台达--开关电源基本原理与设计介绍
- 格式:pdf
- 大小:701.45 KB
- 文档页数:62
开关电源工作原理超详细解析开关电源(Switching Power Supply)是一种先将输入交流电转换为直流电,再通过变换器和开关元件进行调制和控制,最终输出所需电压和电流的电源装置。
它可以高效地进行能量转换,减少功耗,适用于各种电子设备。
下面将详细解析开关电源的工作原理。
1.开关电源的基本组成开关电源由输入滤波器、整流器、脉宽调制器、变压器、输出滤波器和反馈电路组成。
-输入滤波器:用于滤除输入电源中的干扰信号,并平滑输送到整流器。
-整流器:将交流电转换为直流电,常用的整流方式有全波整流和半波整流。
-脉宽调制器:根据反馈信号调整开关管的导通时间,控制开关元件的开关频率和占空比。
-变压器:将输入电压转换为所需的输出电压,并通过与脉宽调制器协调工作来控制输出电压的稳定性。
-输出滤波器:用于平滑输出电压,减少纹波幅度,并滤波输出电流。
-反馈电路:通过采样输出电压并与目标电压进行比较,产生反馈信号控制脉宽调制器的输出。
2.工作原理-输入滤波:交流电经过输入滤波器后,去除干扰信号,并保持电压稳定。
输入滤波器通常由电容和电感组成,它们通过电压和电流的交替变化,将输入电源趋于稳定。
-变压:通过变压器将输入电压进行转换,以获得需要的输出电压。
变压器一般由磁性材料、绕线、磁心等组成,通过众多的绕线匝数比实现输入电压于输出电压的变化。
-输出滤波:经过变压器的输出信号包含较多的纹波幅度,通过输出滤波器将纹波幅度减小到可以忽略不计的程度。
输出滤波器通常包括电感和电容,通过滤除高频杂波和平滑输出电流。
3.脉宽调制脉宽调制器是开关电源中至关重要的一个部件,负责控制开关元件(如晶体管或MOSFET)的开关频率和占空比,以调节输出电压的稳定性。
- 控制开关频率:脉宽调制器根据输出电压的需求,采用不同的控制方式,例如固定频率PWM(Pulse-Width Modulation)、可变频率PWM和电流模式控制。
通过调整开关频率,可以实现对输出电压的精确控制。
液晶彩电用台达电源及保护电路原理与维修康佳液晶彩电常用的台达电源,采用DIA 001+ ICE3B1065 + UCC28051 组合方案。
该电源分为三部分:一是以驱动控制厚膜电路ICE3B1065 为核心组成的副电源,为主板微处理控制系统供电;二是以驱动控制电路UCC28051和大功率MOSFET 开关管Q1、Q9 为核心组成的。
康佳液晶彩电用台达电源及保护电路原理与维修康佳液晶彩电常用的台达电源,采用 DIA 001+ ICE3B1065 + UCC28051 组合方案。
该电源分为三部分:一是以驱动控制厚膜电路 ICE3B1065 为核心组成的副电源,为主板微处理控制系统供电;二是以驱动控制电路 UCC28051和大功率 MOSFET 开关管 Q1、 Q9 为核心组成的 PFC 功率因数校正电路;三是以驱动控制电路 DLA001 和大功率 MOSFET -GET开关管 Q3 、 Q4 组成的主开关电源,向负载电路提供+24V 和+12V 电源。
通电后副电源首先启动工作,为主电路板微处理器控制系统提供+5V 的工作电压,睡开机后,副电源为 PFC功率因数校正电路驱动控制电路 UCC28051 、主开关电源驱动巨制电路 DLA001的提供 VCC—ON 供电,主开关电源启动工作,向主电路板负载电路提映+24V 和+ 12V 两种电压。
待机时,采用切断 PFC 功率因数校正电路驱动控制电路UCC 28051 、主开关电源驱动控制电路 DLA00l 的 VCC—ON 供电,主电源停止工作。
康佳液晶彩电用台达电源板,设有以晶闸管为核心的过流、过压保护电路,当开关电源发生过流、过压故障时,晶闸管被触发导通,保护电路启动,与待机控制一样,切断PFC 功率因数校正电路驱动控制电路 UCC28051 、主开关电源驱动控制电路 DLA00l 的VCC—ON供电,主电源停止工作。
一、电源及保护电路工作原理。
二、电源与保护电路维修技巧。
开关电源设计(精通型)一、开关电源基本原理及分类1. 基本原理开关电源的工作原理是通过控制开关器件的导通与关断,实现电能的高效转换。
它主要由输入整流滤波电路、开关变压器、输出整流滤波电路和控制电路组成。
在开关电源中,开关器件将输入的交流电压转换为高频脉冲电压,通过开关变压器实现电压的升降,经过输出整流滤波电路,得到稳定的直流电压。
2. 分类(1)PWM(脉冲宽度调制)型开关电源:通过调节脉冲宽度来控制输出电压,具有高效、高精度等特点。
(2)PFM(脉冲频率调制)型开关电源:通过调节脉冲频率来控制输出电压,适用于负载变化较大的场合。
二、开关电源关键技术与设计要点1. 高频变压器设计(1)选用合适的磁芯材料,保证变压器在高频工作时的磁通密度不超过饱和磁通密度。
(2)合理设计变压器的绕组匝数比,以满足输出电压和电流的要求。
(3)考虑变压器损耗,包括铜损、铁损和杂散损耗,确保变压器具有较高的效率。
2. 开关器件的选择与应用(1)开关频率:根据开关电源的设计要求,选择合适的开关频率。
(2)电压和电流等级:确保开关器件能承受最大电压和电流。
(3)功率损耗:选择低损耗的开关器件,提高开关电源的效率。
(4)驱动方式:根据开关器件的特点,选择合适的驱动电路。
3. 控制电路设计(1)稳定性:确保控制电路在各种工况下都能稳定工作。
(2)精度:提高控制电路的采样精度,降低输出电压的波动。
(3)保护功能:设置过压、过流、短路等保护功能,提高开关电源的可靠性。
三、开关电源设计实例分析1. 确定设计指标输入电压:AC 85265V输出电压:DC 24V输出电流:4.17A效率:≥90%2. 高频变压器设计选用EE型磁芯,计算磁芯尺寸、绕组匝数和线径。
3. 开关器件选择根据设计指标,选择一款适合的MOSFET作为开关器件。
4. 控制电路设计采用UC3842作为控制芯片,设计控制电路,实现开关电源的稳压输出。
5. 实验验证搭建实验平台,对设计的开关电源进行测试,验证其性能指标是否符合要求。
开关电源工作原理介绍开关电源是一种将交流电转换为直流电的电源装置。
相比传统的线性电源,开关电源具有体积小、效率高和稳定性好的特点,广泛应用于电子产品中。
开关电源的工作原理是通过不断开关的方式将输入的电压转换为稳定的直流输出电压。
其核心元件是开关管和变压器。
下面是开关电源的详细工作原理介绍。
1.输入电压调整:开关电源首先会对输入的交流电压进行整流和滤波处理。
交流电压经过整流桥整流后得到纹波较大的整流电压,然后通过电容进行滤波,减小纹波电压的幅度。
2.PFC电路:为了提高开关电源的功率因数,通常在输入端加入功率因数修正(PFC)电路。
PFC电路通过改变电流波形来改善功率因数,并减少谐波干扰。
3.高频开关转换:经过初步整流和滤波后的直流电压,接下来进入高频开关转换器。
开关转换器包含有功率开关器件,如MOS管或IGBT,通过开关的方式将直流电压转换为高频脉冲信号。
4.变压器:高频脉冲信号经过变压器的升压或降压作用,将电压转换为所需的电压等级。
变压器有助于实现输入和输出之间的电隔离,并减小输入到输出的纹波电压。
5.稳压与滤波:经过变压器的电压输出经过稳压和滤波电路进行后处理,以获得稳定的直流输出电压。
稳压电路通常采用反馈控制,将一部分输出电压作为参考信号与输入电压进行比较,通过调节开关器件的通断情况来实现输出电压的稳定化。
6.输出电流限制:为了保护电路和负载设备,开关电源通常会设置过流保护电路。
过流保护电路通过监测输出电流,当电流超出设定值时,会自动切断开关管的导通,以保护电路的安全运行。
7.其它功能电路:开关电源通常还会配备输出过压、过温、短路等保护电路,以及启动电路、关断电路、软启动电路等功能电路,以提高电源的可靠性和稳定性。
综上所述,开关电源通过不断开关的方式将输入的交流电压转换为稳定的直流输出电压。
它具有高效率、体积小和稳定性好等优势,广泛用于各种电子设备中。
开关电源电路原理开关电源电路是一种将交流电转换为直流电的电路,广泛应用于各种电子设备和系统中。
其工作原理是通过开关管的开关动作,实现对输入电压的切换和变换,从而稳定输出所需的直流电压。
本文将介绍开关电源电路的基本原理和工作过程。
一、开关电源电路的基本原理开关电源电路主要由输入滤波电路、整流电路、能量存储电路、开关管和控制电路组成。
其中,开关管起到关键的作用,通过不断地开关动作,控制电能的流动和变换,从而实现电压的转换和稳定输出。
二、开关电源电路的工作过程1. 输入滤波电路:开关电源电路的第一步是将输入的交流电进行滤波,去除电源中的杂散噪声和干扰信号。
滤波电路通常由电容器和电感器组成,能够平滑输入电压并提供稳定的直流电源。
2. 整流电路:经过滤波的交流电经过整流电路,将其转换为脉冲状的直流电。
整流电路通常采用二极管桥式整流电路,能够将交流电的负半周转换为正半周,实现电能的单向传输。
3. 能量存储电路:为了提供稳定的输出电压,开关电源电路需要一个能量存储电路来平衡输入和输出之间的差异。
这通常由电容器和电感器组成,能够存储电能并实现电压的平稳输出。
4. 开关管:开关电源电路中的关键元件是开关管,它可以通过开关动作来控制电能的流动和转换。
开关管通常采用MOSFET或IGBT 等功率开关器件,能够快速地切换电流,实现高效能量转换。
5. 控制电路:为了实现对开关管的控制,开关电源电路需要一个控制电路来监测输入和输出电压,并根据需要对开关管进行开关动作。
控制电路通常由电压反馈回路和PWM调制器组成,能够实现对输出电压的精确控制。
三、开关电源电路的优势相比传统的线性电源电路,开关电源电路具有以下优势:1. 高效能量转换:开关电源电路能够通过开关动作实现快速的电能转换,能够提供更高的能量转换效率,减少能耗和热量损失。
2. 稳定输出电压:通过控制电路的精确调节,开关电源电路能够实现稳定的输出电压,适应不同的负载变化。
开关电源电路组成及各部分原理详解开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:一、开关电源输入电路及原理1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关电源原理分析开关电源是一种常见的电源供应系统,它通过不间断地开关调节电流,使得输出电压稳定。
本文将对开关电源的原理进行分析,包括其基本构成、工作原理和优缺点等。
一、开关电源的基本构成开关电源主要由以下几个基本部分组成:1. 输入滤波电路:用于减小输入端的干扰电流和噪声。
2. 整流电路:将交流输入转换为直流电压。
3. 直流链接电路:连接整流电路和升压、降压电路。
4. 控制电路:用于控制开关器件的导通和关断。
5. 变换电路:包括升压和降压电路,用于根据需要提供稳定的输出电压。
6. 输出滤波电路:用于减小输出端的纹波电流和残余噪声。
二、开关电源的工作原理开关电源的工作原理如下:1. 控制器接收输入电压,并根据需要产生相应的控制信号。
2. 控制信号使得开关管正常工作,实现导通和关断的变化。
3. 当开关管导通时,输入电源的电能会通过变压器传递到输出端,根据变压器比例得到所需的电压。
4. 当开关管关断时,输入电源的电能会存储在电感中,并通过二极管输出到负载,保持输出电流的稳定性。
5. 控制器不断监测输出电压和电流,并根据需要调整开关管的导通和关断频率,从而实现输出电压的稳定。
三、开关电源的优缺点开关电源相比于传统的线性电源,具有以下优点:1. 高效率:开关电源采用开关器件进行调节,能够更有效地转换电能,提高能源利用率。
2. 小体积:由于开关电源使用高频开关器件,可以采用较小的变压器和滤波电容,使得整个电源系统更加紧凑。
3. 轻量化:由于效率高和体积小,开关电源在重量上较传统线性电源更轻便,适用于便携式设备。
4. 电压稳定性好:开关电源通过高频开关调节电流,能够更精确地控制输出电压,使其更加稳定。
然而,开关电源也存在一些缺点:1. 输出纹波:由于开关管的开关频率较高,会引入输出纹波电流,需要通过滤波电路来减小。
2. EMI干扰:开关电源高频开关会产生较强的电磁辐射干扰,需要采取相应的措施来减小对周围设备的影响。
開關電源基本原理与設計介紹Summary基本原理介紹開關電源中的相關設計基本原理介紹¾DC-DC變換器主要架构及其拓補¾EMI 部分¾PFC 部分¾同步整流部分¾均流技術¾保護与控制線路SPS基本原理框圖基本原理簡介一般由三部分組成:一是輸入回路.二是輸出回路.三是控制回路.輸入回路由EMI濾波電路.高壓整流濾波.隔離變壓器初級和高壓方波切割元件所組成,其與電網直接連接高電壓.輸出回路由隔離變壓器次級.低壓整流濾波電路所組成,其與控制回路都由低壓電子元器件組成.輸入回路與輸出回路兩者間採用隔離變壓器進行隔離確保人身與低壓電子器件之安全,這樣不僅達到高低電壓隔離,還做到高低電壓的轉換功能.工作原理交流輸入電壓(AC)經EMI濾波電路濾波一些電網來的干擾與雜訊後, 直接予以整流與濾波得到高壓直流(DC).再將直流高壓進入方波切割器件(MOSFET)中,切割成20~200KHZ的高頻電壓方波信號.該方波信號進入隔離變壓器初級,而由次級所感應出的低壓交流電勢經整流濾波後,得到低壓穩定直流輸出,供給負載.不管輸入電壓有無變化或輸出負載是否變動,都要保持輸出直流電壓的穩定.因此,經直流輸出監控電路對輸出電壓加以監控,並把信號回饋給PWM邏輯控制電路調整占空比.從而調整輸出電壓達到穩定效果.當負載發生故障(如:短路,過載等)時可通過保護電路把信號迅速回饋給PWM邏輯控制電路使方波切換元件停止工作,達到保護的功能.Boost DC-DC 變換器主要架构peak drain current.peak drain voltage2. Boost (step up)Ideal transfer functionDiode voltages(vrmAverage diode currentsBoost變換器工作狀態Boost DC-DC變換器主要架构DPS-350MB ABOOST CIRCUITBuck DC-DC 變換器主要架构1.Buck (step down)peak drain currentIdeal transfer functionpeak drain voltageAverage diode currentsDiode voltages (vrm)Buck變換器工作狀態Buck變換器工作原理當S關閉時,電流就會順向地流經電感器L,此時在負載上就會有帶極性的輸出電壓產生,如上面圖2所示,當開關打開時,電感器L會改變磁場,二級体D則為順向偏壓狀態,因此在電容器C 中就會有電流流過,因此在負載RL上輸出電壓的極性仍是相同的,一般我們稱此二級体D為飛輪二級体.由于此種轉換動作,使得輸出電源是一种連續而非脈動電流形式,相對的由于開關S在ON/OFF之間改變,所以輸入電流則為不連續形式,也就是所謂的脈動電流形式.Buck DC-DC變換器主要架构實際舉例DPS-350MB A BUCK CIRCUITBuck&Boost DC-DC變換器主要架构Voltage and current waveformsBuck BoostBUCK-BUST(FLYBACK)變換器原理圖BUCK-BUST(FLYBACK)變換器工作狀態BUCK-BUST(FLYBACK)變換器工作原理當電路中的開關S關閉時,電流就會流經電感L,並將能量儲存于其中,由于電壓極性的關系,二級体D是在逆向偏壓狀態,此時負載電阻RL上就沒有電壓輸出.當開關S打開時,由于磁場的消失,電感L呈逆向極性,二級体D 為順向偏壓,環路中則有Ic感應電流產生,因此負載RL上的輸出電壓极性正好和輸入電壓极性相反,由于開關ON/OFF的作用,使得電感器的電流交替地在輸入与輸出間,連續不斷的改變其方向,不過這二者電流都是屬于脈動電流形式.所以該變換器電路中,當開關是在導通周期時,能量是儲存在電感器裏,反之,當開關是在打開周期時能量會轉移至負載上.Isolated Forward DC-DC變換器拓補3. Isolated Forward Ideal transfer functionPeak drain currentPeak drain voltageAverage diode currents Diode voltages(vrm)Isolated Forward工作原理由于該轉換器中使用的隔离元件是一個真正的變壓器,因此為了獲得正确有效的能量轉移,必須在輸出端有電感器,作為次級感應的能量儲存元件.而變壓器的初級繞組和次級繞組有相同的極性.當電晶體Q1在ON時,初級繞組漸漸會有電流流過,并將能量轉移至輸出,且同時經由順向偏壓二級体D2,儲存与電感器L中,此時的二級体D3為逆向偏壓狀態.當Q1換成OFF狀態時,變壓器的繞組電壓會反向,D2二級体此時就處于逆向偏壓的狀況,此時与飛輪二級体D3則為順向偏壓,在輸出回路上有導通電流流過,並經由電感器L,將能量傳導至負載上.變壓器上的第三個繞組与D1互相串聯在一起,可達到變壓器消磁的作用,如此可避免Q1在OFF時,變壓器的磁能會轉回至輸入直流匯流排上.Forward實際舉例300LB A FORWARD CIRCUITIsolated Flyback DC-DC變換器拓補4. Isolated Flyback Ideal transfer functionPeak drain currentPeak drain voltageDiode voltages(vrm)Average diode currentsIsolated Flyback工作原理當電晶體Q1導通時,變壓器的初級繞組漸漸會有初級電流流過,並將能量儲存与其中,由于變壓器扼流圈的輸入与輸出繞組,其極性是相反的,因此二級体被逆向偏壓,此時沒有能量轉移至負載,當電晶體不導通時,由于磁場的消失導致繞組的極性反向,此時二級体D會被導通,輸出電容器C會被充電,負載RL上有IL的電流流過.由于此種隔离元件的動作就象是變壓器与扼流圈,因此在反擊式轉換器輸出部分,就不需要額外的電感器了,但是在實際應用中,為了抑制高頻的轉換電訊波尖,還是會在整流器与輸出電容之間加裝小型電感器.Flyback實際舉例DPS-200PB-135 B FLYBACK CIRCUITVoltage and current waveformsForward FlybackForward&Flyback DC-DC 變換器拓補TWO-SWITCH FORWARDIdeal transfer functionPeak drain currentPeak drain voltageAverage diode currentsAverage diode currents Tow Switch Forward DC-DC 變換器拓補DC-DC變換器拓補Voltage and current waveforms 實際舉例DC-DC變換器拓補HALF BRIDGE Ideal transfer functionPeak drain currentPeak drain voltage Average diode currentsDiode voltages(vrm)DC-DC變換器拓補FULL BRIDGE Ideal transfer functionPeak drain currentPeak drain voltageAverage diode currentsDiode voltages(vrm)DC-DC變換器拓補Voltage and current waveformsHALF BRIDGE FULL BRIDGEFULL BRIDGE circuitDPS-1001AB C FULLBRIDGE CIRCUIT零電流開關變換器軟開關ZCS變換器在大功率的開關電源中,為了降低電路的開關損耗及提高開關器件的電壓應力和電流應力,軟開關技術也就得到了研究並得到了迅速發展.所謂軟開關通常指的是零電壓開關ZVS和零電流開關ZCS.軟開關的實現主要是借助于附加的電感L和電容C的諧振,使開關器件中電流(或電壓)按正弦規律來變化,當電流過零時,使器件關斷,當電壓下降到零時,使器件導通.此次討論零電流開關變換器---ZCS-PWM.ZCS-PWM變換器是ZCS-QRC和PWM開關變換器的綜合,同時兼有二者的特點.在一個周期內,電路有時以ZCS準諧振方式運行,有時又以PWM方式運行.以Buck ZCS-PWM為例,對此電路的工作過程進行討論和分析.基本電路BUCK變換器基本電路在此電路中將開關S用零電流諧振開關代替后,就构成了下圖的零電流開關諧振Buck變換電路.基本變換電路BUCK ZCS-QRS變換電路在Buck ZCS-QRS變換電路的基礎上增加一個功率開關管Q2以及與其反并聯的二極體D2就构成了Buck ZCS-PWM變換電路.基本變換電路Buck ZCS-PWM變換器基本變換電路Buck ZCS-PWM變換器工作原理Lri設初始時刻主開關管Q1和輔助開關管Q2均處于關斷狀態,輸出負載電流Io從續流二极管D上流過,電容Cr兩端的電壓為零.一個開關從主開關管Q1的導通開始.當Q1在Snubber電感Lr作用下零電流導通後,電感電流將在電源電壓作用下線性上升,當上升倒等於IO時,續流二極體D關斷.之後,D2導通,LR 與CR諧振.經過半個諧振週期, 以諧振方式再次達到IO, 以諧振方式上升到,此時由於輔助開關管Q2處於關斷狀態,故與將保持在該值上,無法繼續諧振.這個狀態的持續時間由電路輸出的PWM控制要求確定.如果這一段時間等於零,則ZCS-PWM電路就完全等同於ZCS-QRC電路了.當電路的輸出PWM控制要求關斷主開關管Q1時,首先應導通開關管Q2(在SNUBBER電感LR 的作用下零電流導通),之後與再次諧振.當電感電流諧振到零時,二極體D1導通,之後, 繼續向反方向諧振並再次諧振到零.在電感電流反方向運行期間,主開關管Q1可在零電流零電壓下完成關斷過程.在此之後,電容電壓將在輸出電流的作用下線性衰減到零,使續流二極體D自然導通,直到下一個開關週期到來..輔助開關管Q2可以在D到同之後及下一個開關週期到來之前的任何inVLriLri crvinV2LricrvrLrCLricrV以下分析都是在下列條件成立時進行的:a.所有元器件都是理想的,即開通時管壓降為零,關斷時漏電流為零,開通與關斷瞬間完成.b.濾波電感足夠大,故濾波器及負載在一個開關週期中,可用其值等於該週期輸出電流Io的恆流源代替.Buck ZCS-PWM 變換電路的開關周期可分為六個時間段來描述,對應于六種基本的電路拓扑模式,如下圖所示.設電路初始狀態為主電路開關Q1關斷,輔助開關Q2關斷,續流二极管D導通,輸出電流全部通過D續流,電感電流=0,電容電壓=0.工作過程分析.f L f f C L −L R Lr i cr v 時刻,以零電壓零電流方式完成關斷過程.從上述工作原理可看出,在ZCS-PWM 電路中,所有開關管及二極體都是在零電壓或零電流下完成通斷的.同時,電路可以以恆定頻率通過調節輸出脈寬占空比來調節輸出電壓.各時間段的電路拓補圖主要電量波形半橋式轉換器介紹雙輸入電壓半橋式轉換器二个主要优點,第一点就是它能在數放交流电压115V或230Vac的工作情况下,不需使用到高压晶体管.第二点就是我们只需使用到簡單的方法就能来平衡每一轉換晶体管的伏特-秒(volt-senconds)区间,而功率變压器不需有間隙且不需使用到价格高的对称修正電路,雙輸入電壓半橋式轉換器在半橋式轉換器結構中,功率變壓器有一端點連接到由串聯電容器C1與C2所産生的浮點電壓值端點,其浮點電壓值爲Vin/2,所以在標準的輸入電壓下,其值爲160Vdc.變壓器的另一端點則經由串聯電容器C3連接到Q1的射極與Q2的集極接頭處,當Q1電晶體ON時,此處變壓器端點會産生正的160V電壓脈波,當Q1電晶體OFF,Q2電晶體ON時,變壓器的初級圈會極性反轉,因此,會産生負的160V電壓脈波,在這Q1與Q2電晶體ON-OFF動作中,其産生的峰對方波電壓值爲320V,經由變器轉換降低爲次級電壓,再經過整流,濾波而得到直流輸出電壓.RCC(Ringing choke converter)電路RCC電路的工作原理以DPS-180KB-1 D 的STANDBY電路為例如圖所示,Q902的控制极(G极)由R914A~R914C得到啟動電壓后,Q902開始導通,電流經過T901的8,10腳,Q902的漏源极和R906到地,同時T901開始儲能,R906的電壓也同時升高,當R906的電壓達到一定值的時候,Q901導通,使得Q902的G极電壓拉低,Q902截止.在Q902截止的期間內,由開關變壓器T901向負載提供能量,在T901次級繞組的電流經過LC濾波后得到直流輸出.當Q901由導通變為截止時,Q902再次導通,如此反复的循環,形成自激振蕩.RCC電路舉例Input EMI SectionEMI的定義EMI 的產生和傳播及處理方式 在SPS中的架構模型EMI的處理及量測裝置LISN的原理與使用開關電源的雜訊分析EMI濾波器的組成元件EMI的定義•EMI:Electromagnetic interference 電磁干扰•EMI包括傳導(conduction)和輻射(radiation)兩個部分.•傳導EMI是待測物經由導線(電源線)所傳遞出來的雜訊.•輻射EMI是直接由開放空間傳遞的.Input EMI Section 架构EMI的產生傳播及處理方式噪聲傳遞的主要方式為﹕(1)傳導耦合﹒2)公共阻抗耦合﹒(3)輻射耦合﹒根据電磁干扰的傳播途徑﹐開關電源中的電磁干扰可以分為輻射干扰和傳導干扰﹐兩种干扰可以相互轉換﹒傳導干扰可以分為共模(Common Mode-CM)干扰和差模(Differential Mode-DM)干扰﹒由于寄生參數的存在以及開關電源中開關器件的高頻開通和關斷﹐使得開關電源在其輸入端(即交流電网側)產生較大的共模干扰和差模干扰﹒傳導EMI經由介質進行傳導﹒因此﹐在電路上經常是加濾波器的方式抑制雜訊﹒但是輻射EMI不經由介質﹐雜訊可以bypass EMI而影響其他系統﹒因此其處理方式多為屏蔽(shielding)接地(grounding)濾波等﹒開關電源的雜訊分析•由LISN所取得的雜訊中,都包含有CM雜訊(common-mode noise)及DM雜訊(differential-mode noise)兩個分量•CM雜訊由CM雜訊電流產生,DM雜訊有DM雜訊電流產生.其中CM雜訊電流ICM是L,N相對于接地線共同的雜訊,而DM雜訊電流IDM是直接經L,N而不經過接地線的雜訊分量.此兩分量用數學表示如下:DMCMtotalIIIrrr+=totalIr為總雜訊電流,它是流經LISN的50ohm阻抗所產生的雜訊電壓50*totaltotalIVrr=開關電源的雜訊分析CM雜訊電流與DM雜訊電流由什么造成的?根据前人的實驗結果,發現CM雜訊主要是由Power MOSFET及變壓器上的寄生電容及雜散電容造成的.而DM雜訊電流則由電源電路初級端的非連續電流機輸入端濾波大電容(bulk capacitor)上的寄生電感所造成的.EMI濾波器的組成元件常見的EMI濾波元件共有四種:CM電感DM電感X電容Y電容1. CM電感CM電感是將兩組線圈繞在一個鐵芯上製成的.且其繞線的方嚮能使得其DM電流所產生的磁場H相互抵消, 而對CM電流而言,DM由于其是對地而言的,因此兩組線圈可看成是L,N對地獨立電感,其所產生的磁場H是相同方嚮的.CM同時由于DM的磁場相互抵消的關系,CM電感比較不易飽和,因此一選用u值較高的ferrite core作為鐵芯.2. DM電感DM電感的濾波原理和電源供應器輸出端的濾波電感並無不同,由于需要流經大電流,因此材質多用u值較低的powder core以避免飽和.EMI濾波器的組成元件3.X電容X電容是跨接于電源的L,N兩端.一般為金屬皮鏌(metal film)為材質,其容值規格為0.015uF0.1uF 0.22uF 0.33uF 0.47uF 0.68uF 最大為1uF.4.Y電容Y電容扮演的是CM電容的角色.其最大的特點是以兩個為一組而存在.一般Y電容均為高壓陶瓷電容,其電容容值較小,從470pF1000pF 2200pF 3300pF到最大為4700pF.。