展开图中的展开线的画法
- 格式:doc
- 大小:12.41 KB
- 文档页数:1
钣⾦件展开图的绘制⽅法,⼏张图告诉你引⾔:计算机辅助设计(如:Solidworks/Radan/Ug/ProE/Catia等)在钣⾦加⼯⾏业中的普遍使⽤,导致众多刚从事钣⾦设计⼈员可以轻松的通过软件将零件展开,但却不知道其展开原理,本⽂就钣⾦件的展开图绘制作了⼀简要说明。
⼀.什么是展开图展开图的⽴体表⾯可看作由若⼲⼩块平⾯组成,把表⾯沿适当位置裁开,按每⼩块平⾯的实际形状和⼤⼩,⽆褶皱地n开在同⼀平⾯上,称为⽴体表⾯展开,展开后所得的图形称为展开图,⼯作过程俗称放样,其主要⽬的是为下料做准备,常⽤的展开作图有平⾏线法,放射线法和三⾓形法等。
使⽤哪种⽅法做展开图恰当,应视构件表⾯形状⽽定。
⼆.常见绘制办法1.平⾏线法展开Ø 平⾏线法展开的基本原理平⾏线展开的原理是将零件的表⾯看作由⽆数条相互平⾏的素线组成,取两相邻素线及其两端所围成的微⼩⾯积作为平⾯,只将第⼀⼩平⾯的真实⼤⼩,依次画在平⾯上,就得到了表⾯的展开图。
Ø 平⾏线法展开的特征只有当圆柱形状形体所有彼此平⾏的素线都平⾏于某个投影⾯时,平⾏线法展开才可以应⽤Ø 平⾏线法展开的作图步骤A.任意等分断⾯图。
B.在与该视图素线垂直⽅向上截取⼀线段使其长度等于正断⾯C.将交点依次连接,完成展开图2.放射线展开法Ø 放射线展开法的原理Ø 放射线展开法的作法l 针对素线有同⼀顶点的锥⾯,根据其结构,依照⼀定的规则,将该曲⾯划分为N个共⼀顶点、彼此相连的三⾓微⾯元;对每个三⾓曲⾯元,都⽤其三顶点组成的平⾯三⾓形逐个替代,即⽤N 个三⾓形替代整个曲⾯,其替代误差随着N的增加⽽减⼩;l 在同⼀平⾯上按同样的结构和连接规则组合画出这些呈放射状分布的三⾓形组,逐步得到模拟整个曲⾯的近似展开图形;因为共⼀顶点这些三⾓形的边形成⼀组放射线;l 利⽤这⼀组放射线我们可以将其他相似的展开曲线、开孔线等画出来;l 确定替代元的数量N是很重要的实际问题,N过⼤,增⼤⼯作量和劳动时间;N太⼩,精度达不到要求;N⼀般根据误差⼤⼩、加⼯⼯艺和材料性质等因素通过实践选择。
电动机绕组展开图的画法所谓展开图,就是将电动机定子铁心带绕组用刀切开并摊平,按电动机绕组在定子铁心上的布置,画出的一种绕组展开图。
例1、一台24槽,4极电机,要求采用同心式绕组布置,求画绕组展开图。
1、根据要求先出每极所占槽数每极所占槽数=电动机的总槽数/(2P) 或=电动机的总槽数/4(极数)每极所占槽数=24/4=6槽如下图所示2、求出每极每相所占(即为极相组)槽数,即在一个磁极里(N或S)按三相平分所得的槽数。
每相在每个磁极里均按A、C、B的规律排列,而每相所占的槽数必定相等。
如下图所示。
每极每相所占槽数=每极所占槽数/3相=6/3=2槽3、画第一相绕组展开图根据上面计算分配得知,每极每相所占槽数为2,即第一极N中,A相占2槽(1、2槽)。
而第二极S中,A相也占2槽(7、8槽)。
第三极N中,A相也一样占2槽(13、14槽)。
而第四极S中,A相同样也占2槽(19、20槽)。
对于单层电动机而言,一个线圈有二个有效边,如果它的第一个有效边在N极,则另一个有效边就是在S极。
根据同心式绕组的画法,我们得出第一个N极和第二个S极的1------8槽(y=7)、2------7槽(y=5)相连的二个绕组,而第三个N极与第四个S极的连接与上面是相同的,分别是13------20、14------19相连,同样组成另二个绕组。
这样A相绕组全部画完(画时应逆时针方向)。
4、绕组的连接绕组的连接是按顺电流方向,逆时针,依绕组先后排列顺序依次连接。
A、电流的方向在同性磁极下电流方向必定相同,在异性磁极下电流的方向必定相反。
根据经验,相邻二相的电流方向恰恰相反(初学时电流方向一定要搞清)。
对于一个绕组而言,若规定了它的进出线的位置,按上图第一个线圈是由第1槽进线(它位于N极),可以确定电流的流向是向上。
而电流不管匝数有多少电流总是由第8槽流出(它位于S极),故电流的流向必定是向下的。
又由于第2槽与第1槽同处于N极,故第2槽的电流方向与第1槽相同,同是向上。
电动机绕组展开图的画法所谓展开图,就是将电动机定子铁心带绕组用刀切开并摊平,按电动机绕组在定子铁心上的布置,画出的一种绕组展开图。
例1、一台24槽,4极电机,要求采用同心式绕组布置,求画绕组展开图。
1、根据要求先出每极所占槽数每极所占槽数=电动机的总槽数/(2P) 或=电动机的总槽数/4(极数)每极所占槽数=24/4=6槽如下图所示2、求出每极每相所占(即为极相组)槽数,即在一个磁极里(N或S)按三相平分所得的槽数。
每相在每个磁极里均按A、C、B的规律排列,而每相所占的槽数必定相等。
如下图所示。
每极每相所占槽数=每极所占槽数/3相=6/3=2槽3、画第一相绕组展开图根据上面计算分配得知,每极每相所占槽数为2,即第一极N中,A相占2槽(1、2槽)。
而第二极S中,A相也占2槽(7、8槽)。
第三极N中,A相也一样占2槽(13、14槽)。
而第四极S中,A相同样也占2槽(19、20槽)。
对于单层电动机而言,一个线圈有二个有效边,如果它的第一个有效边在N极,则另一个有效边就是在S极。
根据同心式绕组的画法,我们得出第一个N极和第二个S极的1------8槽(y=7)、2------7槽(y=5)相连的二个绕组,而第三个N极与第四个S极的连接与上面是相同的,分别是13------20、14------19相连,同样组成另二个绕组。
这样A相绕组全部画完(画时应逆时针方向)。
4、绕组的连接绕组的连接是按顺电流方向,逆时针,依绕组先后排列顺序依次连接。
A、电流的方向在同性磁极下电流方向必定相同,在异性磁极下电流的方向必定相反。
根据经验,相邻二相的电流方向恰恰相反(初学时电流方向一定要搞清)。
对于一个绕组而言,若规定了它的进出线的位置,按上图第一个线圈是由第1槽进线(它位于N极),可以确定电流的流向是向上。
而电流不管匝数有多少电流总是由第8槽流出(它位于S极),故电流的流向必定是向下的。
又由于第2槽与第1槽同处于N极,故第2槽的电流方向与第1槽相同,同是向上。
机械制图展开图的原理和展开放样方法三、弯头的展开与平行线法1.圆管弯头及其主要参数弯头是用于管路转弯时的连接件。
按口径,分为等径弯头和异径弯头;按制作方式,则有弯制、压制、挤制和焊制之分;按截面形状,可以分为圆管弯头、方管弯头、方圆管转换弯头、异径弯头(在转弯过程中截面大小改变而形状不发生改变)、异形转换弯头(截面形状在转弯过程中步发生改变)等第。
我们这里讲的弯头展开,指的是一节节组焊而成的“虾米弯”,主要包括等径圆弯头、异径圆弯头、方圆管转换弯头;其他形状的弯头并不常见,因为没有特殊需要,谁也不会设计这种展开复杂,加工困难的玩意儿来增加成本、自找麻烦。
焊制弯头的几个主要参数:(参看图2-3-2a)1.弯头角度:指弯头两个管口面间的夹角;2.弯头直径:指弯头管材的外径、内径或中径;3.弯曲半径:指管段轴线的内切圆半径。
即管口中心到了两管口面交线的距离;4.弯头节数:弯头的端节是中间节的一半,两个端节合起来是一节,再加上中间节数,合称弯头的节数;关于弯头节数,目前没有统一的规定。
有的把中间节的数量称为节数,有的把组成弯头的段数称为节数。
如图2-3-2a 所示弯头,前者叫二节弯,后者叫四节弯,我们钣金冷作工则叫三节弯。
称三节弯的合理之处,一是便于半节角度的计算;二是弯头的节数等于焊接接口的数量,非常之明了;三是对两个半节组成的一节弯,前者就纳不入自己的系列,要换着名儿叫,后者则根本不存在一节弯头的概念。
2.平行线法现在介绍展开时常用的另一个方法---平行线法。
平行线展开法常用于素线互相平行的柱形曲面的展开,其展开的基本过程如下:1) 针对曲面结构特点,依照设定的规则,将该曲面划分为N个彼此相连的梯形微面域(微面域以下称面元);梯形的平行边一般选在曲面的素线处;N一般根据误差大小、加工工艺和材料性质等因素通过实践选择;2) 对每个梯形微面元,都用其四顶点组成的平面梯形逐个替代,即用N个梯形替代整个曲面,其替代误差随着N 的增加而减小;3) 根据视图的尺寸、位置的对应关系,即:“长对正、高平齐、宽相等”的三等关系和上下、左右、前后的方位关系,用与各视图相关的平行线求取相贯点的位置、每个梯形各边的实际长度;4) 在同一平面上按同样的结构和连接规则组合画出这些梯形,于是得到模拟曲面的近似展开图形。
管件展开图画法(详细)⽬录⼀、展开原理⼆、展开放样的基本要求与⽅法三、⼏何展开法的三个要求与典型实例四、(实训项⽬⼀)展开放样训练五、展开实例选(参考)第⼀节展开原理1.展开放样的基本思路1) 什么是展开放样所谓展开,实际是把⼀个封闭的空间曲⾯沿⼀条特定的线切开后铺平成⼀个同样封闭的平⾯图形。
它的逆过程,即把平⾯图形作成空间曲⾯,通常叫成形过程。
实际⽣产⼯作中,往往是先设计空间曲⾯后再制作该曲⾯,⽽这个曲⾯的制造材料⼤都是平⾯板料。
因此,⽤平板做曲⾯,先要求得相应的平⾯图形,即根据曲⾯的设计参数把平⾯坯料的图样画出来。
这⼀⼯艺过程就叫展开放样。
实际⼯作中,有⼈把它简称为展开,也有⼈把它简称为放样,本书中采⽤前者的说法。
2) 展开的基本思路----换⾯逼近图2-1-0 换⾯逼近⽰意图如图2-1-0,我们按预先设定的经纬⽹络把曲⾯⽹格化,并在曲⾯上任取其⼀个四⾓⾯元abcd(A、B、C、D为其四个顶点,a、b、c、d为其四条边界弧线)。
连接它的四个顶点A、B、C、D和对⾓点B、C,将得到⼀个与四⾓⾯元abcd对应的四边形ABCD以及组成四边形ABCD的两个平⾯三⾓形△ABC和△BCD。
为了简化我们的研究,我们以三⾓形△ABC和△BCD代替对应的四⾓⾯元abcd,其中直线段AB、AC、CD、DB与a、b、c、d四条弧线分别对应。
对所有的⽹格都做同样的替代处理,我们就可以得到⼀个与曲⾯贴近的,由众多三⾓平⾯元构成的多棱⾯。
多棱⾯与原曲⾯当然会存在差别,但是,只要⽹格数⽬⾜够多,他们的误差可以⾜够⼩,⼩到我们允许的公差范围内。
把曲⾯换成与之相近、由⼩平⾯组成的多棱⾯,再⽤多棱⾯的展开图去近似替代该曲⾯的理论展开图,这就是换⾯逼近的基本思路。
多棱⾯的展开是容易的,只要在同⼀平⾯上把这些⼩平⾯元按相邻位置和共⽤边逐个画出来就得到了多棱⾯的展开图。
需要指出的是,如何⽹格化是个中关键,这⼀部分将在讲展开⽅法时详细介绍。
第二篇 展開圖的畫法一,對於衝壓模具的設計,第一道工序就是要畫展開圖。
一般地,展開圖的畫法有以下幾:1. 內寸法所謂內寸法即是:料內+料內+補償量(△L) 例:如右圖 展開長度 L=( a - t) + ( b – t )+△L=( a - t) + ( b – t )+λ* t 其中“λ有關。
一般地,料厚在1.20以下,展開系數“λ”為1/3上下,但△L 小數的第二位一定要圓整為“0”或“5”。
T<1.2例: 材質為SECC, t=1.0mm △L=1/3*1.0 取△L=0.35 t=0.8mm △L=1/3*0.8 取△L=0.252. 中立面法所謂中立面法,即是產品在折彎時,內側受到壓縮,外側受到拉伸,但總有一個面不受到壓縮,也不受到拉伸,此面即為中立面,其長度即為產品之展開長度,此種方法適用于折彎半徑在0.5mm 以上。
例:如右圖 外,展開圖 模具圖之尺寸采用坐標式標注。
2.畫展開圖時,其展開尺寸盡量短一點,切不可過長,因為,尺寸過短時,只要在折彎處倒R角即可修正其長度,但過長時,則無法補救,修模很困難。
3.對於壓線折彎,會造成正常殿開尺寸過短,差距在0.8mm以內,因此在此種情況下,倒一R壓線衝子二,展開圖面的要求:1.圖面要求:a.展開圖中必須包含產品圖中的所有內孔,內部成型和外部成型的展開的圖元。
b.展開圖的毛刺面必須向下。
c.展開圖中除圓孔外所有圖元必須串聯成復線。
d.所有衝裁尖角均要倒圓角R=0.3。
e.衝凸和衝橋形10. 11. 14. 15. 應進行局部剖視(剖視方向只能向左或向上)。
有較復雜折彎(小折,抽孔等如圖3~9. 12. 13. 16~18)時應畫出局部斷面圖表示成形以後的斷面形狀,並用英文注解“PRODUCT IMAGE…….”在展開主視圖中的表示方法同剖視一樣,(在展開圖上的長度是展開後的長度,所以小折彎不能畫成剖視圖的形式,只能畫成對應視意圖。
注:a. 壓平成形只畫一條壓平線, 最外型線放在BEND層如圖(17. 15)b. Z折如果是一次成型, 則只畫兩條折線如圖(7. 8)c. 以上列出類型除壓平(17. 18) 外, 均指一次成型。
展开图画法举例A.展开概述在实际中,常常会使用各种金属板制件,诸如各种形状的容器、管道、壳罩、接头等。
在制造这种制件时,首先要在金属板上画出表面展开图(俗称放样),考虑金属板的厚度,然后剪裁、切割下料,再折、弯,最后焊接、铆接等,形成所需钣金件。
将立体的表面,按其实际大小,依次摊平在同一平面上,称为立体表面的展开,展开后得到的图形称为展开图。
平面立体的表面均为可展表面,曲面立体中的曲面分为可展曲面与不可展曲面两类。
在直线面中,若任意相邻两条素线相互平行或相交(即在同一平面上),则该直线面为可展曲面。
直线面中的柱面、锥面、切线曲面是可展曲面,其余的直线面,如单叶双曲面、双曲抛物面、柱状面、锥状面,均为不可展曲面。
所有的曲线面,如球面、圆环面、椭圆面、椭圆抛物面等均为不可展曲面。
A.1 可展表面展开图的基本作法1.平行线法根据两平行线确定一平面,将立体表面以相邻的两平行线为基础构成的平面图形依次逐个展开,得到展开图。
它用于柱面展开。
根据作图方法不同,又可分为正截面法和侧滚法。
1)正截面法当柱棱线与柱的底面不垂直时,可先作一与柱棱线垂直的正截面,并将组成正截面的各边展开成一直线,这时在展开图上柱棱线必垂直于该直线,即可逐一画出各表面的展开图。
当棱线垂直于柱底面时,柱底面就是正截面。
2)侧滚法当棱线平行于投影面时,以柱棱线为旋转轴,将柱的表面逐个绕投影面平行轴旋转到同一平面上,得到展开图。
2.三角形法根据一三角形确定一平面,将立体表面分成若干个三角形(有的立体,如三棱锥的表面本来就是三角形),并依次逐个展开得到展开图的方法。
它通常用于锥面和切线曲面的展开。
A.2 求直线实长的垂直轴旋转法为了绘制展开图,有时需要准确求出立体轮廓线或表面素线的实际长度(简称实长)。
如图13-1a所示,将一般位置直线AB绕铅垂线Aa旋转为正平线AB0,AB0的正面上投影a’b0’即反映AB的实长。
因为AB在绕铅垂线旋转的过程中,其空间轨迹为一正圆锥面,AB=AB0,均为正圆锥的素线。
管道弯头展开放样图作法在管道安装工程中,经常遇到转弯、分支和变径所需的管配件,这些管配件中的相当一部分要在安装过程中根据实际情况现场制作,而制作这类管件必须先进行展开放样,因此,展开放样是管道工必须掌握的技能之一。
一、弯头的放样弯头又称马蹄弯,根据角度的不同,可以分为直角马蹄弯和任意角度马蹄弯两类,它们均可以采用投影法进行展开放样。
图3-1直角马蹄弯图3-2 任意角度马蹄弯1.任意角度马蹄弯的展开方法与步骤(己知尺寸a、b、D和角度)。
(1)按已知尺寸画出立面图,如图3-3所示。
(2)以D/2为半径画圆,然后将断面图中的半圆6等分,等分点的顺序设为1、2、3、4、5、6、7。
(3)由各等分点作侧管中心线的平行线,与投影接合线相交,得交点为1'、2'、3'、4'、5'、6'、7'。
(4)作一水平线段,长为πD,并将其12等分,得各等分点1、2、3、4、5、6、7、6、5、4、3、2、1。
(5)过各等分点,作水平线段的垂直引上线,使其与投影接合线上的各点1'、2'、3'、4'、5'、6'、7'引来的水平线相交。
(6)用圆滑的曲线将相交所得点连结起来,即得任意角度马蹄弯展开图。
图3-3 任意角度马蹄弯的展开放样图2、直角马蹄弯的展开放样(己知直径D)由于直角马蹄弯的侧管与立管垂直,因此,可以不画立面图和断面图,以D/2为半径画圆,然后将半圆6等分,其余与任意角度马蹄弯的展开放样方法相似。
图3-4 直角弯展开图二、虾壳弯的展开放样虾壳弯由若干个带斜截面的直管段组成,有两个端节及若干个中节组成,端节为中节的一半,根据中节数的多少,虾壳弯分为单节、两节、三节等;节数越多,弯头的外观越圆滑,对介质的阻力越小,但制作越困难。
1、90°单节虾壳弯展开方法、步骤:(1)作∠AOB=90°,以O为圆心,以半径R为弯曲半径,画出虾壳弯的中心线。
(2)将∠AOB平分成两个45°,即图中∠AOC、∠COB,再将∠AOC、∠COB各平分成两个22.5°的角,即∠AOK、∠KOC、∠COD与∠DOE。
展开图中的展开线的画法
展开图是根据制件图纸的形状及技术要求,用计算和多种找线的画法得出实长线,用实长线画在金属板及样板上后进行下料用的实际形状图,这种图叫展开图。
3.展开线展开的方法很多,但都离不开展开线,所以了解各种展开线十分重要,现将几种主要的展开线介绍如下:①平行线这种线多用在放样1:1图样上以得出的实长线,如弯头的找线法就是使用平行线得到。
如图1-2(2)放射线
放射线亦叫大尾巴线及扇面线,大多用于锥体类的展开方法,如锥体及大小口管的作法就是使用放射线来得到,见图1-3(3)三角线
三角线及直角梯形线,主要用于找出实线长度及虚线长度,以虚实相连形成三角形或梯开,见图1-4(4)相贯线相贯线也叫碰线,这种线用途最广泛,许多未知线用相贯线可求出风图1-5(5)素线。