刚体定轴转动练习题
- 格式:doc
- 大小:165.50 KB
- 文档页数:3
【大题】工科物理大作业04-刚体定轴转动 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN0404 刚体定轴转动班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1.某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元来说,在下列关于其法向加速度n a 和切向加速度τa 的表述中,正确的是:A .n a 、τa 的大小均随时间变化;B .n a 、τa 的大小均保持不变;C .n a 的大小变化,τa 的大小保持恒定;D .n a 的大小保持恒定,τa 大小变化。
(C )[知识点]刚体匀变速定轴转动特征,角量与线量的关系。
[分析与题解] 刚体中任一质元的法向、切向加速度分别为 r a n 2ω=,r a τβ=当β = 恒量时,t βωω+=0 ,显然r t r a n 202)(βωω+==,其大小随时间而变,ra τβ=的大小恒定不变。
2. 两个均质圆盘A 和B ,密度分别为ρA 和ρB ,且B ρρ>A ,但两圆盘的质量和厚度相同。
若两盘对通过盘心且与盘面垂直的轴的转动惯量分别为A I 和B I ,则 A .B I I >A; B. B I I <A ;C .B I I =A ; D. 不能确定A I 和B I 的相对大小。
(B )[知识点]转动惯量的计算。
[分析与题解] 设A 、B 两盘厚度为d ,半径分别为R A 和R B ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>, 所以22B A R R < 且转动惯量221mR I =,则B A I I <3.在下列关于刚体的表述中,不正确的是:A .刚体作定轴转动时,其上各点的角速度相同,线速度不同;B .刚体定轴转动的转动定律为βI M =,式中β,,I M 均对同一条固定轴而言的,否则该式不成立;C .对给定的刚体而言,它的质量和形状是一定的,则其转动惯量也是唯一确定的;D .刚体的转动动能等于刚体上各质元的动能之和。
刚体简单运动(23题)一、是非题(正确用√,错误用×,填入括号内。
)1. 定轴转动刚体上与转动轴平行的任一直线上的各点加速度的大小相等,而且方向也相同。
( √ )2. 刚体作平动时,其上各点的轨迹可以是直线,可以是平面曲线,也可以是空间曲线。
( √ )3. 刚体作定轴转动时,垂直于转动轴的同一直线上的各点,不但速度的方向相同而且其加速度的方向也相同。
( √ )4. 两个作定轴转动的刚体,若其角加速度始终相等,则其转动方程相同。
( × )5. 刚体平动时,若刚体上任一点的运动已知,则其它各点的运动随之确定。
( √ )6. 如果刚体上各点的轨迹都是圆,则该刚体一定作定轴转动。
( × )7. 刚体的平动和定轴转动都是刚体平面运动的特殊情形。
( × )8. 刚体绕定轴转动时,下列说法是否正确:(1)当转角ϕ >0时,角速度ω为正。
(×)(2)当角速度0>ω时,角加速度为正。
(×)(3)当ϕ >0,0>ω时,必有ϕ >0。
(×)(4)当ϕ>0时为加速转动, ϕ >0时为减速转动。
(×)(5)当ϕ与ω同号时为加速转动, 当α与ω异号时为减速转动。
(√)9. 刚体绕定轴OZ 转动,其上任一点M 的矢径、速度和加速度分别为a a a v OM 、、、、τn ,问下述说法是否正确:(1) n a 必沿OM 指向O 点。
(×)(2) τa 必垂直于矢径OM 。
(√)(3) a 方向同OM ,指向可与OM 同向或反向。
(×)(4) v 必垂直于OM 、a 与n a 。
(√)二、单选题10. 在图示机构中,杆B O A O 21//,杆D O C O 32//,且201=A O cm ,402=C O cm,CM=MD =30cm, 若杆1AO 以角速度ω=3rad/s 匀速转动,则D 点的速度的大小为____B_____cm ,M 点的加速度的大小为____D_____。
- 第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为,角加速度为,则其转动加快的依据是:( )A. > 0B. > 0,> 0C. < 0,> 0D.> 0,< 0解:答案是B 。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线- 作定轴转动,则在2秒F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
简要提示:由定轴转动定律: α221MR FR =,得:mRF t 4212==∆αθ 所以:m F M W /42=∆=θ5. 一电唱机的转盘正以 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J +B .0121ωJ J J +C .021ωJ JD .012ωJ J 解:答案是A 。
刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。
设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。
B 角速度从小到大,角加速度从小到大。
C 角速度从大到小,角加速度从大到小。
D 角速度从大到小,角加速度从小到大。
3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。
(B )n a 、t a 的大小均保持不变。
(C )n a 的大小变化, t a 的大小恒定不变。
(D )n a 的大小恒定不变, t a 的大小变化。
5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
A 只有(1)是正确的。
B (1),(2)正确,(3),(4)错误。
刚体定轴转动习题刚体定轴转动⼀、选择题(每题3分)1、个⼈站在有光滑固定转轴的转动平台上,双臂伸直⽔平地举起⼆哑铃,在该⼈把此⼆哑铃⽔平收缩到胸前的过程中,⼈、哑铃与转动平台组成的系统的( )(A)机械能守恒,⾓动量守恒; (B)机械能守恒,⾓动量不守恒,(C)机械能不守恒,⾓动量守恒; (D)机械能不守恒,⾓动量不守恒.2、⼀圆盘绕通过盘⼼且垂直于盘⾯的⽔平轴转动,轴间摩擦不计.如图射来两个质量相同,速度⼤⼩相同,⽅向相反并在⼀条直线上的⼦弹,它们同时射⼊圆盘并且留在盘内,则⼦弹射⼊后的瞬间,圆盘和⼦弹系统的⾓动量L以及圆盘的⾓速度ω的变化情况为( ) (A) L 不变,ω增⼤ (B) 两者均不变(C) L不变,ω减⼩ (D) 两者均不确定3、有两个⼒作⽤在⼀个有固定转轴的刚体上:(1)这两个⼒都平⾏于轴作⽤时,它们对轴的合⼒矩⼀定是零(2)这两个⼒都垂直于轴作⽤时,它们对轴的合⼒矩可能是零(3)当这两个⼒的合⼒为零时,它们对轴的合⼒矩也⼀定是零(4)当这两个⼒对轴的合⼒矩为零时,它们的合⼒也⼀定是零在上述说法中,正确的是()(A)只有(1)是正确的(B)只有(1)、(2)正确(C)只有(4)是错误的(D)全正确4、以下说法中正确的是()(A)作⽤在定轴转动刚体上的⼒越⼤,刚体转动的⾓加速度越⼤。
(B)作⽤在定轴转动刚体上的合⼒矩越⼤,刚体转动的⾓速度越⼤。
(C)作⽤在定轴转动刚体上的合⼒矩越⼤,刚体转动的⾓加速度越⼤。
(D)作⽤在定轴转动刚体上的合⼒矩为零,刚体转动的⾓速度为零。
5、⼀质量为m的均质杆长为l,绕铅直轴o o'成θ⾓转动,其转动惯量为()6、⼀物体正在绕固定光滑轴⾃由转动()(A) 它受热膨胀或遇冷收缩时,⾓速度不变.(B) 它受热时⾓速度变⼩,它遇冷时⾓速度变⼤.(C)它受热或遇冷时,⾓速度均变⼤.(D) 它受热时⾓速度变⼤,它遇冷时⾓速度变⼩.O7、关于刚体对轴的转动惯量,下列说法中正确的是( )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置⽆关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置⽆关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布⽆关.8、两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若A ρ﹥B ρ,但两圆盘的质量与厚度相同,如两盘对通过盘⼼垂直于盘⾯的转动惯量各为J A 和J B ,则()(A )J A >J B (B )J B >J A(C )J A = J B (D )J A 、 J B 哪个⼤,不能确定9、某转轮直径d =40cm ,以⾓量表⽰的运动⽅程为θ=3t -3.02t +4.0t ,式中θ的单位为rad,t 的单位为s,则t =2.0s 到t =4.0s 这段时间内,平均⾓加速度为( )(A)212-?srad (B)26-?s rad(C)218-?s rad (C)212-?s m10、轮圈半径为R ,其质量M 均匀分布在轮缘上,长为R 、质量为m 的均质辐条固定在轮⼼和轮缘间,辐条共有2N 根。
第2章 刚体定轴转动一、选择题1(B),2(B),3(C),4(C),5(C) 二、填空题(1). 62.5 1.67s (2). 4.0 rad/ (3). 0.25 kg ·m 2(4). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(5). 2E 0三、计算题1. 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度π rad /s 2由静止起动,轮与皮带间无滑动发生.试求A 轮达到转速3000 rev/min 所需要的时间.解:设A 、B 轮的角加速度分别为βA 和βB ,由于两轮边缘的切向加速度相同, a t = βA r 1 = βB r 2则 βA = βB r 2 / r 1 A 轮角速度达到ω所需时间为()75.03.060/2300021⨯π⨯π⨯===r r t B Aβωβωs =40 s2.一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径).解:R = 0.5 m ,ω0 = 900 rev/min = 30π rad/s ,根据转动定律 M = -J β ① 这里 M = -μNR ②μ为摩擦系数,N 为正压力,221mR J =. ③ 设在时刻t 砂轮开始停转,则有: 00=+=t t βωω从而得 β=-ω0 / t ④将②、③、④式代入①式,得 )/(2102t mR NR ωμ-=- ∴ m =μR ω0 / (2Nt )≈0.5r1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 β =M /J设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==4220θβω可得 g R MJ n μωωπ16/342020=π=2. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.解:根据转动定律: J d ω / d t = -k ω ∴ t J kd d -=ωω两边积分:⎰⎰-=t t J k02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k5.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg T =ma ① T r =J β ② 由运动学关系有: a = r β ③ 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0 ∴ S =221at , a =2S / t 2 ⑤将⑤式代入④式得:J =mr 2(Sgt22-1)3.如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度. 解:作示力图.两重物加速度大小a 相同,方向如图.m 1g -T 1=m 1a T 2-m 2g =m 2a 设滑轮的角加速度为β,则 (T 1-T 2)r =J β 且有 a =r β 由以上四式消去T 1,T 2得: ()()J r m m gr m m ++-=22121β 开始时系统静止,故t 时刻滑轮的角速度.()()Jrm m grt m m t ++-==22121 βω7.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:(1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v ∴ l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ·s -1(2) 由转动定律,得: -M r =(231ml +2l m ')β0-ω 2=2βθ∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad8.如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求: mm , lOm '(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩.解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω,又ωB =0得: ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min (2) A 轮受的冲量矩⎰t MAd = J A (J A +J B ) = -4.19×10 2 N ·m ·s负号表示与A ωϖ方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ωϖ相同.4.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以 L m mL 022112/7v =ω ∴ ω = 6v 0 / (7L)10. 空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.小球到B 点时: J 0ω0=(J 0+mR 2)ω ①2121()22220200212121BR m J mgR J v ++=+ωωω ② 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得222002J mR RJ gR B ++=ωv 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即: ()R mg m C 2212=v , gR C 4=v 四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
第二章 刚体定轴转动练习题
1.(0148) 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体
(A) 必然不会转动. (B) 转速必然不变.
(C) 转速必然改变. (D) 转速可能不变,也可能改变.
2.(0165) 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小.
(B) 角速度从小到大,角加速度从小到大.
(C) 角速度从大到小,角加速度从大到小. (D) 角速度从大到小,角加速度从小到大.
3.(0292) 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将
(A) 不变. (B) 变小.
(C) 变大. (D) 如何变化无法判断.
4.(5401) 有两个力作用在一个有固定转轴的刚体上:
(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;
(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;
(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;
(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.
在上述说法中,
(A) 只有(1)是正确的.
(B) (1) 、(2)正确,(3) 、(4) 错误.
(C) (1)、(2) 、(3) 都正确,(4)错误.
(D) (1) 、(2) 、(3) 、(4)都正确.
5. (0197) 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统
(A) 动量守恒.
(B) 机械能守恒.
(C) 对转轴的角动量守恒.
(D) 动量、机械能和角动量都守恒. (E) 动量、机械能和角动量都不守恒.
6. (0230) 一圆盘正绕垂直于盘面的水平光滑固定轴
O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬
间,圆盘的角速度ω
(A) 增大. (B) 不变.
(C) 减小. (D) 不能确定.
7. (0294) 刚体角动量守恒的充分而必要的条件是
(A) 刚体不受外力矩的作用.
(B) 刚体所受合外力矩为零.
(C) 刚体所受的合外力和合外力矩均为零.
(D) 刚体的转动惯量和角速度均保持不变.
8. (0110) 一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s ,
再转60转后角速度为ω2=30π rad /s ,则角加速度β =_____________,转过上述 60转所需的时间Δt =________________.
9. (0111) 利用皮带传动,用电动机拖动一个真空
泵.电动机上装一半径为 0.1m 的轮子,真空泵
上装一半径为0.29m 的轮子,如图所示.如果电动机的转速为1450 rev/min ,则真空泵上的轮子的
边缘上
一点的线速度为__________________,真空泵的转速为____________________.
10.(0240) 一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的
制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________.
11. (0125) 一飞轮以角速度ω0绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度ω=__________________.
12. (0163) 一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地
将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度; (2) 棒转到水平位置时的角加速度.
13. (0241) 一轴承光滑的定滑轮,质量为M =2.00 kg ,半径为R =0.100 m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系
有一质量为m =5.00 kg 的物体,如图所示.已知定滑轮的转动惯
量为J =22
1MR ,其初角速度 ω0=10.0 rad/s ,方向垂直纸面向里.求:
(1) 定滑轮的角加速度的大小和方向;
(2) 定滑轮的角速度变化到ω=0时,物体上升的高度;
(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.
14. (0304) 有两位滑冰运动员,质量均为50 kg ,沿着距离为3.0 m 的两条平行路径相互滑近.他们具有10 m/s 的等值反向的速度.第一个运动员手握住一根3.0 m 长的刚性轻杆的一端,当第二个运动员与他相距3m 时,就抓住杆的另一端.(假设冰面无摩擦)
(1) 试定量地描述两人被杆连在一起以后的运动.
(2) 两人通过拉杆而将距离减小为1.0m ,问这以后他们怎样运动?
15. (0784) 如图所示,一半径为R 的匀质小木球固结在一长度为l 的匀质细棒的下端,且可绕水平光滑固定轴O 转动.今有一质量为m ,速度为0v 的子弹,沿着与水平面成
α角的方向射向球心,且嵌于球心.已知小木球、细棒对通过O 的水平轴的转动惯量的总和为J .求子弹嵌入球心后系统的共同角速度.
16. (0787) 一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对
轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所
示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:
(1) 棒开始和子弹一起转动时角速度ω有多大?
(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?
17. (0115) 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量22
1mR J =,其中m 为圆形平板的质量)
m , l m '。