统计学原理第六章 统计指数
- 格式:ppt
- 大小:720.50 KB
- 文档页数:26
《统计学原理》习题第一章概论一.思考题:1、怎样理解统计学的研究对象?2、统计学有那些基本方法?3、怎样理解总体、总体单位、标志、指标间的关系?4、统计指标有那些表现形式?第二章统计资料的搜集一.概念题:1、连续性调查2、重点单位3、调查时间4、调查误差5、代表性误差二.练习题:1、某公司拟将所生产的××牌啤酒打入××啤酒市场,想要调查消费者的消费和经销商的销售情况及反映。
试分别设计有关问卷。
第三章统计整理一.思考题:1、统计分组的概念和作用是什麽?2、统计分组的依据是什麽?3、次数分布数列的概念、构成和作用?二.练习题:1、抽样调查某去100户居民的人均月收入情况,得到的数据(单位为元)如下:190 320 520 280 650 320 460 390 320 460 160 280 650 580 280 460 320 460 520 220 280 460 160 460 320 320 580 390 120 390 320 390 460 580 390 280 390 280 390 460 390 390 280 390 280 460 460 520 650 160 460 320 320 460 460 580 160 460 320 390 320 580 520 120 320 580 220 280 280 460 520 220 460 650 520 390 520 390 460 460 390 390 280 320 190 280 460 520 580 280 280 390 320 580 120 390 320 220 280 390 190根据上述资料,试编制组距变量数列。
第四章综合指标一、思考题:1、强度相对数与算术平均数的不同?2、强度相对数的正逆指标如何体现?3、计算与应用相对指标应注意什麽问题?4、为什麽平均数能测定总体分布的集中趋势?5、何谓中位数?如何确定中位数?6、何谓中位数?如何确定中位数?7、什麽是交替标志?什麽是成数?8、为什麽要计算离散系数?如何运用离散系数判断平均数的代表性?二.计算题:1、某地农贸市场香蕉价格如表所示,试计算该地所售香蕉的平(2)计算家庭人口的平均数;(3)计算人均居住面积的平均数。
第六章统计指数在对社会经济现象进行对比分析时,通常有两种情况:一种是对单一事物的变动进行分析,例如:研究某种商品价格或销售量的变动,可以将不同时期的价格或者销售量的数值直接进行对比;另外一种则是对由许多计量单位、使用价值不同的事物所构成的复杂现象总体的某种特征进行综合对比,例如:研究多种商品的价格或者销售量的综合变动,此时,若采用简单的数量对比,将无法保证对比的结果具有实际经济意义!为了如实地反映他们的变动,人们转而求助于指数理论!第一节统计指数概述一、统计指数的概念统计指数(Index)的概念起源于18世纪中期的欧洲,距今只有200多年的历史。
最初的指数是指一种商品的现有价格与原来价格的对比,以此反映其价格变动的程度。
现在的指数,已经运用到我们经济生活的各个方面。
有些指数,如商品零售价格指数(Retail Price Index)、居民消费价格指数(Consumer Price Index)等,同人们的日常生活休憩相关;有些指数,如工业生产指数、股票价格指数(Stock Price Index)等,则直接影响人们的投资活动,成为社会经济的晴雨表。
1、广义的概念:——指一切说明社会经济现象数量变动或差异程度的相对数;例如:计划完成相对数、比较相对数、动态相对数等;2、狭义的概念:——指反映不能直接相加、对比的复杂社会经济现象综合变动程度的相对数;例如:某商场同时销售棉布、鞋帽和成衣等商品,由于这几种商品的性质不同、使用价值不同,故不能直接相加,对比其报告期与基期的销售量;又如:商品零售价格指数、居民消费价格指数、工业生产指数、股指等;3、狭义指数的特点:——相对性:复杂现象总体的某个变量在不同场合下综合对比所得的相对数;例如:不同时间上对比即得时间性指数、不同空间上对比即得空间性指数;——综合性:不是单一事物的变动,而是由多种事物构成的总体的综合变动;例如:股票价格指数是综合反映所有上市公司股票交易的价格变动;——平均性:狭义的指数所反映的总体变动只能是一种平均意义上的变动;例如:上海证券交易所综合指数当天与昨天相比,股票指数上涨了1.2%,表示平均来说上海证券交易所挂牌交易的上市公司平均股票价格今天比昨天上涨了1.2%,但有的上市公司上涨10%,也有的上市公司下跌了10%;二、统计指数的作用1、综合反映现象总体数量的变动方向和变动程度;1)百分比大于100%,则表示数量上升,具体大多少则表示上升的程度;2)百分比小于100%,则表示数量下降,具体小多少则表示下降的程度;例如:商品零售价格物价指数为100%,则说明多种商品零售物价总体变动呈上升状态,且上升了10%;2、对现象总体进行因素分析;1)复杂现象的总体,一般由多种因素构成,总体的变动是各构成因素变动综合影响的结果;例如:商品销售额=商品销售量单位商品价格;产品总成本=产品产量单位产品成本;原材料总费用=产品产量单位产品原材料消耗量单位原材料价格;2)可从相对数和绝对数两方面分析各因素对总体的影响方向和影响程度;3、研究现象的长期变动趋势;1)由连续编制的动态数列形成的指数数列,能反映现象的发展变化趋势;2)适合于对比分析有联系、性质不同的动态数列之间的变动关系;4、对经济现象进行综合评价和测定;例如:运用综合指数法评价和测定一个地区和单位经济效益的高低;利用平均指数法测定技术进步的程度及其在经济增长中的作用;利用指数法原理建立对国民经济发展变动的评价和预警系统等;三、统计指数的种类1、按照指数所研究对象的范围划分:1)个体指数——反映单一事物数量变动的相对数,属于广义指数,将某一指标的报告期数值与基期数值直接对比而得;例如:反映某一商品价格变动的个体价格指数反映某一产品产量变动的个体产量指数式中,k代表个体指数,p代表商品价格,q代表产品产量,下标1代表报告期,下标0代表基期;2)总指数——反映多种事物构成的复杂现象总体综合数量变动的相对数;例如:综合反映多种商品价格平均变动程度的价格总指数;综合反映多种产品产量平均变动程度的产量总指数;3)类指数——反映总体中某一类或某一组现象数量变动的相对数;本质上也是总指数,只不过它比总指数所包含事物的范围小而已;例如:零售商品物价总指数可分为粮食类价格指数、服装类价格指数等;工业总产量总指数可分为重工业类产量指数和轻工业类产量指数等;2、按照指数化指标的性质划分:所谓指数化指标,是指数所要测定其变动的统计指标;1)数量指标指数(Quantity Index Number)——指数化指标为数量指标;用来说明总体规模变动情况的指数,例如,工业产品物量指数、商品销售量指数、职工人数指数等;2)质量指标指数(Quality Index Number)——指数化指标为质量指标;用来说明总体内涵数量变动情况的指数,例如,价格指数、单位产品成本指数、劳动生产率指数、工资水平指数等;3、按照指数所反映现象的对比性质不同划分:1)时间性指数——动态指数,反映现象在时间上动态变化的指数;按照计算过程中采用的基期不同,可分为以下两类:定基指数——连续编制的指数数列中各个指数以固定时期为基期;环比指数——连续编制的指数数列中各个指数以上一期为基期;2)空间性指数——静态指数,包括以下两类:反映同一时期不同空间指标值变动而形成的指数;反映同一时期的实际与计划指标值变动的指数,即计划完成指数;4、按照总指数的计算与编制方法划分:1)综合指数——两个有联系的总量指标对比所得的相对数;例如:销售额指数、产品产量指数、GDP总指数等;2)平均指数——用加权平均的方法计算出来的指数;所掌握的资料不全时,借助个体指数进行加权平均计算;3)平均指标对比指数——两个加权算术平均指标对比所得的指数;例如:总平均工资的可变构成指数、固定构成指数、结构影响指数等;本书将以各种数量指标和质量指标为例,着重介绍综合指数、平均指数、平均指标对比指数的编制方法以及其在统计分析中的作用!第二节综合指数一、综合指数编制的基本原理总指数的基本计算方法有综合指数法和平均指数法两种,习惯上把这两种方法编制的总指数称为综合指数和平均指数;综合指数(Aggregative Index Number)是通过对两个时期不同、范围相同的多要素现象同度量综合之后,进行总体数量对比得出的总指数;综合指数的计算特点就是:先综合,后对比!然而现象总体各个个体由于使用价值不同、计量单位不同,所以其数量表现不能直接加总而对比,这种现象叫做不同度量。
统计原理教学大纲一、课程性质统计学原理是为经济与管理学科各专业学生开设的一门必修的重要的基础课,也是经济管理工作者和经济研究人员所必备的一门知识。
它研究如何用科学的方法去搜集、整理、分析国民经济和社会发展的实际数据,并通过统计所特有的统计指标和指标体系,表明所研究的社会经济现象的规模、水平、速度、比例和效益,以反映社会经济现象发展规律在一定时间、地点、条件下的作用,描述社会经济现象数量之间的联系关系和变动规律,也是进一步学习其他相关学科的基础。
该课程的开出在政治经济学、经济数学基础、基础会计学课程之后。
设置本课程的目的,一方面是为了进一步学习专业统计和计量经济课程奠定理论和方法基础。
另一方面也为学习经济与管理学科各专业的后继课程和进行社会经济问题研究提供数量分析方法。
二、教学内容第一章总论(一) 教学目的本章的目的在于从总体上对统计学提供基本的认识,通过本章的学习,要求一般了解社会经济统计学的学科性质、研究对象和国家统计的职能、统计研究的基本方法,重点掌握统计学中的几个基本概念。
(二) 教学要点第一节统计学的研究对象及其性质一、统计的涵义二、统计学的性质三、统计学的研究对象四、统计学研究对象的特点(一)总体性(二)数量性(三)客观性第二节统计学的研究方法第三节统计学的分类及其与其他学科的关系第四节统计学的基本范畴第五节统计的组织与管理(三)本章教学要求:统计的涵义,统计学的研究对象,统计学的性质,社会经济统计的基本任务与作用,总体,总体单位,标志,指标,变异,变量,统计活动的过程,统计活动的特点,统计法的基本原则。
(四)本章教学重点、难点:统计的涵义、总体、总体单位、标志、指标、变异、变量。
第二章统计调查(一)教学目的本章阐述统计调查的意义、种类、调查方案及调查的各种方法等问题。
通过教学,使学生一般了解统计调查的基本任务和要求,重点掌握统计调查的方法和调查方案的制订。
(二)教学要点第一节统计调查概述第二节统计调查方案第三节统计报表和专门调查第四节利用 Internet 搜集统计资料第五节统计调查资料的质量控制(三)本章教学要求:掌握统计调查的意义,统计调查的要求,统计调查的分类,统计调查方案,统计调查组织形式。
Ylpol; 经济统计学原理习题答案第一章总论一填空题(略)二判断题12对3错错选择题三1 (1,2,3,4)2 (3)3 (2)四问答题(略)、第二章统计调查与整理一填空题(略)二判断题3 错4 错5错6 错7 对三选择题1 (2)2 (1),(3)3 (1),(3)四问答题(1,2,3 略)班45 名学生“统计学”考试成绩分析(见教材后附答案 )第四章 综合指标 一 填空题 ( 略)二 判断题2 对3 错4 对5 对6 对第三章 概率论基础1 对7 错 8 错三 选择题P65/五1.某集团公司所属甲、乙、丙三个工厂的有关资料如表所示工厂名称利上年实现润(万元)本年利润(万元) 实际 比上年实计划 %)(%) 际完成程度( 实际 计划各厂 计划比重((甲) (1)(2)(3)(4)(5)(6)甲厂 140 154 160 26.76 +10 96.25 乙厂 200 216 210 35.12 +8 102.86 丙厂 240 228 228 38.12 -5 100.00 合计5805985981003.10100.00(1)计算表中空格的数字。
(2)说明各栏数字属于哪类指标?( 3)根据表中各栏指标,对该公司生产情况做简要分析?答:(2),(1)(2)(3)为总量指标(时期指标) ;(4)为结构相对数; (5)动态相对数;( 6)计划完成相对数。
(3),计算结果表明甲、乙两厂的利润都比上年增加了。
丙厂利润比上年下降了,但该公司生产情况总体良好。
1 (1)2 (3)3 (2) 5(2) 6 8 (2) 9 (3) 10 (3)四 问答题 (略 ) 五 计算题4 (3) (3)2. 根据“十·五”规划规定,某产品在该五年规划的最后一年生产达到该产品在五年规划最后两年每月实际产量如表所示:单位:万吨要求:根据表中资数计算该产品提前完成五年规划的时间所以提前了 8 个月又 7 天。
3. 甲、乙两个生产小组有关资料如表所示。
统计学原理——统计指数统计指数是一项重要的统计学原理,它用于评估和比较不同群体或变量之间的相对差异。
通过统计指数,我们可以对数据进行更深入的分析,了解不同群体的差异以及其对总体的贡献。
在统计学中,常用的统计指数有多种,其中包括平均数、标准差、相关系数、协方差等。
这些指数可以帮助我们从不同角度对数据进行分析和解释。
首先,平均数是最常见的统计指数之一、它用于衡量一组数据的集中趋势和中心位置。
平均数可以通过将所有数据值相加并除以数据的个数来计算得到。
通过计算平均数,我们可以了解数据的总体特征和整体水平。
其次,标准差是用于衡量数据的离散程度和波动性的指数。
它衡量数据的每个数据点与平均数之间的距离,并计算这些距离的平均值。
标准差越大,表示数据的分布越分散;标准差越小,表示数据的分布越集中。
另外,相关系数是用于衡量两个变量之间相关性的指数。
它可以告诉我们两个变量之间的线性相关程度,取值范围从-1到1、当相关系数为正时,表示两个变量之间存在正相关关系;当相关系数为负时,表示两个变量之间存在负相关关系;当相关系数接近于0时,表示两个变量之间几乎没有相关性。
此外,协方差是用于衡量两个变量之间总体变化趋势的指数。
它可以告诉我们两个变量之间的总体变化方向和程度。
当协方差为正时,表示两个变量之间存在正相关关系;当协方差为负时,表示两个变量之间存在负相关关系;当协方差接近于0时,表示两个变量之间几乎没有线性关系。
这些统计指数对于统计学原理的应用非常重要。
通过计算和分析这些指数,我们可以从不同的角度深入了解数据的特征和关系,从而更好地进行数据的解释和应用。
在实际应用中,统计指数可以帮助我们研究不同群体之间的差异,并为决策提供依据。
例如,我们可以使用平均数和标准差来比较两个地区的人均收入水平和收入分布情况;我们可以使用相关系数和协方差来研究两个变量之间的相关性,如广告投资和销售额之间的关系。
总之,统计指数是统计学原理中重要的一部分,它可以帮助我们对数据进行更深入的分析和解释。
第一章绪论一、什么是统计三种涵义:统计工作、统计资料和统计学两重关系:统计工作是统计实践活动,统计资料是统计工作的成果;统计学是统计实践经验的理论概括和深化,它们是理论与实践的关系。
1、统计工作:调查研究。
资料收集、整理和分析。
2、统计资料:工作成果。
包括统计数据和分析报告。
3、统计学:研究如何搜集、整理、分析数据资料的一门方法论科学。
二、统计学的对象和特点(一)从研究对象看,它研究客观事物总体数量方面(数量特征和数量关系),其对象具有:①总体性:统计研究虽然是从个别入手,对个别单位的具体事实进行观察研究,但其目的是为了达到认识总体数量特征。
(个体与总体)②数量性:是统计学研究对象的基本特点。
统计数据是客观事物量的反映,通过数据以测度事物的类型、量的顺序、量的大小和量的关系。
(定量与定性)③变异性:统计研究的是同质总体的数量特征,其前提是各单位的特征表现存在差异,而这些差异不是由某些特定的原因事先给定的。
(同质与变异)(二)从方法核心看,它强调对客观总体进行大量观察,通过归纳推理以获得总体数量方面的综合性认识。
大量观察法统计分组法相关分析法抽样推断法(三)从学科体系看,它是一门多科性的学科“家族”。
第三节统计学的基本范畴总体单位:组成总体的各个单位(或元素),是各项统计数字的原始承担者。
总体既可以指客观事物本身,也可以是反映该事物某重要数量特征的一组数据的集合。
该集合中的每个元素就是总体单位。
无限总体:含无限多个单位。
有限总体:含有限个单位。
样本定义:是从总体中随机抽取部分单位所构成的集合体。
(一)标志1、定义总体单位的属性、特征的名称。
(单位是标志的承担者)(一)指标1、定义及构成要素⏹综合反映总体数量特征的概念和数值。
⏹指标 = 指标名称 + 指标数值时期指标(一段时期累计总量及据此计算的相对、平均指标)时点指标(瞬间的总量及据此计算的相对、平均指标)①数量指标(外延指标): 它是说明总体外延范围大小的统计指标。