刚体运动学、转动惯量、定轴转动资料
- 格式:ppt
- 大小:1.61 MB
- 文档页数:42
刚体的定轴转动定律1. 介绍刚体是物理学中的一个重要概念,它指的是在运动过程中形状和大小保持不变的物体。
刚体的定轴转动定律是描述刚体绕固定轴线转动的规律和性质,对于我们理解刚体的运动和应用相关物理问题具有重要意义。
2. 刚体的转动惯量2.1 定义刚体绕轴线转动时,其转动惯量是衡量刚体抵抗转动运动的特性。
转动惯量的大小取决于刚体的质量分布以及轴线的位置和方向。
2.2 转动惯量的计算方法转动惯量可以通过积分计算得到,对于一个质量为m的刚体,其转动惯量可以用以下公式表示: [ I = r^2 dm ] 其中,r是质量元dm到转轴的距离。
对于一些常见的简单形状的刚体,转动惯量可以通过一些公式直接计算得到,例如:- 细杆绕直线轴线转动:[ I = mL^2 ] - 球体绕直径轴线转动:[ I = MR^2 ] - 圆环绕直径轴线转动:[ I = MR^2 ]3. 定轴转动的角动量3.1 定义角动量是描述物体转动的物理量,刚体的角动量可以通过转动惯量和角速度的乘积得到。
3.2 角动量的守恒对于一个孤立系统,如果没有外力矩作用,刚体的角动量将保持不变,这就是角动量守恒定律的内容。
3.3 角动量定理角动量定理描述了外力矩对刚体角动量的影响,它可以表示为以下公式: [ = ] 其中,()是作用在刚体上的外力矩,(L)是刚体的角动量。
4. 牛顿第二定律与角加速度4.1 牛顿第二定律牛顿第二定律描述了刚体转动的加速度与作用力的关系,其公式为: [ = I] 其中,()是作用在刚体上的合外力矩,(I)是刚体的转动惯量,()是刚体的角加速度。
4.2 角加速度的计算对于旋转轴与力矩不垂直的情况,我们可以通过以下公式计算刚体的角加速度:[ = ] 其中,()是力矩与旋转轴之间的夹角。
5. 定轴转动的动能5.1 定义刚体的转动动能是由于其转动而具有的能量,它可以通过转动惯量和角速度的平方的乘积得到。
5.2 动能定理动能定理描述了外力对刚体转动动能的影响,它可以表示为以下公式: [ W = K ] 其中,(W)是作用在刚体上的合外力所做的功,(K)是刚体的转动动能。
刚体定轴转动的角动量•转动惯量一、刚体对一转轴的转动惯量1、转动惯量定义:说明:转动惯量与刚体的质量分布和转轴的位置有关。
2、转动惯量的计算:①质量不连续分布情况:其中:表示质点对转轴的距离。
②质量连续分布的情况:3、平行轴定理若两轴平行,距离为d,其中一轴过质心,刚体对它的转动惯量为,则刚体对一轴转动惯量为:证明:如右图示,刚体的二轴分别为z和轴,由此可知:刚体对各平行轴的不同转动惯量中,对质心轴的转动惯量最小。
4、垂直轴定理:(仅适用于厚度无穷小的薄板,厚度)即:无穷小厚度的薄板对一与它垂直的坐标轴的转动惯量,等于薄板对板面内另两互相垂直轴的转动惯量之和。
证明:如右图所示,则:∴注意:垂直轴定理适用条件:x、y、z轴过同一点,且互相垂直,z轴垂直于板面x、y轴在板面内。
例1:均质杆长l,质量为m,求对过杆一端点的转动惯量。
解:由平行轴定理:例2:求一薄板质量为m,半径为R,密度均匀的圆盘,它对过圆心且与盘面垂直的转轴的转动惯量I。
解法一:利用积分法求转动惯量(利用对称性):解法二:由垂直轴定理:又∵∴二、刚体定轴转动的动力学方程——对轴的角动量定理刚体对转轴(假定为z轴)的角动量:应用质点系对Z轴的角动量定理,可得定轴转动刚体的角动量定理:其中为外力对Z轴的力矩;为刚体的角加速度在Z轴上的投影,可正可负。
三、定轴转动刚体对轴上一点的角动量以质量相等的两质点m,中间以一轻连杆组成刚体,绕Z轴转动为例,如图示:设,杆与水平方向成α角,求此刚体对轴上任一点O的角动量。
∵∴若Z轴过杆的中点,即:,则有:上式表明,定轴转动刚体对轴上任一点的角动量不一定沿转轴方向(或方向)。
四、刚体的重心1、定义:刚体处于不同方位时重力作用线都要通过的那一点叫作重心。
2、重心的位置与质心有何关系:如果刚体的形状不是特别大,保证各处的是完全相同,则刚体中各质元的力对任意一参考点o的力矩:∴一般有,且与不平行,故有:∴即:重心和质心重合。
刚体定轴转动知识点总结1. 刚体的转动定轴刚体的转动定轴是指固定不动的直线,沿其进行转动的刚体的每一个质点所受的力矩的代数和等于零。
在实际中,通常通过支点来实现转动定轴,比如钟摆、摇摆、旋转的转轴等。
2. 刚体的角位移、角速度和角加速度在刚体定轴转动中,刚体围绕定轴线进行旋转,其角位移、角速度和角加速度是非常重要的物理量。
角位移表示刚体在围绕定轴线旋转的过程中所经过的角度变化量,通常用θ表示;角速度表示刚体围绕定轴线旋转的速度,通常用ω表示;角加速度表示刚体围绕定轴线旋转的加速度,通常用α表示。
3. 牛顿第二定律在刚体定轴转动中的应用牛顿第二定律也适用于刚体定轴转动的情况。
在刚体定轴转动中,外力会给刚体带来转动运动,根据牛顿第二定律,刚体的角加速度与作用在其上的外力矩成正比。
因此,可以根据力矩的大小和方向来分析刚体的转动运动。
4. 转动惯量和转动动能在刚体定轴转动中,转动惯量是一个非常重要的物理量。
转动惯量描述了刚体围绕定轴线旋转的难易程度,其大小与刚体的质量分布和轴线的位置有关。
转动动能是刚体围绕定轴线旋转的能量,其大小取决于刚体的转动惯量和角速度。
5. 转动定律和角动量守恒定律在刚体定轴转动中,转动定律和角动量守恒定律是非常重要的定律。
转动定律描述了刚体受力矩产生的角加速度与所受力矩的关系,角动量守恒定律描述了刚体转动过程中角动量的守恒规律。
6. 平衡条件和稳定性分析在刚体定轴转动中,平衡条件和稳定性分析是非常重要的内容。
通过平衡条件,可以分析刚体围绕定轴线旋转的平衡状态。
稳定性分析则是分析刚体在平衡状态下的稳定性,通常通过刚体的势能函数和平衡位置的稳定性来进行分析。
7. 应用领域刚体定轴转动的理论和方法在工程技术、航空航天、机械制造、物理学等领域都有重要的应用价值。
比如在机械制造中,可以通过分析刚体的定轴转动来设计机械装置;在航空航天中,可以通过分析刚体的定轴转动来设计飞行器的运动控制系统。