游程编码
- 格式:ppt
- 大小:165.00 KB
- 文档页数:16
摘要为了减少信源输出符号序列中的剩余度、提高符号的平均信息量,对信源输出的符号序列所施行的变换。
具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。
最原始的信源编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。
但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z编码,这三种都是无损编码,另外还有一些有损的编码方式。
信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。
相应地,信道编码是为了对抗信道中的噪音和衰减,通过增加冗余,如校验码等,来提高抗干扰能力以及纠错能力。
关键词:信源;信道;编码;游程编码1课题描述游程编码又称“运行长度编码”或“行程编码”,是一种统计编码,该编码属于无损压缩编码,是栅格数据压缩的重要编码方法。
对于二值图有效。
在对图像数据进行编码时,沿一定方向排列的具有相同灰度值的像素可看成是连续符号,用字串代替这些连续符号,可大幅度减少数据量。
相应地,信道编码是为了对抗信道中的噪音和衰减,通过增加冗余,如校验码等,来提高抗干扰能力以及纠错能力。
2 信源编码2.1概念一种以提高通信有效性为目的而对信源符号进行的变换;为了减少或消除信源剩余度而进行的信源符号变换,对输入信息进行编码,优化信息和压缩信息并且打成符合标准的数据包2.2信源编码作用信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩:作用之二是将信源的模拟信号转化成数字信号,以实现模拟信号的数字化传输。
2.3编码方式最原始的信源编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。
但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z编码,这三种都是无损编码,另外还有一些有损的编码方式。
信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。
算术编码与游程编码1 .课题描述1.理解和掌握算术编码和游程编码的基本原理。
2.编程实现算术编码和游程编码的基本流程。
3.了解算术编码和游程编码的优缺点。
4.分析实验结果。
2 信源编码的相关介绍编码实质上是对信源的原始符号按一定规则进行的一种变换。
编码可分为信源编码和信道编码。
信源编码:以提高通信有效性为目的的编码。
通常通过压缩信源的冗余度来实现。
采用的一般方法是压缩每个信源符号的平均比特数或信源的码率。
即同样多的信息用较少的码率传送,使单位时间内传送的平均信息量增加,从而提高通信的有效性。
•信源编码理论是信息论的一个重要分支,其理论基础是信源编码的两个定理。
–无失真信源编码定理:是离散信源/数字信号编码的基础;–限失真信源编码定理:是连续信源/模拟信号编码的基础。
•信源编码的分类:–离散信源编码:独立信源编码,可做到无失真编码;–连续信源编码:独立信源编码,只能做到限失真信源编码;–相关信源编码:非独立信源编码。
信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩:作用之二是将信源的模拟信号转化成数字信号,以实现模拟信号的数字化传输。
最原始的信源编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。
但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z编码,这三种都是无损编码,另外还有一些有损的编码方式。
信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。
另外,在数字电视领域,信源编码包括通用的MPEG—2编码和H.264(MPEG—Part10 AVC)编码等相应地,信道编码是为了对抗信道中的噪音和衰减,通过增加冗余,如校验码等,来提高抗干扰能力以及纠错能力。
•3 . 算术编码3.1算术编码算法算术编码在图像数据压缩标准中扮演了重要的角色, 是无损压缩的一种算术编码中用0和1之间的实数进行编码, 该编码用到两个基本的参数Α符号的概率和它的编码间隔信源符号的概率决定了压缩编码的效率, 也决定了编码过程中信源符号的间隔, 而这些间隔包含在0到1之间编码过程中的间隔决定了符号压缩后的输出算术编码的编码过程如下Α算术编码把一个信源集合表示为实数线上的0 到1 之间的一个区间。
实验五、游程编码实验目的掌握游程编码过程,并实现游程编码实验环境C语言读写文件实验内容从文件中读取下列二元编码00001110010101100001110001110001111010,实现其游程编码。
源代码实验结果实验总结#include<stdio.h>void main(){int i,count=1,b;//up=0,low=0,space=0,digit=0,other=0;char str[60];FILE *fp;//printf("please input str:\n");//gets(str);if((fp=fopen("H:\\study\\C++\\file\\youcheng.txt","r+"))==NULL) {printf("不能打开文件!\n");exit(1);}printf("输出文本文件:\n");fgets(str,80,fp);printf("%s\n",str);fseek(fp,0,2);fprintf(fp,"\n");if(str[0]=='0')printf("统计输出结果:\n");fprintf(fp,"统计输出结果:\n");for(i=0;str[i];i++){if(str[i+1]==str[i]) count++;else{printf("%d",count);fprintf(fp,"%d",count);count=1;}}}else{printf("输入的文件有错!\n");fprintf(fp,"输入的文件有错!\n"); }printf("\n");fprintf(fp,"\n");fclose(fp);}测试结果:00001110010101100001110001110001111010(最开始输入的数据)统计输出结果:43211112433334111。
一、实验目的1. 理解游程长度编码(Run-Length Encoding,RLE)的基本原理和操作方法。
2. 掌握RLE在数据压缩中的应用,并分析其压缩效果。
3. 比较RLE与其他数据压缩方法在压缩比和压缩速度上的差异。
二、实验原理游程长度编码是一种无损数据压缩技术,它通过记录连续相同元素的长度来减少数据量。
在RLE中,数据序列被表示为一系列的(值,长度)对,其中“值”是连续相同元素的值,“长度”是该值的连续出现次数。
三、实验步骤1. 数据准备:选择一组原始数据,例如二值图像或文本文件。
2. 编码实现:编写程序实现RLE编码,包括:- 遍历原始数据,识别连续相同元素及其长度。
- 将识别出的元素和长度组合成(值,长度)对。
- 生成编码后的数据序列。
3. 解码实现:编写程序实现RLE解码,包括:- 解析编码后的数据序列,提取(值,长度)对。
- 根据提取出的(值,长度)对,重建原始数据序列。
4. 性能分析:比较原始数据和编码后数据的长度,计算压缩比。
同时,分析编码和解码的效率。
四、实验结果1. 数据示例:假设我们有一组二值图像,其像素值为0或1。
2. 编码过程:- 原始数据:0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1。
游程编码翟文婕张亚群陈红古明春游程编码RCL:又称“游程长度编码”,“运行长度编码”,或“行程编码”,是一种统计编码,该编码啊属于无损编码(指使用压缩后的数据进行重构(或者叫做还原,解压缩),重构后的数据与原来的数据完全相同)。
对于二值图有效。
在游程编码中,游码长度RL,简称游程,指由字符串构成的数据流中各个字符重复出现而形成的字符长度。
一.其编码的基本原理(RCL原理)如下:用一个符号值或串长代替具有相同值的连续符号,使符号长度少于原始数据的长度。
数据进行编码时,沿一定方向排列的具有相同灰度值的像素可看成是连续符号,用字串代替这些连续符号,可大幅度减少数据量。
需要注意的是:游程编码是连续精确的编码,在传输过程中,如果其中一位符号发生错误,即可影响整个编码序列,使行程编码无法还原回原始数据。
二.游程编码算法一般游程编码有两种算法,一种是使用1的起始位置和1的游程长度,另一种是只使用游程长度,如果第一个编码值为0,则表示游程长度编码是从0像素的长度开始。
两种方法各有优缺点:前一种存储比第二种困难,因此编程也比较复杂。
而后一种需要知道第一个像素值,故压缩编码算法中需给出所读出的图的第一个像素值。
三.基本RLC方法分析:基本RLC方法就是在数据流中直接用(数据字符X、串的位置Sc、串的长度RL)3个字符来给出上述3种信息。
但是用Sc作为前缀的低效、原字符串中RL 的长度和出现频度不够显著。
导致不实用。
所以我们在实际使用过程中在二值图像和连续色调图像中可以省去Sc,这样使得改进的RCL在图像编码中得到了广泛的应用。
四.具体编码, 以二值图像的游程编码为例接下来就以二值图像的游程编码为例具体介绍一下游程编码算法二值图像指是指仅有黑(用“1”代表)、白(用“0”代表)两个亮度值的图像。
可借助各种图像通信方式传输,最经典的通信方式是传真。
在对他编码时要对不同的白长(白像素游程)和黑长(黑像素游程)按其出现概率的不同分别配以不同长度的码字。
实验二游程编码一、实验目的1、掌握游程编码原理;2、理解数据编码压缩和译码输出编码的实现。
二、实验要求实现游程编码和译码的生成算法。
三、实验内容输入一幅二值图像,先统计要压缩编码的文件中的字符字母出现的次数,按字符字母和空格出现的概率对其进行哈夫曼编码,然后读入要编码的文件,编码后存入另一个文件;接着再调出编码后的文件,并对其进行译码输出,最后存入另一个文件中。
四、实验原理1、xx树的定义:假设有n个权值,试构造一颗有n个叶子节点的二叉树,每个叶子带权值为wi,其中树带权路径最小的二叉树成为哈夫曼树或者最优二叉树;2、xx树的构造:weight为输入的频率数组,把其中的值赋给依次建立的HT Node对象中的data属性,即每一个HT Node对应一个输入的频率。
然后根据data属性按从小到大顺序排序,每次从data取出两个最小和此次小的HT Node,将他们的data 相加,构造出新的HTNode作为他们的父节点,指针parent,leftchild,rightchild赋相应值。
在把这个新的节点插入最小堆。
按此步骤可以构造出一棵xx树。
通过已经构造出的哈夫曼树,自底向上,由频率节点开始向上寻找parent,直到parent为树的顶点为止。
这样,根据每次向上搜索后,原节点为父节点的左孩子还是右孩子,来记录1或0,这样,每个频率都会有一个01编码与之唯一对应,并且任何编码没有前部分是同其他完整编码一样的。
五、实验程序#include<stdio.h>#include<string.h>#define NUM 1000char dat,flag,str[NUM],b[NUM];printf("(请输入待编码的字符串)\n\n");printf("原字符串为:");gets(str);//输入待编码的字符串flag=str[0];//记下第一个字符值作为flag游程编码的起始值/************************编码部分**********************************************/printf("\n游程编码为:");for(i=0;i<strlen(str);i++)//输入字符串的循环{if(str[i+1]==str[i])/************************译码部分**********************************************/printf("\n\n译码结果为:");for(j=0;j<h;j++)//对计数数组进行循环,次数为游程改变的次数{ for(z=0;z<a[j];z++)flag='1';else if(flag=='1')flag='0';//让flag轮流从0和1切换赋值}for(x=0;x<k;x++)printf("%c",b[x]);//将译出的码显示出来printf("\n\n\n");}八、结果分析九、实验心得。