§2 变换群、置换群与循环群
- 格式:ppt
- 大小:454.50 KB
- 文档页数:22
§1 第一章 基础知识1 判断题:1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )1.2 A ×B = B ×A ( )1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。
( ) 1.4 如果ϕ是A 到A 的一一映射,则ϕ[ϕ(a)]=a 。
( )1.5 集合A 到B 的可逆映射一定是A 到B 的双射。
( )1.6 设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )1.7 在整数集Z 上,定义“ ”:a b=ab(a,b ∈Z),则“ ”是Z 的一个二元运算。
( )1.8 整数的整除关系是Z 的一个等价关系。
( )2填空题:2.1 若A={0,1} , 则A A= __________________________________。
2.2 设A = {1,2},B = {a ,b},则A ×B =_________________。
2.3 设={1,2,3} B={a,b},则A ⨯B=_______。
2.4 设A={1,2}, 则A A=_____________________。
2.5 设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B 。
2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 。
2.7 设A ={a 1, a 2,…a 8},则A 上不同的二元运算共有 个。
2.8 设A 、B 是集合,| A |=| B |=3,则共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。
2.9 设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2.10 设A={a,b,c},则A 到A 的一一映射共有__________个.2.11 设A={a,b,c,d,e},则A 的一一变换共有______个.2.12 集合A 的元间的关系~叫做等价关系,如果~适合下列三个条件:_____________________________________________。
(V )循环群·变换群和置换群一、定义及例子1、定义:设G 是群,若存在a ∈G 使得G 中任意元素均为a 的幂,即G=(a )【=(a -1)】2、例子:(1)Z =(1)(2)(Z 12,+)=([1])=([11])注:([5])=Z 12,([7]),([11])【小于12的素数都能生成Z 12】(3)n 次单位根群Un 【Unit 】)(),(},1|{0ω=⨯⊆∈==∈≠*C C x x x U Nn n nn n i ππω22sin cos +=二、生成元,循环群1、循环群的元素⎩⎨⎧∞=∈>===-)(},|{0)(},,...,,{)(1a o Z i a m a o a a e a G i m 2、生成元(1)1,)(±=⇔∞=r a a o r是生成元(2)1),(,)(=⇔=n r a n a o r 是生成元 {}xi x e n r n r r n n ix sin cos Enler 1,1),(|)(n n )(#+=≤≤==):欧拉公式(互素的。
的数中与:小于欧拉数ϕϕ如(Z 12,+)=([1])=([5])=([7])=([11])三、循环群的子群1、循环群的子群是循环群2、循环群子群的分类 }|1|){(G ),(,0)()2(}0|){(G ),(,)()1(n r n r a a G n a o r a a G a o r r 且的所有子群为则设的所有子群为则设≤≤=>=≥=∞=变换群和置换群·任意一个置换可以写成若干个对换的乘积。
·(ij)=(1i)(1j)(1i)·任意一个置换可以写成若干个形如(1i )的乘积(2≤i ≤n ) 置换的性质)()...()()...(6],...,,[)()(5/*/*)...)(...()...)( (4)...()...(3))...((2)...()...()...(12112121212121212111121211113221r r t i i t r r r r r r r r r r r r i i i i i i rr r r o r o i i i j j j j j j i i i i i i i i i ri i i o i i i i i i i i i i σσσσσσσσσσσ====⋅⋅⋅======----、附加:则不相连)且是循环置换的表示(互、前提:无交、、、、。
§ 1 第一章 基础知识1 判断题:1.1 设A 与B 都是非空集合,那么 A 同 B = {x x = A 且x = B}。
( )1.2 A ×B = B ×A ( )1.3 只要f 是 A 到 A 的一一映射,那么必有唯一的逆映射 f - 1 。
( )1.4 如果Q 是 A 到 A 的一一映射,则Q [Q (a)]=a 。
( )1.5 集合 A 到 B 的可逆映射一定是 A 到 B 的双射。
( )1.6 设A 、 B 、 D 都是非空集合,则 A 根 B 到D 的每个映射都叫作二元运算。
( )1.7 在整数集 Z 上, 定义“o ”:a o b=ab(a,b∈Z),则“ o ”是 Z 的一个二元运算。
( )1.8 整数的整除关系是 Z 的一个等价关系。
( )2 填空题:2.1 若 A={0,1} , 则 A A= __________________________________ 。
2.2 设 A = {1, 2}, B = {a , b}, 则 A×B =_________________ 。
2.3 设={1,2,3} B={a,b}, 则 A 根 B=_______。
2.4 设 A={1,2}, 则 A A=_____________________ 。
2.5 设集合 A = {- 1,0,1}; B = {1,2} ,则有 B 根 A = 。
2.6 如果 f 是A 与 A 间的一一映射, a 是 A 的一个元,则 f - 1 [f(a)] = 。
2.7 设 A = { a 1, a 2 ,…a 8 }, 则 A 上不同的二元运算共有 个。
2.8 设 A 、B 是集合, | A | = | B |=3, 则共可定义 个从 A 到 B 的映射, 其中 有 个单射,有 个满射,有 个双射。
2.9 设 A 是 n 元集, B 是 m 元集,那么 A 到 B 的映射共有____________个.2.10 设 A={a,b,c},则 A 到 A 的一一映射共有__________个.2.11 设 A={a,b,c,d,e},则 A 的一一变换共有______个.2.12 集 合 A 的 元 间 的 关 系~ 叫 做 等 价 关 系, 如 果 ~ 适 合 下 列 三 个 条 件: _____________________________________________ 。