运筹学(胡运权)第五版课后答案-运筹作业
- 格式:docx
- 大小:902.88 KB
- 文档页数:32
运筹学习题答案第一章(39页)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
(1)max 12z x x =+ 51x +102x ≤501x +2x ≥12x ≤4 1x ,2x ≥0(2)min z=1x +1.52x1x +32x ≥3 1x +2x ≥2 1x ,2x ≥0(3)max z=21x +22x1x -2x ≥-1-0.51x +2x ≤21x ,2x ≥0(4)max z=1x +2x1x -2x ≥031x -2x ≤-31x ,2x ≥0解: (1)(图略)有唯一可行解,max z=14 (2)(图略)有唯一可行解,min z=9/4 (3)(图略)无界解 (4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。
(1)min z=-31x +42x -23x +54x 41x -2x +23x -4x =-21x +2x +33x -4x ≤14-21x +32x -3x +24x ≥21x ,2x ,3x ≥0,4x 无约束(2)max kkz s p =11nmk ik ik i k z a x ===∑∑11(1,...,)mikk xi n =-=-=∑ik x ≥0 (i=1…n; k=1,…,m)(1)解:设z=-z ',4x =5x -6x , 5x ,6x ≥0 标准型:Max z '=31x -42x +23x -5(5x -6x )+07x +08x -M 9x -M 10x s. t .-41x +2x -23x +5x -6x +10x =21x +2x +33x -5x +6x +7x =14-21x +32x -3x +25x -26x -8x +9x =21x ,2x ,3x ,5x ,6x ,7x ,8x ,9x ,10x ≥0(2)解:加入人工变量1x ,2x ,3x ,…n x ,得: Max s=(1/k p )1ni =∑1mk =∑ik αik x -M 1x -M 2x -…..-M n xs.t.11mi ik k x x =+=∑ (i=1,2,3…,n)ik x ≥0, i x ≥0, (i=1,2,3…n; k=1,2….,m)M 是任意正整数1.3在下面的线性规划问题中找出满足约束条件的所有基解。
第一章P43-1.1(1)当取A (6/5,1/5)或B (3/2,0)时,z 取最小值3。
所以该问题有无穷多最优解,所有线段AB 上的点都是最优解。
P43-1.2(1)令''4'44x x x -=,z z -='''4'4321'55243max x x x x x z +-+-=,,,,,,232142222465''4'43216''4'43215''4'4321''4'4321≥=-+-++-=+-+-+=-+-+-x x x x x x x x x x x x x x x x x x x x x x x xP43-1.4(1) 图解法:A(0,9/4),Z 1=45/4;B(1,3/2),Z 2=35/2;C(8/5,0),Z 3=16。
单纯形法:10 5 0 0C b X b b x1x2x3x4θ0 x39 3 4 1 0 30 x48 5 2 0 1 8/5δ10 5 0 00 x321/5 0 14/5 1 -3/5 3/210 x18/5 1 2/5 0 1/5 4δ0 1 0 -25 x23/2 0 1 5/14 -3/1410 x1 1 1 0 -1/7 2/7δ0 0 -5/14 -25/14依次相当于:原点;C;B。
P44-1.7(1)2 -1 2 0 0 0 -M -M -MC b X b b x1x2x3x4x5x6x7x8x9θ无界解。
两阶段法:阶段二:P45-1.10证明:CX (0)>=CX*,C*X*>=C*X (0) CX (0)-CX*+C*X*-C*X (0)>=0,即(C*-C)(X*-X (0))>=0。
P45-1.13设饲料i 使用x i (kg ),则543218.03.04.07.02.0m in x x x x x z ++++=s.t. 7001862354321≥++++x x x x x 305.022.05.054321≥++++x x x x x1008.022.05.054321≥++++x x x x x0,,,,54321≥x x x x x第二章P74-2.1(1)321532m ax y y y w ++=22321≤++y y y 243321≤++y y y 4334321=++y y y 无约束321,0,0y y y ≤≥P75-2.4(1),06353322232max 212121212121≥≥≤-≤+≤-≤++=y y y y y y y y y y y y w(2) (8/5,1/5)(3) 无穷多最优解。
运筹学(胡运权)第五版课后答案,运筹作业47页1.1b⽤图解法找不到满⾜所有约束条件的公共范围,所以该问题⽆可⾏解47页1.1d⽆界解1.2(b)约束⽅程的系数矩阵A= 1 2 3 4( )2 1 1 2P1 P2 P3 P4最优解A=(0 1/2 2 0)T和(0 0 1 1)T49页13题设Xij为第i⽉租j个⽉的⾯积minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13 +6000x23+7300x14s.t.x11+x12+x13+x14≥15x12+x13+x14+x21+x22+x23≥10x13+x14+x22+x23+x31+x32≥20x14+x23+x32+x41≥12Xij≥0⽤excel求解为:⽤LINDO求解:LP OPTIMUM FOUND A T STEP 3OBJECTIVE FUNCTION V ALUE1) 118400.0VARIABLE V ALUE REDUCED COST Z 0.000000 1.000000 X11 3.000000 0.000000X21 0.000000 2800.000000X31 8.000000 0.000000X41 0.000000 1100.000000X12 0.000000 1700.000000X22 0.000000 1700.000000X32 0.000000 0.000000X13 0.000000 400.000000X23 0.000000 1500.000000X14 12.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -2800.0000003) 2.000000 0.0000004) 0.000000 -2800.0000005) 0.000000 -1700.000000NO. ITERATIONS= 3答若使所费租借费⽤最⼩,需第⼀个⽉租⼀个⽉租期300平⽅⽶,租四个⽉租期1200平⽅⽶,第三个⽉租⼀个⽉租期800平⽅⽶,50页14题设a1,a2,a3, a4, a5分别为在A1, A2, B1, B2, B3加⼯的Ⅰ产品数量,b1,b2,b3分别为在A1, A2, B1加⼯的Ⅱ产品数量,c1为在A2,B2上加⼯的Ⅲ产品数量。
47页1.1b羅蕿用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解薅47页1。
1d蒂无界解(b)衿1.2蕿约束方程的系数矩阵A=1234莇2112蚄P1P2P3P4,运筹作业肀最优解A=(01/220)T和(0011)T页13题肆49膃设Xij为第i月租j个月的面积羄minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13+6000x23+7300x 14螁s.t.聿x11+x12+x13+x14≥15膃x12+x13+x14+x21+x22+x23≥10膀x13+x14+x22+x23+x31+x32≥20艿x14+x23+x32+x41≥12袇Xij≥0芃用excel求解为:薁用LINDO求解:羁LPOPTIMUMFOUNDATSTEP3薆OBJECTIVEFUNCTIONVALUE 蚇1)118400.0羂VARIABLEVALUEREDUCEDCOST 荿Z0.0000001。
000000虿X113.0000000。
000000螇X210。
0000002800。
000000莃X318。
0000000.000000肁X410.0000001100。
000000莈X120.0000001700.000000袆X220.0000001700。
000000螄X320.0000000。
000000蕿X130.000000400.000000膇X230。
0000001500。
000000袆X1412.0000000.000000袁ROWSLACKORSURPLUSDUALPRICES芁2)0。
000000—2800。
000000羆3)2.0000000.000000羆4)0。
000000—2800.000000节5)0。
000000-1700.000000蝿NO。
ITERATIONS=3罿答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,页14题肆50蚃设a1,a2,a3,a4,a5分别为在A1,A2,B1,B2,B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1,A2,B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。
运筹学习题答案第一章(39页)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
(1)max 12z x x =+ 51x +102x ≤501x +2x ≥1 2x ≤4 1x ,2x ≥0(2)min z=1x +1.52x1x +32x ≥3 1x +2x ≥2 1x ,2x ≥0(3)max z=21x +22x1x -2x ≥-1-0.51x +2x ≤21x ,2x ≥0(4)max z=1x +2x1x -2x ≥031x -2x ≤-31x ,2x ≥0解: (1)(图略)有唯一可行解,max z=14 (2)(图略)有唯一可行解,min z=9/4 (3)(图略)无界解 (4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。
(1)min z=-31x +42x -23x +54x 41x -2x +23x -4x =-21x +2x +33x -4x ≤14-21x +32x -3x +24x ≥21x ,2x ,3x ≥0,4x 无约束(2)max kkz s p =11nmk ik ik i k z a x ===∑∑11(1,...,)mikk xi n =-=-=∑ik x ≥0 (i=1…n; k=1,…,m)(1)解:设z=-z ',4x =5x -6x , 5x ,6x ≥0 标准型:Max z '=31x -42x +23x -5(5x -6x )+07x +08x -M 9x -M 10x s. t .-41x +2x -23x +5x -6x +10x =21x +2x +33x -5x +6x +7x =14-21x +32x -3x +25x -26x -8x +9x =21x ,2x ,3x ,5x ,6x ,7x ,8x ,9x ,10x ≥0(2)解:加入人工变量1x ,2x ,3x ,…n x ,得: Max s=(1/k p )1ni =∑1mk =∑ik αik x -M 1x -M 2x -…..-M n xs.t.11mi ik k x x =+=∑ (i=1,2,3…,n)ik x ≥0, i x ≥0, (i=1,2,3…n; k=1,2….,m)M 是任意正整数1.3在下面的线性规划问题中找出满足约束条件的所有基解。
胡运权运筹学第五版答案【篇一:运筹学基础及应用第四版胡运权主编课后练习答案】xt>习题一 p46 1.1 (a)412该问题有无穷多最优解,即满足4x1z?3。
6x26且0?x2?的所有?x1,x2?,此时目标函数值(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。
1.2(a) 约束方程组的系数矩阵12a833106?403000200??0?1t最优解x??0,10,0,7,0,0?。
(b) 约束方程组的系数矩阵1a222314??2??最优解1.3(a)(1) 图解法11??2x??,0,,0?5?5?t。
最优解即为?3x14x295x12x28的解x31,2,最大值z352(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 max z?10x1?5x2?0x3?0x4?3x1?4x2?x3?9s.t. ?5x12x2x48则p3,p4组成一个基。
令x1?x2?0得基可行解x??0,0,9,8?,由此列出初始单纯形表12。
??min?898,53?520,??min?2183,??142?2?新的单纯形表为1,20,表明已找到问题最优解x1?1, x2?32,x3?0 , x4?0。
最大值z*352(b) (1) 图解法6x1?2x2x1?x2?最优解即为?6x12x224x1?x2?5的解x73,22?,最大值z172(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 max z?2x1?x2?0x3?0x4?0x55x2?x3?15??s.t. ?6x1?2x2?x4?24xxx5125则p3,p4,p5组成一个基。
令x1?x2?0得基可行解x??0,0,15,24,5?,由此列出初始单纯形表12。
??min??,245?,??461?155,24,20,??min?3?32?2新的单纯形表为【篇二:运筹学基础及应用第四版胡运权主编课后练习答案】xt>习题一 p46 1.1 (a)41的所有?x1,x2?,此时目标函数值2该问题有无穷多最优解,即满足4x1?6x2?6且0?x2?z?3。
胡运权运筹学第五版答案【篇一:运筹学基础及应用第四版胡运权主编课后练习答案】xt>习题一 p46 1.1 (a)412该问题有无穷多最优解,即满足4x1z?3。
6x26且0?x2?的所有?x1,x2?,此时目标函数值(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。
1.2(a) 约束方程组的系数矩阵12a833106?403000200??0?1t最优解x??0,10,0,7,0,0?。
(b) 约束方程组的系数矩阵1a222314??2??最优解1.3(a)(1) 图解法11??2x??,0,,0?5?5?t。
最优解即为?3x14x295x12x28的解x31,2,最大值z352(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 max z?10x1?5x2?0x3?0x4?3x1?4x2?x3?9s.t. ?5x12x2x48则p3,p4组成一个基。
令x1?x2?0得基可行解x??0,0,9,8?,由此列出初始单纯形表12。
??min?898,53?520,??min?2183,??142?2?新的单纯形表为1,20,表明已找到问题最优解x1?1, x2?32,x3?0 , x4?0。
最大值z*352(b) (1) 图解法6x1?2x2x1?x2?最优解即为?6x12x224x1?x2?5的解x73,22?,最大值z172(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 max z?2x1?x2?0x3?0x4?0x55x2?x3?15??s.t. ?6x1?2x2?x4?24xxx5125则p3,p4,p5组成一个基。
令x1?x2?0得基可行解x??0,0,15,24,5?,由此列出初始单纯形表12。
??min??,245?,??461?155,24,20,??min?3?32?2新的单纯形表为【篇二:运筹学基础及应用第四版胡运权主编课后练习答案】xt>习题一 p46 1.1 (a)41的所有?x1,x2?,此时目标函数值2该问题有无穷多最优解,即满足4x1?6x2?6且0?x2?z?3。
运筹学(胡运权)第五版课后答案-运筹作业47页1.1b用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解47页1.1d无界解1 2 3 454321-1-6 -5 -4 -3 -2X2X12x1--2x1+3x1 2 3 44321X12x1+x2=23x1+4x2=X1.2(b)约束方程的系数矩阵A= 1 2 3 42 1 1 2P1 P2 P3 P4基基解是否可行解目标函数值X1 X2 X3 X4P1 P2 -4 11/2 0 0 否P1 P3 2/5 0 11/5 0 是43/5 P1 P4 -1/3 0 0 11/6 否P2 P3 0 1/2 2 0 是 5 P2 P4 0 -1/2 0 2 否P3 P4 0 0 1 1 是 5最优解A=(0 1/2 2 0)T和(0 0 1 1)T49页13题设Xij为第i月租j个月的面积minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x1 3 +6000x23+7300x14s.t.x11+x12+x13+x14≥15x12+x13+x14+x21+x22+x23≥10x13+x14+x22+x23+x31+x32≥20x14+x23+x32+x41≥12Xij≥0用excel求解为:( )用LINDO求解:LP OPTIMUM FOUND AT STEP 3 OBJECTIVE FUNCTION V ALUE1) 118400.0V ARIABLE V ALUE REDUCED COSTZ 0.000000 1.000000X11 3.000000 0.000000X21 0.000000 2800.000000X31 8.000000 0.000000X41 0.000000 1100.000000X12 0.000000 1700.000000X22 0.000000 1700.000000X32 0.000000 0.000000X13 0.000000 400.000000X23 0.0000001500.000000X14 12.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -2800.0000003) 2.000000 0.0000004) 0.000000 -2800.0000005) 0.000000 -1700.000000NO. ITERATIONS= 3答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,50页14题设a1,a2,a3, a4, a5分别为在A1, A2, B1, B2, B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1, A2, B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。
则目标函数为‘maxz= (1.25-0.25)( a1+a2+a3)+( 2-0.35) b3+( 2.8-0.5)c1 -0.05 (a1+b1)-0.03 (a2+b2+c1)- 0.06 (a3+b3)-0.11(a4+c1)-0.05a5=0. 95a1+0. 97a2+0. 94a3+1.5b3+2.1c1-0.05b1-0.11a4-0.05a5s.t.5a1+10b1≤60007a2+b2+12c1≤100006a3+8a3≤40004a4+11c1≤70007a5≤4000a1+a2-a3-a4-a5=0b1+b2-b3=0a1,a2,a3, a4, a5, b1,b2,b3, c1≥0用lindo求解得:LP OPTIMUM FOUND AT STEP 6OBJECTIVE FUNCTION V ALUE1) 16342.29V ARIABLE V ALUE REDUCED COST A1 1200.000000 0.000000A2 0.000000 9.640000A3 285.714294 0.000000B3 10000.000000 0.000000C1 0.000000 15.900000B1 0.000000 0.230000A4 342.857147 0.000000A5 571.428589 0.000000B2 10000.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 0.1680003) 0.000000 1.5000004) 0.000000 0.0750005) 5628.571289 0.0000006) 0.000000 0.0085717) 0.000000 0.1100008) 0.000000 -1.500000NO. ITERATIONS= 6计算lindo截屏2.1a:对偶问题为:maxz=2y1+3y2+5y3s.t.y1+2y2+y3≤23y3+y2+4y3≤24y1+3y2+3y3=4y1≥0, y 2≤0,y3无约束因为原问题的对偶问题的对偶问题仍是原问题,因此本问题的对偶问题的对偶问题为:minz=2x1+2x2+4x3s.t.x1+3x2+4x3≥22x1+x2+3x3≤3x1+4x2+3x3=5x1,x2≥0,x3无约束81页2.12a)设x1,x2,x3分别为A,B,C产品数量maxz=3x1+x2+4x3s.t.6x1+3x2+5x3≤453x1+4x2+5x3≤30x1,x2,x3≥0用lomdo求解为LP OPTIMUM FOUND AT STEP 2OBJECTIVE FUNCTION V ALUE1) 27.00000V ARIABLE V ALUE REDUCED COST X1 5.000000 0.000000X2 0.000000 2.000000X3 3.000000 0.000000X1,X2,X3 0.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 0.2000003) 0.000000 0.6000004) 0.000000 0.000000NO. ITERATIONS= 2最大生产计划为A生产5个单位,C生产3个单位b)LP OPTIMUM FOUND AT STEP 2OBJECTIVE FUNCTION V ALUE1) 27.00000V ARIABLE V ALUE REDUCED COSTX1 5.000000 0.000000X2 0.000000 2.000000X3 3.000000 0.000000X1,X2,X3 0.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 0.2000003) 0.000000 0.6000004) 0.000000 0.000000NO. ITERATIONS= 2RANGES IN WHICH THE BASIS IS UNCHANGED:OBJ COEFFICIENT RANGES V ARIABLE CURRENT ALLOWABLE ALLOWABLECOEF INCREASE DECREASEX1 3.000000 1.800000 0.600000X2 1.000000 2.000000 INFINITYX3 4.000000 1.000000 1.500000 X1,X2,X3 0.000000 0.000000 INFINITYRIGHTHAND SIDE RANGESROW CURRENT ALLOWABLE ALLOWABLERHS INCREASE DECREASE2 45.000000 15.000000 15.0000003 30.000000 15.000000 7.5000004 0.000000 0.000000 INFINITY可知A产品的利润变化范围【6. 8,2.4】,上述计划不变。
c)设x4为产品D的数量maxz=3x1+x2+4x3+3x4s.t.6x1+3x2+5x3+8x4≤453x1+4x2+5x3+2x4≤30x1,x2,x3 ,x4≥0用lomdo求解为LP OPTIMUM FOUND AT STEP 0OBJECTIVE FUNCTION V ALUE1) 27.50000V ARIABLE V ALUE REDUCED COSTX1 0.000000 0.100000X2 0.000000 1.966667X3 5.000000 0.000000X4 2.500000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 0.2333333) 0.000000 0.566667NO. ITERATIONS= 0安排生产D有利,新最有生产计划为x1=x2=0,x3=5,x4=2.5,利润为27.5 d)maxz=3x1+x2+4x3-0.4ys.t.6x1+3x2+5x3≤453x1+4x2+5x3-y≤30x1,x2,x3,y≥0用lomdo求解为LP OPTIMUM FOUND AT STEP 0OBJECTIVE FUNCTION V ALUE1) 30.00000V ARIABLE V ALUE REDUCED COST X1 0.000000 0.600000X2 0.000000 1.800000X3 9.000000 0.000000Y 15.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 0.4000003) 0.000000 0.400000NO. ITERATIONS= 0可知购进原材料15个单位为宜。
4.1a)设yi= 1 第i组条件起作用0 第i组条件不起作用x1+x2≤2-(1-y1)M M —充分大正数2x1+3x2≥5+(1-y2)My1+y2=1y1,y2=0或1b)设yi= 1 第i 组条件起作用0 第i 组条件不起作用x=0y1 x=3y2 x=5y2 x=7y4y1+y2+y3+y4=1 y1,y2,y3,y4=0或1c) 设yi= 1 为假定取值≥500 为假定取值x=0x=0y1x ≥50--(1-y2)M y1+y2=1 y1,y2=0或1d) 设yi= 1 第i 组条件起作用0 第i 组条件不起作用 i=1,2 则x1≤2+(1-y1)M x2≥1-(1-y1)M x2≤4+(1-y2)M y1+y2=1 y1,y2=0或1e) 设yi= 1 第i 组条件起作用0 第i 组条件不起作用 i=1,2 则x1+x2≤5-(1-y1)M x1≤2-(1-y2)M x3≥2+(1-y3)M x3+x4≥6+(1-y4)M y1+y2+y3+y4≥2 y1,y2,y3,y4=1或04.2minz =∑cjxj 10j=1 ∑xj 10j=1=5 x1+x8=1 x7+x8=1 s.t. x3+x5≤1x4+x5≤1x5+x6+x7+x8≤2xj= 1 选择钻探第sj 井位 0 否4.5设xij 为第i 种泳姿用第名运动员minz=∑∑ai 5j=1jxij 4i=1s.t.x11+x12+x13+x14+x15=1x21+x22+x23+x24+x25=1 x31+x32+x33+x34+x35=1 x41+x42+x43+x44+x45=1 x11+x21+x22+x23=1 x12+x22+x32+x42=1 x13+x23+x33+x43=1 x14+x24+x34+x44=1 x15+x25+x35+x45=1xij=1或0(i=1,2,3,4 j=1,2,3,4,5)由excel 计算得出;张游仰泳,王游蛙泳,赵游自由泳,预期总成绩为126.2s.5.3c因为使mind1-,故在x1+x2=40的右侧,若使mind4+,则在x1+x2=50的左侧,即阴影区域,因为在阴影部分无法使2d2-+d3-最小,故比较E (20,30),F (24,26),E 点:d2-=4,d3-=0 min2d2-+d3-=8, F 点:d2-=0,d3-=4, min2d2-+d3-=4,故选F 点10 2054d2ddd d4+d4d1d1 EF程序法6.4a破圈法避圈法2166277 1 4 3 45 32 342 1 662 77 1 43 45 32 3488最小部分树16 6.4b最小部分树32 1 52 61112 42667 328 21 81458 1 52 61112 42667 328 21 81458172页6.11红色曲线为使用一年卖出 蓝色曲线为使用两年卖出 绿色曲线为使用三年卖出 紫色曲线为使用四年卖出最短路程为3.7万元,路径为v0-v1-v4或v0-v2-v4或v0-v1-v2-v4三种方案分别为:第一年年初买新车,年末卖掉再买新车,一直用到第四年年末卖掉; 第一年出买新车,用两年后于第二年末卖掉再买新车,用两年于第四年末卖掉;第一年出买新车,年末卖掉后再买新车,第二年末卖掉再买新车,再用两年于第四年年末卖掉。