167;2变换群、置换群与循环群
- 格式:ppt
- 大小:175.50 KB
- 文档页数:20
交换群与循环群的关系在数学领域中,交换群和循环群是两个重要的概念。
它们之间存在一定的联系和区别,本文将从不同的角度对这两个概念进行探讨。
一、交换群的定义和特点交换群,也称为阿贝尔群,是一个满足交换律的群。
群是一种代数结构,它由一组元素和一种二元运算组成。
对于任意的元素a和b,交换群中的运算符满足交换律,即a*b=b*a。
这意味着交换群中的元素可以以任意顺序进行运算,结果都是相同的。
交换群具有以下特点:1. 封闭性:交换群中的元素进行运算后的结果仍然属于该群。
2. 结合律:交换群中的运算符满足结合律,即(a*b)*c=a*(b*c)。
3. 存在单位元:交换群中存在一个特殊元素,称为单位元,它与该群中的任意元素进行运算得到的结果都是该元素本身。
4. 存在逆元:交换群中的每个元素都存在一个逆元,它与该元素进行运算得到的结果是单位元。
二、循环群的定义和特点循环群是一种特殊的群,它由一个元素生成。
这个元素称为生成元,它可以通过自身的运算和运算的次数来生成群中的所有元素。
循环群可以用一个生成元和运算符的指数形式来表示。
循环群具有以下特点:1. 封闭性:循环群中的元素进行运算后的结果仍然属于该群。
2. 存在单位元:循环群中存在一个特殊元素,称为单位元,它与该群中的任意元素进行运算得到的结果都是该元素本身。
3. 存在逆元:循环群中的每个元素都存在一个逆元,它与该元素进行运算得到的结果是单位元。
4. 生成性:循环群中的一个元素可以通过运算的次数和生成元来生成群中的所有元素。
5. 无穷性:循环群中的元素可以进行无限次运算,得到无穷多个元素。
三、交换群与循环群的关系交换群和循环群之间存在一定的联系和区别。
循环群是交换群的一种特殊情况,即循环群是满足交换律的群。
因此,循环群也具有交换群的特点,包括封闭性、结合律、存在单位元和逆元等。
然而,交换群并不一定是循环群。
交换群中的元素可以以任意顺序进行运算,而循环群中的元素则是由一个生成元按照一定的规律生成的。
(V )循环群·变换群和置换群一、定义及例子1、定义:设G 是群,若存在a ∈G 使得G 中任意元素均为a 的幂,即G=(a )【=(a -1)】2、例子:(1)Z =(1)(2)(Z 12,+)=([1])=([11])注:([5])=Z 12,([7]),([11])【小于12的素数都能生成Z 12】(3)n 次单位根群Un 【Unit 】)(),(},1|{0ω=⨯⊆∈==∈≠*C C x x x U Nn n nn n i ππω22sin cos +=二、生成元,循环群1、循环群的元素⎩⎨⎧∞=∈>===-)(},|{0)(},,...,,{)(1a o Z i a m a o a a e a G i m 2、生成元(1)1,)(±=⇔∞=r a a o r是生成元(2)1),(,)(=⇔=n r a n a o r 是生成元 {}xi x e n r n r r n n ix sin cos Enler 1,1),(|)(n n )(#+=≤≤==):欧拉公式(互素的。
的数中与:小于欧拉数ϕϕ如(Z 12,+)=([1])=([5])=([7])=([11])三、循环群的子群1、循环群的子群是循环群2、循环群子群的分类 }|1|){(G ),(,0)()2(}0|){(G ),(,)()1(n r n r a a G n a o r a a G a o r r 且的所有子群为则设的所有子群为则设≤≤=>=≥=∞=变换群和置换群·任意一个置换可以写成若干个对换的乘积。
·(ij)=(1i)(1j)(1i)·任意一个置换可以写成若干个形如(1i )的乘积(2≤i ≤n ) 置换的性质)()...()()...(6],...,,[)()(5/*/*)...)(...()...)( (4)...()...(3))...((2)...()...()...(12112121212121212111121211113221r r t i i t r r r r r r r r r r r r i i i i i i rr r r o r o i i i j j j j j j i i i i i i i i i ri i i o i i i i i i i i i i σσσσσσσσσσσ====⋅⋅⋅======----、附加:则不相连)且是循环置换的表示(互、前提:无交、、、、。
§ 1 第一章 基础知识1 判断题:1.1 设A 与B 都是非空集合,那么 A 同 B = {x x = A 且x = B}。
( )1.2 A ×B = B ×A ( )1.3 只要f 是 A 到 A 的一一映射,那么必有唯一的逆映射 f - 1 。
( )1.4 如果Q 是 A 到 A 的一一映射,则Q [Q (a)]=a 。
( )1.5 集合 A 到 B 的可逆映射一定是 A 到 B 的双射。
( )1.6 设A 、 B 、 D 都是非空集合,则 A 根 B 到D 的每个映射都叫作二元运算。
( )1.7 在整数集 Z 上, 定义“o ”:a o b=ab(a,b∈Z),则“ o ”是 Z 的一个二元运算。
( )1.8 整数的整除关系是 Z 的一个等价关系。
( )2 填空题:2.1 若 A={0,1} , 则 A A= __________________________________ 。
2.2 设 A = {1, 2}, B = {a , b}, 则 A×B =_________________ 。
2.3 设={1,2,3} B={a,b}, 则 A 根 B=_______。
2.4 设 A={1,2}, 则 A A=_____________________ 。
2.5 设集合 A = {- 1,0,1}; B = {1,2} ,则有 B 根 A = 。
2.6 如果 f 是A 与 A 间的一一映射, a 是 A 的一个元,则 f - 1 [f(a)] = 。
2.7 设 A = { a 1, a 2 ,…a 8 }, 则 A 上不同的二元运算共有 个。
2.8 设 A 、B 是集合, | A | = | B |=3, 则共可定义 个从 A 到 B 的映射, 其中 有 个单射,有 个满射,有 个双射。
2.9 设 A 是 n 元集, B 是 m 元集,那么 A 到 B 的映射共有____________个.2.10 设 A={a,b,c},则 A 到 A 的一一映射共有__________个.2.11 设 A={a,b,c,d,e},则 A 的一一变换共有______个.2.12 集 合 A 的 元 间 的 关 系~ 叫 做 等 价 关 系, 如 果 ~ 适 合 下 列 三 个 条 件: _____________________________________________ 。
交换群与循环群的关系交换群和循环群是抽象代数学中的两个重要概念,它们之间存在着密切的联系和相互关系。
首先,我们来介绍一下交换群和循环群的概念。
交换群,也叫做阿贝尔群,是由一组元素以及一个二元运算组成的代数结构。
这个二元运算通常表示为“+”,并且满足以下性质:1. 封闭性:对于任意的元素a、b∈G,有a+b∈G。
2. 结合律:对于任意的元素a、b、c∈G,有(a+b)+c=a+(b+c)。
3. 存在单位元素:存在一个元素0∈G,使得对于任意的元素a ∈G,有a+0=a。
4. 存在逆元素:对于任意的元素a∈G,存在一个元素-b∈G,使得a+b=0。
5. 交换律:对于任意的元素a、b∈G,有a+b=b+a。
而循环群则是由一个生成元a和一个二元运算组成的群,这个二元运算通常表示为“×”,并且满足以下性质:1. 封闭性:对于任意的元素ai、aj∈G,有ai×aj=ak∈G。
2. 结合律:对于任意的元素ai、aj、ak∈G,有(ai×aj)×ak=ai ×(aj×ak)。
3. 存在单位元素:存在一个元素e∈G,使得对于任意的元素ai ∈G,有ai×e=ai。
4. 存在逆元素:对于任意的元素ai∈G,存在一个元素aj∈G,使得ai×aj=e。
5. 生成性:对于任意的元素ai∈G,都可以表示成a的幂次方的形式,即ai=a^k,其中k为整数。
从定义可以看出,循环群是一种特殊的群,它的元素都可以表示成生成元的幂次方。
而交换群则是一种满足交换律的群,它的元素之间的运算顺序不影响最终结果。
接着,我们来探讨一下交换群和循环群的关系。
首先,循环群是一种群,因此它也是一种交换群。
因为循环群中的运算满足交换律,即ai×aj=aj×ai,所以循环群也是一个交换群。
另外,交换群和循环群之间还存在着更为深刻的联系,即任意一个有限交换群都可以表示成循环群的直积的形式。
11.7 循环群与置换群一、循环群1. 循环群的定义定义11.14 设G 是群,若a G ∃∈使得{|}k G a k Z =∈, 则称G 是循环群,记作G a =<>,称a 为G 的生成元。
注意:(1) 对于任何群G ,由G 中元素a 生成的子群是循环群。
(2) 任何素数阶的群都是循环群。
设G 是循环群,若a 是n 阶元,则0121{,,,,}n G a e a a a -== , 那么|G|=n ,称G 为n 阶循环群。
若a 是无限阶元,则012{,,,}G a e a a ±±== , 这时称G 为无限阶循环群。
例如 (1)G=<Z,+>是无限阶循环群。
(2)G=<Z 6,⊕>是6阶循环群。
2.循环群的性质定理 11.20 设G a =<>是循环群.(1)若G 是无限循环群,则G 只有两个生成元,即a 和a -1.(2)若G 是n 阶循环群,则G 含有()n ϕ个生成元,对于任何小于等于n 且与n 互质的正整数r ,a r 是G 的生成元。
证 (1)显然1a G -<>⊆,为了证明1G a -⊆<>,只须证明对任何k a G ∈,a k 都可以表达成a -1的幂。
由定理11.1有11()k a a --=,从而得到1G a -=<>,1a -是G 的生成元。
再证明G 中只有a 和a -1这两个生成元,假设b 也是G 的生成元,则G b =<>。
由a G ∈可知存在整数t 使得ta b =,又由b G a ∈=<>可知存在整数m 使得m b a =。
从而得到()t m t mt a b a a === 则由消去律得1mt a e -=。
因为G 是无限群,必有mt-1=0。
从而证明了m=t=1或m=t=-1,即b=a 或b=a -1。
(2) 只须证明:()r Z r n ∀∈≤,a r 是G 的生成元当且仅当n 与r 互质。
第九讲§置换群(pormutation group)本讲的教学目的和要求:置换群是一种特殊的变换群。
换句话说,置换群就是有限集上的变换群。
由于是定义在有限集上,故每个置换的表现形式,固有特点都是可揣测的。
这一讲主要要求:1º弄清置换与双射的等同关系。
2º掌握置换—轮换—对换之间的联系和置换的奇偶性。
3º置换的分解以及将轮换表成对换之积的基本方法要把握。
4º对称群与交错群的结构以及有限群的cayley定理需要理解。
本讲的重点与难点:对于置换以及置换群需要侧重注意的是:对称群和交错群的结构和置换的分解定理(定理2)。
注意:由有限群的cayley定理可知:如把所有置换群研究清楚了。
就等于把所有有限群都研究清楚了,但经验告诉我们,研究置换群并不比研究抽象群容易。
所以,一般研究抽象群用的还是直接的方法。
并且也不能一下子把所有群都不得找出来。
因为问题太复杂了。
人们的方法是将群分成若干类(即附加一定条件);譬如有限群;无限群;变换群;非变换群等等。
对每个群类进行研究以设法回答上述三个问题。
可惜,人们能弄清的群当今只有少数几类(后面的循环群就是完全解决了的一类群)大多数还在等待人们去解决。
变换群是一类应用非常广泛的群,它的具有代表性的特征—置换群,是现今所研究的一切抽象群的来源,是抽象代数创始人E.Galais(1811-1832)在证明次数大于四的一元代数方程不可能用根号求解时引进的。
一.置换群的基本概念定义1.任一集合A到自身的映射都叫做A的一个变换,如果A是有限集且变换是一一变换(双射),那么这个变换为A的一个置换。
有限集合A的若干个置换若作成群,就叫做置换群。
含有n个元素的有S.限群A的全体置换作成的群,叫做n次对称群。
通常记为n明示:由定义1知道,置换群就是一种特殊的变换群(即有限集合上的变换群)S也就是有限集合A的完全变换群。
而n次对称群n现以{}321 , , a a a A =为例,设π:A →A 是A 的一一变换。