开关电源工作原理与电路设计
- 格式:ppt
- 大小:19.19 MB
- 文档页数:20
开关电源工作原理开关电源是一种常见的电源供应装置,其工作原理是将输入电压通过开关器件进行高频开关,经过变压、整流、滤波等电路处理后,得到稳定的输出电压。
开关电源具有高效率、小体积、重量轻等优点,广泛应用于各种电子设备中。
一、开关电源的基本构成开关电源由输入端、输出端和控制电路组成。
1. 输入端:输入端主要包括输入电源和输入电路。
输入电源为交流电源,输入电路包括输入滤波电路和整流电路。
其中,输入滤波电路用于滤除输入电源中的杂波和干扰,保证输入电源的稳定性;整流电路将交流电源转换为直流电源。
2. 输出端:输出端主要包括输出电路和输出滤波电路。
输出电路通过开关器件进行高频开关,将整流后的直流电源转换为高频脉冲信号,经过输出滤波电路后得到稳定的直流输出电压。
3. 控制电路:控制电路主要包括开关控制电路和保护电路。
开关控制电路用于控制开关器件的开关频率和占空比,保证输出电压的稳定性和精度;保护电路用于监测输入输出电流电压,当超过设定值时进行过载保护。
二、开关电源的工作原理开关电源的工作原理可分为两个过程:变频过程和整流滤波过程。
1. 变频过程:变频过程即将输入电压通过开关器件进行高频开关,形成高频脉冲信号。
开关器件通常采用开关管或晶闸管进行控制,高频开关频率通常在几十kHz至几MHz之间。
当开关器件导通时,输入电源的能量通过开关管传导至输出端,形成电流;当开关器件断开时,输出端的电感储能元件将电能通过二极管进行放电,形成负电流。
通过不断的开关导通-断开操作,输入电压的能量被转换为高频脉冲信号。
2. 整流滤波过程:经过变频过程的高频脉冲信号需要通过变压、整流和滤波电路进行进一步处理。
首先,高频脉冲信号经过变压电路进行降压变换,得到适合输出电压的信号。
然后,经过整流电路将高频信号转换为直流信号,通过二极管进行单向导通。
最后,通过滤波电路对直流信号进行滤波,去除残余脉动和高频噪声,得到稳定的输出电压。
三、开关电源的工作模式开关电源的工作模式主要有两种:连续导通模式和断续导通模式。
开关电源的工作原理及技术趋势开关电源是一种电能转换装置,它将功率电子器件(如开关管)工作在开关状态下,通过电子开关的控制,将输入电源的电能转换为所需的输出电能。
开关电源的工作原理及技术趋势如下:1. 工作原理:开关电源主要由输入端(输入电源和输入滤波器)、控制电路、功率器件(开关管)、输出变压器、输出滤波电路和反馈电路等部分组成。
工作过程如下:当输入电源通电时,输入滤波器将电源的交流电转换为稳定的直流电。
然后,控制电路控制开关管工作在开关状态下,通过控制开关管的导通和断开,将输入电源的直流电按一定频率进行开关操作。
开关管导通时,输入电源的直流电被输入到输出变压器,通过变压器的变压作用,将输入电压调整到所需的输出电压。
当开关管断开时,输入电源的直流电被关闭,通过变压器的变压作用,将变压器的能量传递给输出滤波电路,得到稳定的输出电压。
输出电压经过反馈电路与控制电路相连接,实现对输出电压的稳定控制。
2. 技术趋势:(1)高效率:随着人们对能源的节约要求越来越高,开关电源不断追求更高的能源转换效率。
高效率能够减少功耗和热量产生,降低能源浪费。
(2)小型化:开关电源的体积越小越便于携带和集成。
随着现代电子产品尺寸的减小,开关电源要求更小巧的尺寸以适应产品设计。
(3)轻量化:开关电源的重量越低越有利于产品的携带和移动性。
减轻开关电源的重量可以带来更高的便携性和用户体验。
(4)可靠性:开关电源的可靠性是保障设备正常工作的重要因素。
随着电子产品的使用要求日益严格,开关电源的可靠性要求也日益增强。
(5)环保性:环境保护意识的增强,使得开关电源要求具备低噪声、低辐射等特性,减少电磁污染对周围环境和人体的影响。
(6)智能化:随着信息技术的不断发展,开关电源要求智能化、数字化。
通过微处理器、集成电路和专用芯片等技术,实现对开关电源的智能控制和状态监测。
随着科技的不断进步和社会对电力需求的日益增长,开关电源的工作原理和技术趋势将不断演进。
PC电源知多少个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。
本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。
●线性电源知多少目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。
线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。
最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”)配图1:标准的线性电源设计图配图2:线性电源的波形尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。
对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。
由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。
此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。
由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。
开关电源工作原理
开关电源,又称开关式电源,是一种将电能有源转换为高效直流电能供应的电源系统。
其工作原理可以分为以下几个主要部分:
1. 输入滤波:交流电从电源输入端进入开关电源时,首先经过一个电源输入滤波器。
该滤波器的作用是去除电源输入端的电源干扰,包括高频噪声和电源波动等。
滤波后的电源信号会进一步被送入下一个模块。
2. 整流和滤波:经过输入滤波的电源信号进入整流桥。
整流桥通过将交流电转换为脉冲直流电,使得电源信号的方向一致。
然后,通过滤波电容对这些脉冲进行平滑,去除脉冲部分,得到较为平稳的直流电源信号。
3. 交流直流变换:经过整流和滤波的直流电源信号进入交流直流变换器。
这个变换器使用高频开关器件(如MOSFET)来控制电源信号的开关转换,将直流电源信号转换为高频脉冲电流。
通过变压器的电感和电容滤波,将高频脉冲电流转换为平稳的低频直流电源。
4. 输出调整:经过交流直流变换后,得到所需电压和电流水平的直流电源信号。
然后,经过输出调整电路,如电压稳压器或电流限制器等,保证电源输出的稳定性和可靠性。
5. 反馈控制:为了保持输出电压稳定,开关电源通常会采用反馈控制机制。
在输出端引入一个反馈回路,监测输出电压,并
将监测结果与设定值进行比较。
然后,通过控制开关器件的开关状态来调整电源输出,使输出电压维持在设定值范围内。
需要注意的是,开关电源工作原理中的各个部分相互关联,通过精细的控制和调节,实现高效、稳定的电能转换。
这种工作原理使得开关电源在电子设备、计算机等领域得到广泛应用,并取代了传统的线性电源。
张占松,蔡宣三.开关电源的原理与设计开关电源是一种非线性电源,它的主要特点是具有高效率、小体积、轻重量、稳定性好等优点,因此被广泛地应用于各个领域。
开关电源的原理是实现对输入电源电流的高速开/关,通过电感储存能量,使输出电压保持稳定。
本文将介绍开关电源的基本原理和设计方法。
一、基本原理开关电源的基本组成部分包括输入端、输出端、开关器、能量存储元件和控制电路。
输入端一般接入AC或DC电源,输出端连接负载电阻或电源。
开关器的作用是将电源电流高速开/关,这里采用的常见开关器有MOSFET和IGBT等。
这些器件可以实现快速开关以及高效能的转换,从而实现高效的能源转换。
能量存储元件一般使用电感器或电容器,其作用是将输入电能储存为磁场或电场,并在开关器关闭时将其释放,从而保持输出电压稳定。
控制电路主要包括PWM调制器、反馈电路和保护电路。
PWM调制器的作用是产生一定频率和占空比的脉冲信号,控制开关器的开/关时间,从而实现电压的稳定输出。
反馈电路的作用是检测负载端的电压变化并调整PWM调制器输出的脉冲信号,使输出电压保持稳定。
保护电路主要是用于保护开关器、负载端和控制电路,例如过压,过流和短路等情况。
二、设计方法开关电源设计的关键是确定开关器、电感器或电容器的参数,以及PWM调制器的频率和占空比等参数。
下面介绍一些重要的设计步骤。
1. 确定输出参数首先需要确定输出电压和电流的参数,即电源需要提供给负载端的电压和电流。
这取决于负载端的需求以及与之匹配的开关器和能量存储元件的能力。
2. 选择开关器和能量存储元件根据输出参数确定适合的开关器和能量存储元件。
选择开关器时需要考虑它的导通电阻、频率响应、容错限制和工作温度等特性。
电感器和电容器的选择与开关器特性有关,例如电感器的选取应该考虑其电感值和最大电流能力,电容器的选取应该考虑其耐压能力和损耗电流等因素。
3. 设计PWM调制器根据输出参数确定PWM调制器的频率和占空比等参数。
开关电源工作原理解析开关电源是一种利用开关器件(如MOS管、IGBT等)周期性开关和关闭的方式,将输入电源的直流电压转换为需要的输出电压的电源。
开关电源具有转换效率高、尺寸小、重量轻、可靠性高等优点,在电子设备中得到了广泛应用。
开关电源的基本工作原理如下:首先,输入电源的交流电压经过整流得到直流电压,然后经过滤波电路得到稳定的直流电压。
这个直流电压被输入到开关电源的DC/DC变换器中,由开关器件进行开关操作,将直流电压转换成需要的输出电压。
最后,输出电压经过滤波电路得到稳定的输出直流电压。
开关电源的核心是开关器件,其中常用的开关器件有MOS管、IGBT等。
开关器件分为开关周期内导通和截止两个状态,通过高频开关操作改变开关器件的导通时间和截止时间,即可以控制输出电压的大小和稳定性。
开关电源分为两个主要工作状态:开关器件导通状态和开关器件截止状态。
在导通状态下,开关器件内部的电源电压与输入电源电压相等,此时开关器件开启,通过输出电感的电流逐渐上升,同时输出电容释放能量,为输出电路提供电源电压。
在截止状态下,开关器件内部的电源电压为零,此时开关器件关闭,输出电感上的电流逐渐下降,同时输出电容储存能量,为输出电路提供电源电压。
在实际开关电源中,还有一些辅助电路来提高整个系统的性能。
常见的辅助电路包括输入滤波电路、输出滤波电路、稳压电路、保护电路等。
输入滤波电路用于消除输入电源的干扰信号,保证输入电压的稳定性和纹波小;输出滤波电路用于平滑输出电压,提供稳定的输出电源;稳压电路用于保持输出电压的稳定性,提高系统的稳定性和可靠性;保护电路用于保护开关电源和被供电设备,如过载保护、短路保护等。
开关电源的优点主要体现在高效率、稳定性好、尺寸小等方面。
开关电源通过高频开关操作,可以实现高转换效率,这是由于开关器件导通时的电压损耗小,截止时的电流损耗小,同时还减少了电路中的热源。
在输出电压稳定性方面,开关电源具有较高的稳定性,能够较好地适应负载的变化,并通过反馈控制保持稳定输出。
开关电源工作原理超详细解析第1页:前言:PC电源知多少个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。
本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。
●线性电源知多少目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。
线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC 直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。
最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”)配图1:标准的线性电源设计图配图2:线性电源的波形尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。
对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。
由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。
此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。
由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。
一、工作原理我们先熟悉一款开关电源的工作原理,该电源可输出5V电压,如图1所示。
1. 抗干扰电路在电网输入端首先设置一个NTC5D-9负温度系数热敏电阻,作用是保护后面的整流桥,刚开机时热敏电阻处于冷态,阻值比较大,可以限制输入电流,正常工作时,电阻比较小。
这样对开机时的浪涌电流起到有效的缓冲作用。
电容CY1、CY2、CY3、CY4用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的不对称杂散信号,电容CX1、CX2用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的对称杂散信号,用电感L1抑制从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的频率相同、相位相反的杂散干扰电流信号。
采用高频特性好的瓷片电容和铁芯电感,实现开关稳压电源电路中的高频辐射不污染工频电网和工频电网上的杂散电磁波不会窜入开关稳压电源电路中而干扰和影响其工作,对高频分量或工频的谐波分量具有急剧阻止通过功能,而对于几百赫兹以下的低频分量近似一条短路线。
图1 开关电源的工作原理图2. 整流滤波电路在电路中D1、D2、D3、D4组成全桥整流电路,把输入的交流电压进行全波整流,然后用C1进行滤波,最后变成直流输出供电电压,为后级的功率变换器供电,整流滤波后的电压约为300V。
3. UC3842供电与振荡300V的脉动直流电压,此电压经R12降压后给C4充电,供电UC3842的7脚,当C4的电压达到UC3842的启动电压门槛值时,UC3842开始工作并提供驱动脉冲,由6脚输出推动开关管工作。
一旦开关管工作,反馈绕组的能量经过D6整流,C4滤波,又供电到UC3842的7脚,这时可以不需要R12的启动了。
C9、R11接UC3842的定时端,和内部电路构成振荡电路,振荡的工作频率计算为:f=1.8/(Rt*Ct)代入数据可计算工作频率:f=68.18K4. 稳压电路该电路主要由精密稳压源T L 4 3 1 和线性光耦P C 8 1 7 组成,假设输出电压↑→经过R 1 6 、R 1 9 、R20、RES3的取样电压↑→TL431的1脚电压↑,当该脚电压大于TL431的基准电压2.5V时,TL431的2、3脚导通,→通过光电耦合到UC3842的2脚,于是UC3842的6脚驱动脉冲的占空比↓→开关变压器T1绕组上的能量↓→输出电压↓,达到稳压作用;反之,假设输出电压下降,则稳压过程与上相反。
开关电源作用是什么原理引言在现代电子设备中,开关电源扮演着至关重要的角色,它可以将交流电转换为稳定的直流电供给各种电子设备。
那么,开关电源是如何实现这一功能的呢?本文将介绍开关电源的工作原理及其在电子领域中的作用。
开关电源的工作原理开关电源的核心部分是开关电源主电路,由开关管、变压器、整流电路、电容和电感等组成。
其工作原理可以简述如下: 1. 变压器作用:开关电源先将输入的交流电通过整流电路转换为直流电,然后经过变压器变压降压。
2. 开关管控制:开关管充当开关的作用,通过控制开关管的导通和断开来调节输出电压。
3. 变压器传递能量:开关管导通时,变压器储存能量;开关管断开时,变压器释放储存的能量。
4. 电容滤波:电容用于对输出电压进行滤波处理,使输出电压更稳定。
5. 电感反馈:电感用于减小电压波动,提供稳定的输出电压。
开关电源在电子设备中的作用开关电源在电子设备中起到了至关重要的作用,主要体现在以下几个方面: 1. 稳定电压输出:开关电源能够稳定输出所需的直流电压,确保电子设备正常运行。
2. 体积小巧:相比传统的线性电源,开关电源具有体积小、重量轻的优势,更适合被集成到各种小型电子设备中。
3. 高效能耗:开关电源具有高能效转换率,能够减少能量损耗,节约能源。
4. 适应性强:开关电源的输出电压范围较广,可以适应不同电子设备的需求。
5. 可靠性高:开关电源采用先进的控制技术和保护电路,能够提高电子设备的可靠性。
结语总的来说,开关电源通过精密的电路设计和控制技术,将输入的交流电转换成稳定的直流电输出,为各种电子设备的正常运行提供了可靠的电源支持。
在今后的发展中,开关电源将继续发挥重要作用,为电子设备的高效、小型化和节能发展提供强大支持。
希望本文能为读者对开关电源的工作原理及作用有更深入的了解。
开关电源原理与设计世纪电源网-论坛第一章开关电源的基本工作原理1-1.几种基本类型的开关电源1-2.串联式开关电源1-2-1.串联式开关电源的工作原理1-2-2.串联式开关电源输出电压滤波电路1-2-3.串联式开关电源储能滤波电感的计算1-2-4.串联式开关电源储能滤波电容的计算1-3.反转式串联开关电源1-3-1.反转式串联开关电源的工作原理1-3-2.反转式串联开关电源储能电感的计算1-3-3.反转式串联开关电源储能滤波电容的计算1-4.并联式开关电源1-4-1.并联式开关电源的工作原理1-4-2.并联式开关电源输出电压滤波电路1-4-3.并联开关电源储能电感的计算1-4-4.并联式开关电源储能滤波电容的计算1-5.单激式变压器开关电源1-5-1.单激式变压器开关电源的工作原理1-6.正激式变压器开关电源1-6-1.正激式变压器开关电源工作原理1-6-2.正激式变压器开关电源的优缺点1-6-3.正激式变压器开关电源电路参数计算1-6-3-1.正激式变压器开关电源储能滤波电感和储能滤波电容参数的计算1-6-3-2.正激式开关变压器参数的计算1-6-3-2-1.变压器初级线圈匝数的计算1-6-3-2-2.变压器初、次级线圈匝数比的计算1-7.反激式变压器开关电源工作原理1-7-1.反激式变压器开关电源工作原理1-7-2.开关电源电路的过渡过程1-7-3.反激式变压器开关电源电路参数计算1-7-3-1.反激式变压器开关电源储能滤波电容参数的计算1-7-3-2.反激式开关变压器参数的计算1-7-3-2-1.反激式开关变压器初级线圈匝数的计算1-7-3-2-2.反激式开关变压器初级线圈电感量的计算1-7-3-2-3.变压器初、次级线圈匝数比的计算1-7-4.反激式变压器开关电源的优缺点1-8.双激式变压器开关电源1-8-1.推挽式变压器开关电源的工作原理1-8-1-1.交流输出推挽式变压器开关电源1-8-1-2.整流输出推挽式变压器开关电源1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算1-8-1-3-2.推挽式变压器开关电源储能滤波电容参数的计算1-8-1-4.推挽式开关变压器参数的计算1-8-1-4-1.推挽式开关变压器初级线圈匝数的计算1-8-1-4-2.推挽式开关变压器初、次级线圈匝数比的计算A)交流输出推挽式开关变压器初、次级线圈匝数比的计算B)直流输出电压非调整式推挽开关变压器初、次级线圈匝数比的计算C)直流输出电压可调整式推挽开关变压器初、次级线圈匝数比的计算1-8-1-5.推挽式开关电源的优缺点1-8-2.半桥式变压器开关电源1-8-2-1.交流输出半桥式变压器开关电源1-8-2-2.交流输出单电容半桥式变压器开关电源1-8-2-3.整流输出半桥式变压器开关电源1-8-2-4.半桥式开关电源储能滤波电感、电容参数的计算A)半桥式开关电源储能滤波电感参数的计算B)半桥式开关电源储能滤波电容参数的计算1-8-2-5.半桥式开关变压器参数的计算A)半桥式开关变压器初级线圈匝数的计算B)交流输出半桥式开关变压器初、次级线圈匝数比的计算C)直流输出电压非调整式半桥开关变压器初、次级线圈匝数比的计算D)直流输出电压可调整式半桥开关变压器初、次级线圈匝数比的计算1-8-2-6.半桥式变压器开关电源的优缺点1-8-3.全桥式变压器开关电源1-8-3-1.全桥式变压器开关电源的工作原理1-8-3-2.整流输出全桥式变压器开关电源1-8-3-3.全桥式开关电源储能滤波电感、电容参数的计算A)全桥式开关电源储能滤波电感参数的计算B)全桥式开关电源储能滤波电容参数的计算1-8-3-4.全桥式开关变压器参数的计算A)全式开关变压器初级线圈匝数的计算B)交流输出全桥式开关变压器初、次级线圈匝数比的计算C)直流输出电压非调整式全桥开关变压器初、次级线圈匝数比的计算D)直流输出电压可调整式全桥开关变压器初、次级线圈匝数比的计算1-8-3-5.全桥式变压器开关电源的优缺点1-9.第一章总结第一章开关电源的基本工作原理1-1.几种基本类型的开关电源顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。