BLUP法估计育种值ppt课件
- 格式:ppt
- 大小:168.50 KB
- 文档页数:43
1家畜育种学-个体遗传评定-BLUP 法Genetic Evaluation-BLUP第六章白春艳本章主要内容BLUP 的基本原理 单性状动物模型BLUP 多性状动物模型BLUP遗传参数估计23设x 1,x 2,…,x n 是n 个随机变量,令 μi = E(x i ) = x i 的数学期望,2e σI = V ar(x i ) = E(x i - μi )2 = x i 的方差,ij σ= Cov(x i ,x j ) = E(x i - μi )(x j - μj ) = x i 和x j 的协方差i = 1,2, ,n ; i n j ≠=,,2,11 基础知识1.1 随机向量,期望向量和方差-协方差矩阵4将这n 个随机变量和它们的期望、方差和协方差用向量和矩阵表示:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x 21x ,E(x ) =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n μμμ 21μ,V ar(x ) =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=2212221211221n n n n n σσσσσσσσσ V称x 为随机向量(random vector ),μ为x 的期望向量(expectation vector),可表示为E(x ) = μ,V 为x 的方差-协方差矩阵(variance-covariance matrix),或简称协方差矩阵,可表示为Var(x ) = V 或V(x ) = V ,V 中的对角线元素为各个x 的方差,非对角线元素为各个x 间的协方差,它是一个对称矩阵。
5 V ar(x ) = E []n n n nx x x x x x μμμμμμ---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--- 22112211= E(x - μ)(x - μ)’若μ = 0,则上式变为V ar(x ) = E(xx ’)6若对x 作线性变换y =Tx ,则y 的期望向量和协方差矩阵为 E(y ) = E(Tx ) = T E(x ) = T μ V ar(y ) = E[y - E(y )][y - E(y )]’ = E[Tx - T μ][Tx - T μ]’ = E[T (x - μ)][T (x - μ)]’ = T E(x - μ)(x - μ)'T ’ = T V ar(x )T ’ = TVT ’若有随机变量 y = t ’x ,则 V ar(y ) = t ’Vt7 若有p 维随机向量x 和q 维随机向量u ,它们之间的协方差可表示为Cov(x ,u ’) = ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡q p p p q q u x u x u x u x u x ux u x u x u x σσσσσσσσσ212221212111 8对于一个群体,如果我们将所有个体相互间的加性遗传相关用一个矩阵表示出来,设群体中的个体为1,2,…,n ,则这个矩阵为A = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212221211211 1.2 个体间的加性遗传相关(Additive genetic relationship)9222 ~(,);~(0,);~(0,)p a e P a eP N a N e N μμσσσ=++环境样本1.3 线性模型基础知识10数学模型(mathematical model ):描述某个现象或者事件的数学关系式。
BLUP法即最优线性无偏估计法,是1973年由美国提出的一种评定种公牛育种值的方法。
它的基本出发点是从女儿的表型值(产奶量)中将公牛育种值剖分出来;也可将牛群效因或来源效因剖分出来,这样所得的公牛育种值(公牛效因)消除了牛群差异的影响,其估测精确度高,误差最小,可用线性函数表示。
BLUP法的动物模型公式为:Y=Xb+Za+e。
其中,Y——某动物的表型观察值;X——与固定效应有关的个体数矩阵;b——固定效应的估计值(包括场、年、季、胎次等);Z——与加性遗传效应有关的个体数矩阵;a——需估计的某动物的育种值(加性遗传效应);e——随机误差。
BLUP法的优点包括:
亲属资料的最佳利用,将父母、本身、旁系及后代资料有机地结合。
可校正选配造成的配偶误差。
当使用多泌乳期记录时,可将由淘汰造成的偏差校正到最小。
可校正牛群、年份、季节、性别、胎次、地区等固定环境效应并进行育种值最佳无偏估计。
然而,BLUP法的计算过程比较复杂,必须用电脑才能完成繁琐的计算。
因此,虽然它具有上述优点,但目前在我国仍未真正用于奶牛育种工作。
育种学-第七章个体遗传评定——BLUP法第七章个体遗传评定——BLUP法.BLUP法简介:BLUP方法是美国学者Henderson于1948年提出的,由于这种方法涉及到大量的计算,由于当时计算条件的限制。
到20世纪80年代,随着数理统计学尤其是线性模型理论、计算机科学、计算数学等多学科领域的迅速发展,BLUP法在估计家畜育种值方面才得到了广泛应用,特别是在大家畜的种用价值评定方面,为畜禽重要经济性状的遗传改良作出了重大贡献。
第一节BLUP育种值估计一.基本原理(一)BLUP的涵义BLUP是Best Linear Unbiased prediction的首字母缩略词,既最佳线性无偏预测。
其中:最佳(Best):估计误差方差最小;线性(Linear):估计值是观察值的线性函数;无偏(Unbiased):估计值无偏,即估计值的期望值就是真值,;预测(prediction):是可以对随机效应进行预测。
(二)混合模型(Mixed model)式中,—观察值向量;b和u分别为固定效应和随机效应向量;e 为随机残差向量;X 和Z分别为b和u的关联矩阵。
(三)混合模型方程组(MME)用BLUP方法估计育种值时,首先要根据资料的性质建立适当的模型:公畜模型(sire model)、公畜—母畜模型(sire-dam model)、外祖父模型(maternal grandsire model)以及动物模型(animal model)等育种实践中普遍采用动物模型:动物模型:将动物个体本身的加性遗传效应(即育种值)作为随机效应放在模型动物模型BLUP:基因动物模型的BLUP育种值估计方法(牛、猪育种实践中普遍采用)(三)动物模型BLUPBLUP法的含义:统计学意义:将观察值表示成固定效应、随机效应和随机残差的线性组合遗传学意义:将表型值表示成遗传效应、系统环境效应(如畜群、年度、季节、性别等)、随机环境效应(如窝效应、永久环境效应)和剩余效应(包括部分遗传效应和环境效应)的线性组合。
第七章 个体遗传评定 – BLUP 法在前一章中,我们介绍了个体遗传评定的意义、基本概念和传统的育种值估计方法,这些方法在20世纪70年代以前被广泛应用于各种家畜的个体遗传评定。
但自80年代以来,随着数理统计学(尤其是线性模型理论)、计算机科学、计算数学等学科领域的迅速发展,家畜育种值估计的方法发生了根本的变化,以美国动物育种学家C.R. Henderson 为代表所发展起来的以线性混合模型为基础的现代育种值估计方法 - BLUP 育种值估计法,将畜禽遗传育种的理论与实践带入了一个新的发展阶段。
目前在世界各国,尤其是发达国家,这种方法已得到广泛应用,为畜禽重要经济性状的遗传改良做出了重大贡献。
本章我们将主要介绍BLUP 育种值估计法的基本原理和使用方法,并简要介绍线性混合模型在估计遗传参数中的一些应用。
由于这个方法要涉及线性模型及其他一些有关知识,为读者便于阅读理解起见,我们将先对它们作一简要介绍。
第一节 有关基础知识一、随机向量,期望向量和方差-协方差矩阵设x 1,x 2,…,x n 是n 个随机变量,令 μi = E(x i ) = x i 的数学期望,2e σI = V ar(x i ) = E(x i - μi )2 = x i 的方差,ij σ= Cov(x i ,x j ) = E(x i - μi )(x j - μj ) = x i 和x j 的协方差i = 1,2, ,n ; i n j ≠=,,2,1将这n 个随机变量和它们的期望、方差和协方差用向量和矩阵表示:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x 21x ,E(x ) =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n μμμ 21μ,V ar(x ) =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=2212221211221n n n n n σσσσσσσσσ V称x 为随机向量(random vector ),μ为x 的期望向量(expectation vector),可表示为E(x ) = μ,V 为x 的方差-协方差矩阵(variance-covariance matrix),或简称协方差矩阵,可表示为V ar(x ) = V 或V(x ) = V ,V 中的对角线元素为各个x 的方差,非对角线元素为各个x 间的协方差,它是一个对称矩阵。