 元,货物单价k=2000元/t ,每t 每月的保管费%2.020001⨯=C =4元 则最佳定购量4.34648003002213*=⨯⨯==C R C Q11.2一汽车公司每年使用某种零件150000件,每件每年保管费0.2元,不允许缺货,试比较每次订购费为1000元或100元两种情况下的经济订货批量解: 类型 不允许缺货,补充时间极短根据题意知 R=150000件 1c =0.2 3c =1000或100(1) 当每次订购费为1000元时候的经济订货批量*t =R c c 132=150000*2.01000*2=151=3.65 Q *=R *t =150000*151=38729.83 (2) 当每次订购费为100元时候的经济订货批量*t =R c c 132=150000*2.0100*2=0.0816 Q *=R *t =150000*0.0816=12247.811.12某冬季商品每件进价25元,售价45元。
订购费每次20元,单位缺货费45元,单位存储费5元,期初无存货。
该商品的需求量r 的概率分布见表11-4。
解:25=K 1C =5 2C =45 203=C4.0)100(4.050205452545212====+-=+-r P C C K C该商品在冬季来临前应订购100件。
11.13某厂生产需要某种部件。
该部件外购价值有850元,订购费每次2825元。
若自产,每若选择外购策略时,若发生购物数少于实际需求量的情况,差额部分工厂将自产。
假定期初存货为零。
求工厂的订购策略。
2c =1250,1c =2825,k=850,1c =45N= (2c -k) / (2c + 1c )= (1250-850)/(1250+45)=400/1295=0.30订购90件。
运筹学教程(第⼆版)(胡运权)课后答案(清华⼤学出版社)运筹学教程(第⼆版)习题解答第⼀章习题解答运筹学教程1.1 ⽤图解法求解下列线性规划问题。
并指出问题具有惟⼀最优解、⽆穷多最优解、⽆界解还是⽆可⾏解。
1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5 x 1 + 6 x 2≤ 82 5 ≤ x ? 1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3) 1 2 x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 21 2 ? ≥ 12 2 1 ? x , x ≥ 0 .? ?2 x 1 + x 2 ≤ 2st ?3x + 4 x (2) max Z = 3x 1 + 2 x 2x , x ≥ 0 1 2该问题⽆解≥ 12 2 1 ? ? 2 x 1 + x 2 ≤ 2st .?3 x +4 x ( 2 ) max Z = 3 x 1 + 2 x 2第⼀章习题解答3 2 1x = 1, x = 1, Z = 3是⼀个最优解⽆穷多最优解,1 2x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 2该问题有⽆界解1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5x 1 + 6 x 2第⼀章习题解答唯⼀最优解, x 1 = 10, x 2 = 6, Z = 16 ≤ 82 5 ≤ x ?1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3)第⼀章习题解答运筹学教程1.2 将下述线性规划问题化成标准形式。
运筹学(胡运权)第五版课后答案-运筹作业47页1.1b用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解47页1.1d无界解1 2 3 454321-1-6 -5 -4 -3 -2X2X12x1--2x1+3x1 2 3 44321X12x1+x2=23x1+4x2=X1.2(b)约束方程的系数矩阵A= 1 2 3 42 1 1 2P1 P2 P3 P4基基解是否可行解目标函数值X1 X2 X3 X4P1 P2 -4 11/2 0 0 否P1 P3 2/5 0 11/5 0 是43/5 P1 P4 -1/3 0 0 11/6 否P2 P3 0 1/2 2 0 是 5 P2 P4 0 -1/2 0 2 否P3 P4 0 0 1 1 是 5最优解A=(0 1/2 2 0)T和(0 0 1 1)T49页13题设Xij为第i月租j个月的面积minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x1 3 +6000x23+7300x14s.t.x11+x12+x13+x14≥15x12+x13+x14+x21+x22+x23≥10x13+x14+x22+x23+x31+x32≥20x14+x23+x32+x41≥12Xij≥0用excel求解为:( )用LINDO求解:LP OPTIMUM FOUND AT STEP 3 OBJECTIVE FUNCTION V ALUE1) 118400.0V ARIABLE V ALUE REDUCED COSTZ 0.000000 1.000000X11 3.000000 0.000000X21 0.000000 2800.000000X31 8.000000 0.000000X41 0.000000 1100.000000X12 0.000000 1700.000000X22 0.000000 1700.000000X32 0.000000 0.000000X13 0.000000 400.000000X23 0.0000001500.000000X14 12.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -2800.0000003) 2.000000 0.0000004) 0.000000 -2800.0000005) 0.000000 -1700.000000NO. ITERATIONS= 3答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,50页14题设a1,a2,a3, a4, a5分别为在A1, A2, B1, B2, B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1, A2, B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。
第一章P43-1.1(1)当取A (6/5,1/5)或B (3/2,0)时,z 取最小值3。
所以该问题有无穷多最优解,所有线段AB 上的点都是最优解。
P43-1.2(1)令''4'44x x x -=,z z -='''4'4321'55243max x x x x x z +-+-=,,,,,,232142222465''4'43216''4'43215''4'4321''4'4321≥=-+-++-=+-+-+=-+-+-x x x x x x x x x x x x x x x x x x x x x x x xP43-1.4(1) 图解法:A(0,9/4),Z 1=45/4;B(1,3/2),Z 2=35/2;C(8/5,0),Z 3=16。
单纯形法:10 5 0 0C b X b b x1x2x3x4θ0 x39 3 4 1 0 30 x48 5 2 0 1 8/5δ10 5 0 00 x321/5 0 14/5 1 -3/5 3/210 x18/5 1 2/5 0 1/5 4δ0 1 0 -25 x23/2 0 1 5/14 -3/1410 x1 1 1 0 -1/7 2/7δ0 0 -5/14 -25/14依次相当于:原点;C;B。
P44-1.7(1)2 -1 2 0 0 0 -M -M -MC b X b b x1x2x3x4x5x6x7x8x9θ无界解。
两阶段法:阶段二:P45-1.10证明:CX (0)>=CX*,C*X*>=C*X (0) CX (0)-CX*+C*X*-C*X (0)>=0,即(C*-C)(X*-X (0))>=0。
P45-1.13设饲料i 使用x i (kg ),则543218.03.04.07.02.0m in x x x x x z ++++=s.t. 7001862354321≥++++x x x x x 305.022.05.054321≥++++x x x x x1008.022.05.054321≥++++x x x x x0,,,,54321≥x x x x x第二章P74-2.1(1)321532m ax y y y w ++=22321≤++y y y 243321≤++y y y 4334321=++y y y 无约束321,0,0y y y ≤≥P75-2.4(1),06353322232max 212121212121≥≥≤-≤+≤-≤++=y y y y y y y y y y y y w(2) (8/5,1/5)(3) 无穷多最优解。
47页1.1b羅蕿用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解薅47页1。
1d蒂无界解(b)衿1.2蕿约束方程的系数矩阵A=1234莇2112蚄P1P2P3P4,运筹作业肀最优解A=(01/220)T和(0011)T页13题肆49膃设Xij为第i月租j个月的面积羄minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13+6000x23+7300x 14螁s.t.聿x11+x12+x13+x14≥15膃x12+x13+x14+x21+x22+x23≥10膀x13+x14+x22+x23+x31+x32≥20艿x14+x23+x32+x41≥12袇Xij≥0芃用excel求解为:薁用LINDO求解:羁LPOPTIMUMFOUNDATSTEP3薆OBJECTIVEFUNCTIONVALUE 蚇1)118400.0羂VARIABLEVALUEREDUCEDCOST 荿Z0.0000001。
000000虿X113.0000000。
000000螇X210。
0000002800。
000000莃X318。
0000000.000000肁X410.0000001100。
000000莈X120.0000001700.000000袆X220.0000001700。
000000螄X320.0000000。
000000蕿X130.000000400.000000膇X230。
0000001500。
000000袆X1412.0000000.000000袁ROWSLACKORSURPLUSDUALPRICES芁2)0。
000000—2800。
000000羆3)2.0000000.000000羆4)0。
000000—2800.000000节5)0。
000000-1700.000000蝿NO。
ITERATIONS=3罿答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,页14题肆50蚃设a1,a2,a3,a4,a5分别为在A1,A2,B1,B2,B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1,A2,B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。
某厂每月生产某种产品最多600件,当月生产的产品若未销出,就需贮存(刚入库的产品下月不付存储费)月初就已存储的产品需支付存储费,每100件每月1000元。
已知每100件产品的生产费为5千元,在进行生产的月份工厂支出经营费4千元,市场需求如表7-19所示,假定1月初及4月底库存量为零,试问每月应生产多少产品,才能在满足需求条件下,使总生产及存贮费用之和最小。
解:设阶段变量:k=1,2,3状态变量:k x 第k 个月初的库存量 决策变量:k d 第k 个月的生产量 状态转移方程:1k k k kx x r d阶段指标:(,)k k k k v x d c d由于在4月末,仓库存量为0,所以对于k=4阶段来说有两种决策:5+4=9 40x4()f x =1 41x对K=3 334()54()f x x f xK=2K=1时解得:第一个月生产500份,第二个月生产600份,第三个月生产0份,第四个月生产0份。
某公司有资金4万元,可向A ,B ,C 三个项目投资,已知各项目不同投资额的相应效益值如表7-20所示,问如何分配资金可使总效益最大。
表 7-20解:设阶段变量k ,{}4,3,2,1∈k ,每一个项目表示一个阶段; 状态变量S k ,表示可用于第k 阶段及其以后阶段的投资金额; 决策变量Uk ,表示在第k 阶段状态为S k 下决定投资的投资额; 决策允许集合:0≤Uk ≤S k 状态转移方程:S k+1=S k -Uk ; 阶段指标函数:V k (S k Uk );最优指标函数:f k (S k )=max{ V k (S k Uk )+ f k+1(S k+1)} 终端条件:f 4(x 4)=0; K=4, f 4(x 4)=0 k=3, 0≤U3≤S 3k=2, 0≤U2≤S 2k=1, 0≤U1≤S 1所以根据以上计算,可以得到获得总效益最大的资金分配方案为(1,2,1).为了保证某设备正常运行,须对串联工作的三种不同零件A 1,A 2,A 3,分别确定备件数量。
11.1 某建筑工地每月需用水泥800t ,每t 定价2000元,不可缺货。
设每t 每月保管费率为0.2%,每次订购费为300元,求最佳订购批量。
解:每月需求量R=800t/月,每次订购费3003=C 元,货物单价k=2000元/t ,每t 每月的保管费%2.020001⨯=C =4元 则最佳定购量4.3464
8003002213*=⨯⨯==C R C Q
11.2一汽车公司每年使用某种零件150000件,每件每年保管费0.2元,不允许缺货,试比较每次订购费为1000元或100元两种情况下的经济订货批量
解: 类型 不允许缺货,补充时间极短
根据题意知 R=150000件 1c =0.2 3c =1000或100
(1) 当每次订购费为1000元时候的经济订货批量
*t =R c c 132=150000*2.01000*2=15
1=3.65 Q *=R *t =150000*
151=38729.83 (2) 当每次订购费为100元时候的经济订货批量
*t =R c c 132=150000
*2.0100*2=0.0816 Q *
=R *t =150000*0.0816=12247.8
11.12某冬季商品每件进价25元,售价45元。
订购费每次20元,单位缺货费45元,单位存储费5元,期初无存货。
该商品的需求量r 的概率分布见表11-4。
解:25=K 1C =5 2C =45 203=C
4
.0)100(4.050205452545212====+-=+-r P C C K C
该商品在冬季来临前应订购100件。
11.13某厂生产需要某种部件。
该部件外购价值有850元,订购费每次2825元。
若自产,每
若选择外购策略时,若发生购物数少于实际需求量的情况,差额部分工厂将自产。
假定期初存货为零。
求工厂的订购策略。
2c =1250,1c =2825,k=850,1c =45
N= (2c -k) / (2c + 1c )= (1250-850)/(1250+45)=400/1295=0.30
订购90件。
采用外购,其成本为
2825+850*80*0.1+850*90*0.2+(100-90)*0.3*1250+(110-90)*1250*0.3+(120-90)*1250*0.1=399925
采用自己生产
N= (2c -k) / (2c + 1c )=(1250-1250)/(1250+45)=0
所以需求量为80件,生产
自己生产的成本为
1250*80+1250*(90-80)*0.2+1250*(100-80)*0.3+1250*(110-80)*0.3+1250*(120-80) =126250
所以,工厂应该采用自己生产的策略。
11.14 某企业对某种材料的需求见表11-6,每次订购费500元,材料进价400元/t 、存贮费50元,缺货费600元,求(s,S )存贮策略。
解:损益转折概率308.050
600400600=+-=N 因为P(r=20)+P(r=30)=0.3<0.308
P(r=20)+P(r=30)+P(r=40)=0.6>0.308
所以t S 40*
=
因为s<t S 40*=,所以s 只可能是20,30,40。
且s 要尽可能小。
因为)1.0203.010(600)2.0101.020(5040400500)(3⨯+⨯+⨯+⨯+⨯+=+S L C = 500+16000+150+3000=19650
当s=20,
L(20)=120008000)1.0403.0303.0202.010(60020400+=⨯+⨯+⨯+⨯+⨯=21000 当s=30,
L(30)=12000)1.0303.0203.010(600)1.010(5030400=⨯+⨯+⨯+⨯+⨯+50+7200 =19250<19650
所以30*
=s
因此该企业应采取(s,S)=(30,40)的存贮策略
11.15已知某产品的单位成本K=3.0元,单位存储费0.11=C 元,单位缺货损失0.22=C 元,每次订购货503=C 元。
需求量x 的概率密度函数为为其他值
当x x f x x f ,0)(105,51)(=≤≤= ,设期初库存为零,试依据(s,S )型存储策略的模型确定s 和S 的值。
解:先计算临界值333.01
535=+-=
N , 因有333.0)5(5
151)(50=-==⎰⎰S dx dx x f s s 由此S=6.7。
再利用下面的不等式求s dx x f S x C dx x f x S C KS C dx x f s x C dx x f x s C Ks S S s s )()()()()()()()(10251310251-+-++≤-+-+⎰⎰⎰⎰将有关数字代入后计算得
067.2186.02≤+-s s
取等号并解得78.3=s 或9.55,因9.55已超过S 的值6.7,显然不合理,故应取s=3.78。