信息论 第4章(哈夫曼编码和游程编码)
- 格式:ppt
- 大小:1.28 MB
- 文档页数:20
信号处理中的数据压缩与编码技术数据压缩和编码技术在信号处理领域中扮演着重要的角色,它们可以有效地减少数据的存储和传输所需的资源。
本文将探讨信号处理中常用的数据压缩方法以及编码技术,并阐述它们在不同应用领域中的应用。
一、数据压缩方法1. 无损压缩无损压缩是指对信号进行压缩操作后能够完全恢复原始信号的压缩方法。
经典的无损压缩方法包括哈夫曼编码、算术编码和字典编码等。
这些方法利用信号中重复出现的模式来减少冗余信息,从而实现数据的高效压缩。
无损压缩方法常应用于对图像、音频和视频等数据的存储和传输。
2. 有损压缩有损压缩是指对信号进行压缩操作后由于信息丢失而无法完全恢复原始信号的压缩方法。
有损压缩方法主要应用于图像、音频和视频等数据,在保证较高的压缩率的同时,对原始信号的影响要尽可能地减小。
常用的有损压缩方法包括离散余弦变换(DCT)、小波变换以及基于统计模型的压缩方法等。
二、编码技术1. 香农编码香农编码是一种常用的无损编码方法,它根据源符号的概率分布进行编码,使得较常出现的符号用较短的编码表示。
这种编码方法广泛应用于数据压缩、通信和信息论等领域。
2. 游程编码游程编码是一种常用的无损编码方法,它利用符号连续重复出现的特性,用两个符号表示重复的次数和重复的符号。
游程编码在图像和视频压缩中得到了广泛应用,能够有效地减少冗余信息,提高压缩比。
3. 变长编码变长编码是一种根据符号出现的概率分布进行编码的方法,较高概率的符号用较短的编码表示,较低概率的符号用较长的编码表示。
常见的变长编码方法有哈夫曼编码和算术编码等,它们在信号处理中的压缩和传输中发挥着重要的作用。
三、应用领域1. 图像压缩与编码图像压缩和编码技术广泛应用于数字图像处理、图像传输和存储等领域。
通过对图像数据的压缩和编码,可以实现图像的高效传输和存储,减少存储空间和传输带宽的需求。
2. 音频压缩与编码音频压缩和编码技术常用于音频数据的存储和传输,如音乐文件的压缩和音频流的传输等。
信息论与编码课程设计--统计信源熵与哈夫曼编码信息论与编码课程设计信息论与编码课程设计报告设计题目:统计信源熵与哈夫曼编码专业班级学号学生姓名指导教师教师评分2015年 3 月 25 日1信息论与编码课程设计目录一、设计任务与要求...................................................................... ...........................................3 二、设计思路...................................................................... .......................................................3 三、设计流程图...................................................................... (5)四、程序运行及结果...................................................................... ...........................................6 五、心得体会...................................................................... . (8)参考文献...................................................................... (9)附录:源程序...................................................................... .. (10)2信息论与编码课程设计一、设计任务与要求1.1设计目的信息论与编码是信息、通信、电子工程专业的基础,对理论研究和工程应用均有重要的作用。
(完整)哈夫曼编码_汉明编码编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)哈夫曼编码_汉明编码)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)哈夫曼编码_汉明编码的全部内容。
1 课题描述信息论理论基础的建立,一般来说开始与香农(C.E。
Shannon)在研究通信系统时所发表的论文。
信息论是在信息可以度量的基础上,对如何有效、可靠的传递信息进行研究的科学,它涉及信息亮度、信息特性、信息传输速率、信道容量、干扰对信息传输的影响等方面的知识。
通常把上述范围的信息论称为狭义信息论,又因为它的创始人是香农,故又称为香农信息论。
广义信息论则包含通信的全部统计问题的研究,除了香农信息论之外,还包括信号设计、噪声理论、信号的检测与估值等。
当信息在传输、存储和处理的过程中,不可避免的要受到噪声或其他无用信号的干扰时,信息理论会为可靠、有效的从数据中提取信息提供必要的根据和方法。
因此必须研究噪声和干扰的性质以及它们与信息本质上的差别,噪声与干扰往往具有某种统计规律的随机特性,信息则具有一定的概率特性,如度量信息量的熵值就是概率性质的。
信息论、概率轮、随机过程和数理统计学是信息论应用的基础和工具。
信息论主要研究如何提高信息系统的可靠性、有效性、保密性和认证性,以使信息系统最优化.所谓可靠性高就是要使信源发出的消息经过信道传输以后,尽可能准确的、不失真的再现在接收端;而所谓有效性高,就是经济效果好,即用尽可能少的资源和尽可能少的设备来传送一定数量的信息;所谓保密性就是隐蔽和保护通信系统中传送的信息,使它只能被授权接受者获取,而不能被未授权者接受和理解;而认证性是指接受者能正确的判断所接受的消息的正确性,验证消息的完整性,而不是接收伪造的和被修改的信息。
第三章多媒体数据压缩3.1 数据压缩的基本原理和方法3.1 数据压缩的基本原理和方法•压缩的必要性音频、视频的数据量很大,如果不进行处理,计算机系统几乎无法对它进行存取和交换。
例如,一幅具有中等分辨率(640×480)的真彩色图像(24b/像素),它的数据量约为7.37Mb/帧,一个100MB(Byte)的硬盘只能存放约100帧图像。
若要达到每秒25帧的全动态显示要求,每秒所需的数据量为184Mb,而且要求系统的数据传输率必须达到184Mb/s。
对于声音也是如此,若采用16b样值的PCM编码,采样速率选为44.1kHZ ,则双声道立体声声音每秒将有176KB的数据量。
3.1 数据压缩的基本原理和方法•视频、图像、声音有很大的压缩潜力信息论认为:若信源编码的熵大于信源的实际熵,该信源中一定存在冗余度。
原始信源的数据存在着很多冗余度:空间冗余、时间冗余、视觉冗余、听觉冗余等。
3.1.1 数据冗余的类型•空间冗余:在同一幅图像中,规则物体和规则背景的表面物理特性具有相关性,这些相关性的光成像结果在数字化图像中就表现为数据冗余。
–一幅图象中同一种颜色不止一个象素点,若相邻的象素点的值相同,象素点间(水平、垂直)有冗余。
–当图象的一部分包含占主要地位的垂直的源对象时,相邻线间存在冗余。
3.1.1 数据冗余的类型•时间冗余:时间冗余反映在图像序列中就是相邻帧图像之间有较大的相关性,一帧图像中的某物体或场景可以由其它帧图像中的物体或场景重构出来。
–音频的前后样值之间也同样有时间冗余。
–若图象稳定或只有轻微的改变,运动序列帧间存在冗余。
3.1.1 数据冗余的类型•信息熵冗余:信源编码时,当分配给第i 个码元类的比特数b (y i )=-log p i ,才能使编码后单位数据量等于其信源熵,即达到其压缩极限。
但实际中各码元类的先验概率很难预知,比特分配不能达到最佳。
实际单位数据量d>H (S ),即存在信息冗余熵。
信息论编码哈夫曼编码的实现院系:信息工程院系专业:通信工程专业学号:信息论发展简史与信息科学信息论从诞生到今天,已有五十多年历史,现已成为一门独立的理论科学,回顾它的发展历史,我们可以知道理论是如何从实践中经过抽象、概括、提高而逐步形成的。
1.信息论形成的背景与基础信息论是在人们长期的通信工程实践中,由通信技术和概率论、随机过程和数理统计相结合而逐步发展起来的一门学科。
人们公认的信息论的奠基人是当代伟大的数学家、美国贝尔实验室杰出的科学家香农,他在1948年发表了著名的论文《通信的数学理论》,为信息论奠定了理论基础。
近半个世纪以来,以通信理论为核心的经典信息论,正以信息技术为物化手段,向高精尖方向迅猛发展,并以神奇般的力量把人类社会推入了信息时代。
随着信息理论的迅猛发展和信息概念的不断深化,信息论所涉及的内容早已超越了狭义的通信工程范畴,进入了信息科学领域。
通信系统是人类社会的神经系统,即使在原始社会也存在着最简单的通信工具和通信系统,这方面的社会实践是悠久漫长的。
电的通信系统(电信系统)已有100多年的历史了。
在一百余年的发展过程中,一个很有意义的历史事实是:当物理学中的电磁理论以及后来的电子学理论一旦有某些进展,很快就会促进电信系统的创造发明或改进。
这是因为通信系统对人类社会的发展,其关系实在是太密切了。
日常生活、工农业生产、科学研究以及战争等等,一切都离不开消息传递和信息流动。
例如,当法拉第(M.Faraday)于1820年--1830年期间发现电磁感应的基本规律后,不久莫尔斯(F.B.Morse)就建立起电报系统(1832—1835)。
1876年,贝尔(A.G.BELL)又发明了电话系统。
1864年麦克斯韦(Maxell)预言了电磁波的存在,1888年赫兹(H.Hertz)用实验证明了这一预言。
接着1895年英国的马可尼(G.Marconi)和俄国的波波夫(A.C.ΠoΠoB)就发明了无线电通信。
信息论实验报告实验人:邓放学号:20123022572014年11月21日一、实验目的1、掌握哈夫曼编码算法的基本原理;要求对图片进行哈夫曼编码。
2、掌握算术编码算法的基本原理;要求对图片进行算术编码。
3、掌握LZ算法的基本原理;要求对图片进行LZ编码。
二、实验原理1、哈夫曼编码l)将信号源的符号按照出现概率递减的顺序排列。
(注意,一定要递减)2)将最下面的两个最小出现概率进行合并相加,得到的结果作为新符号的出现的概率。
3)重复进行步骤1和2直到概率相加的结果等于1为止。
4)在合并运算时,概率大的符号用编码0表示,概率小的符号用编码1表示。
5)记录下概率为1处到当前信号源符号之间的0,l序列,从而得到每个符号的编码。
下面我举个简单例子:一串信号源S={s1,s2,s3,s4,s5}对应概率为p={40,30,15,10,5},(百分率)按照递减的格式排列概率后,根据第二步,会得到一个新的概率列表,依然按照递减排列,注意:如果遇到相同概率,合并后的概率放在下面!最后概率最大的编码为0,最小的编码为1。
如图所示:所以,编码结果为s1=1s2=00s3=010s4=0110s5=0111霍夫曼编码具有如下特点:1)编出来的码都是异字头码,保证了码的唯一可译性。
2)由于编码长度可变。
因此译码时间较长,使得霍夫曼编码的压缩与还原相当费时。
3)编码长度不统一,硬件实现有难度。
4)对不同信号源的编码效率不同,当信号源的符号概率为2的负幂次方时,达到100%的编码效率;若信号源符号的概率相等,则编码效率最低。
5)由于0与1的指定是任意的,故由上述过程编出的最佳码不是唯一的,但其平均码长是一样的,故不影响编码效率与数据压缩性能。
2、算术编码根据信源可能发现的不同符号序列的概率,把[0,1]区间划分为互不重叠的子区间,子区间的宽度恰好是各符号序列的概率。
这样信源发出的不同符号序列将与各子区间一一对应,因此每个子区间内的任意一个实数都可以用来表示对应的符号序列,这个数就是该符号序列所对应的码字。
吉林建筑大学电气与电子信息工程学院信息理论与编码课程设计报告设计题目:哈夫曼编码的分析与实现专业班级:电子信息工程101学生姓名:学号:指导教师:吕卅王超设计时间:2013.11.18-2013.11.29一、设计的作用、目的《信息论与编码》是一门理论与实践密切结合的课程,课程设计是其实践性教学环节之一,同时也是对课堂所学理论知识的巩固和补充。
其主要目的是加深对理论知识的理解,掌握查阅有关资料的技能,提高实践技能,培养独立分析问题、解决问题及实际应用的能力。
通过完成具体编码算法的程序设计和调试工作,提高编程能力,深刻理解信源编码、信道编译码的基本思想和目的,掌握编码的基本原理与编码过程,增强逻辑思维能力,培养和提高自学能力以及综合运用所学理论知识去分析解决实际问题的能力,逐步熟悉开展科学实践的程序和方法二、设计任务及要求通过课程设计各环节的实践,应使学生达到如下要求:1. 理解无失真信源编码的理论基础,掌握无失真信源编码的基本方法;2. 掌握哈夫曼编码/费诺编码方法的基本步骤及优缺点;3. 深刻理解信道编码的基本思想与目的,理解线性分组码的基本原理与编码过程;4. 能够使用MATLAB 或其他语言进行编程,编写的函数要有通用性。
三、设计内容一个有8个符号的信源X ,各个符号出现的概率为:编码方法:先将信源符号按其出现的概率大小依次排列,并取概率最小的字母分别配以0和1两个码元(先0后1或者先1后0,以后赋值固定),再将这两个概率相加作为一个新字母的概率,与未分配的二进制符号的字母重新排队。
并不断重复这一过程,直到最后两个符号配以0和1为止。
最后从最后一级开始,向前返回得到各个信源符号所对应的码元序列,即为对应的码字。
哈夫曼编码方式得到的码并非唯一的。
在对信源缩减时,两个概率最小的符号合并后的概率与其他信源符号的概率相同时,这两者在缩减中的排序将会导致不同码字,但不同的排序将会影响码字的长度,一般讲合并的概率放在上面,12345678,,,,,()0.40.180.10.10.070.060.050.04X x x x x x x x x P X ⎡⎤⎧⎫=⎨⎬⎢⎥⎣⎦⎩⎭这样可获得较小的码方差。
第4章无失真信源编码习题及其参考答案4-1 有一信源,它有六个可能的输出,其概率分布如下表所示,表中给出了对应的码A、B、C、D、E和F(1)求这些码中哪些是唯一可译码;(2)求哪些码是及时码;(3)对所有唯一可译码求出其平均码长l。
4-2 设信源61261126()1()()()()iis s sXp sp s p s p sP X=⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦∑。
对此次能源进行m元唯一可译编码,其对应的码长为(l1,l2,…,l6)=(1,1,2,3,2,3),求m值的最好下限。
(提示:用kraft不等式)4-3设信源为1234567811111111()248163264128128s s s s s s s sXp X⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,编成这样的码:(000,001,010,011,100,101,110,111)。
求(1)信源的符号熵;(2)这种码的编码效率;(3)相应的仙农码和费诺码。
4-4求概率分布为11122(,,,,)3551515信源的二元霍夫曼编码。
讨论此码对于概率分布为11111(,,,,)55555的信源也是最佳二元码。
4-5有两个信源X和Y如下:121234567()0.200.190.180.170.150.100.01X s s s s s s s p X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦123456789()0.490.140.140.070.070.040.020.020.01Y s s s s s s s s s p Y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)用二元霍夫曼编码、仙农编码以及费诺编码对信源X 和Y 进行编码,并计算其平均码长和编码效率;(2)从X ,Y 两种不同信源来比较三种编码方法的优缺点。
4-6设二元霍夫曼码为(00,01,10,11)和(0,10,110,111),求出可以编得这样 霍夫曼码的信源的所有概率分布。
4-7设信源为12345678()0.40.20.10.10.050.050.050.05X s s s s s s s s p X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,求其三元霍夫曼编码。