§4圆轴扭转横截面上的应力
- 格式:ppt
- 大小:901.00 KB
- 文档页数:31
基础篇之四第4章 圆轴扭转时的强度与刚度计算杆的两端承受大小相等、方向相反、作用平面垂直于杆件轴线的两个力偶,杆的任意两横截面将绕轴线相对转动,这种受力与变形形式称为扭转(torsion )。
本章主要分析圆轴扭转时横截面上的剪应力以及两相邻横截面的相对扭转角,同时介绍圆轴扭转时的强度与刚度设计方法。
4-1 外加扭力矩、扭矩与扭矩图作用于构件的外扭矩与机器的转速、功率有关。
在传动轴计算中,通常给出传动功率P 和转递n ,则传动轴所受的外加扭力矩M e 可用下式计算:[][]e kw 9549[N m]r /min P M n =⋅其中P 为功率,单位为千瓦(kW );n 为轴的转速,单位为转/分(r/min )。
如功率P 单位用马力(1马力=735.5 N •m/s ),则e []7024[N m][r /min]P M n =⋅马力 外加扭力矩M e 确定后,应用截面法可以确定横截面上的内力—扭矩,圆轴两端受外加扭力矩M e 作用时,横截面上将产生分布剪应力,这些剪应力将组成对横截面中心的合力矩,称为扭矩(twist moment ),用M x 表示。
图4-1 受扭转的圆轴用假想截面m -m 将圆轴截成Ⅰ、Ⅱ两部分,考虑其中任意部分的平衡,有M x -M e = 0由此得到图4-3 剪应力互等M x = M e与轴力正负号约定相似,圆轴上同一处两侧横截面上的扭矩必须具有相同的正负号。
因此约定为:按右手定则确定扭矩矢量,如果横截面上的扭矩矢量方向与截面的外法线方向一致,则扭矩为正;相反为负。
据此,图4-1b 和c 中的同一横截面上的扭矩均为正。
当圆轴上作用有多个外加集中力矩或分布力矩时,进行强度计算时需要知道何处扭矩最大,因而有必要用图形描述横截面上扭矩沿轴线的变化,这种图形称为扭矩图。
绘制扭矩图的方法与过程与轴力图类似,故不赘述。
【例题4-1】 变截面传动轴承受外加扭力矩作用,如图4-2a 所示。
130一、讨论圆轴扭转时的应力状态,并分析铸铁试件受扭时的破坏现象。
解 根据第十九章讨论,圆轴扭转时,在横截面的边缘处剪应力最大,其数值为:n n W M=τ (e )在圆轴的最外层,按图22-5(a ),所示方式取出单元体ABCD ,单元体各面上的应力如图22-5(b )所示。
在这种情况下,ττσσ===xy y x ,0 (f )单元体侧面上只有剪应力作用,而无正应力作用的这种应力状态称为纯剪切应力状态。
把(f )式代入公式(22-6)得:min maxσσ ττσσσσ±=+-±+=22)2(2xy y x y x 由公式(22-5):yx xytg σστα--=220 →∞-所以 2709020--=或α450-=α 或 1350-=α以上结果表明,从x 轴量起,由 450-=α(顺时针方向)所确定的主平面上的主应力为max σ;而由 1350-=α所确定的主平面上的主应力为min σ。
按照主应力的记号规定:τσσστσσ-=====min 32max 10所以,纯剪切是二向应力状态,两个主应力的绝对值相等,都等于剪应力τ,但一个为拉应力,一个为压应力。
圆截面铸铁试件扭转时,表面各点max σ所在的主平面联成倾角为︒45的螺旋面[图22-5(a )]。
由于铸铁抗拉强度较低,试件将沿这一螺旋面因拉伸而发生断裂破坏,如(a )(c ) 图22-5131图22-5(c )所示。
二、 图22-6(a )所示为一横力弯曲下的梁,求得截面m -n 上的弯矩M 及剪力Q 后,算出截面上一点A 处弯曲正应力和剪应力分别为:MPa MPa 50,70=-=τσ[图22-6(b )]试确定A 点处的主应力及主平面的方位,并讨论同一横截面上其它点处的应力状态。
解 把从A 点处截取的单元体放大如图22-6(c )所示。
选定x 轴的方向垂直向上,则0=x σ MPa y 70-=σ MPa xy 50-=τ由公式(22-5)得: 429.1)70(0)50(2220=----=--=yx xytg σστα︒=5520α或︒235 ︒=5.270α或︒5.117从x 轴量起,按逆时针方向量取的角度︒5.27,确定max σ所在主平面,以同一方向量取的角度,5.117︒确定min σ所在的另一主平面。