热分析技术在药物分析中的应用
- 格式:pdf
- 大小:205.34 KB
- 文档页数:2
DSC技术的原理和应用1. DSC技术的概述DSC(差示扫描量热法)是一种广泛应用于材料科学和化学领域的热分析技术。
它通过测量样品与参比物之间的热流差异来研究样品的热性质和相变行为。
DSC技术通过对样品加热或冷却过程中释放或吸收的热量进行测量和分析,可以得到材料的热容、热导率、熔化温度等重要参数。
在材料科学、化学反应动力学、能量储存等领域具有广泛的应用。
2. DSC技术的原理DSC技术的原理基于样品与参比物在同样的温度条件下所吸收或释放的热量差异。
DSC仪器包括一个加热炉、两个测量样品和参比物温度的热敏电阻、温度控制系统和记录仪器等。
在实验中,样品和参比物同时进行加热或冷却,并测量两者之间的温度差。
通过绘制样品和参比物的温度差随时间的曲线,可以得到样品的热量曲线。
3. DSC技术的应用3.1 材料热性质的研究DSC技术可以用来研究材料的热容、热导率等热性质。
通过测量样品加热或冷却过程中释放或吸收的热量,可以确定材料的热容特性,并可以进一步研究材料的相变行为,例如熔融、晶化等。
3.2 材料相变行为的研究DSC技术可以用来研究材料的相变行为。
通过测量样品加热或冷却过程中的热量变化,可以确定材料的熔化温度、凝固温度等相变参数。
绘制样品的热量曲线可以确定相变的温度和峰值,从而分析材料的相变过程。
3.3 化学反应动力学的研究DSC技术还可以用来研究化学反应的动力学过程。
通过测量反应体系在加热或冷却过程中释放或吸收的热量变化,可以确定反应速率、活化能等参数,从而分析反应的动力学行为。
3.4 药物研发中的应用在药物研发中,DSC技术可以用来研究药物的热性质和相变行为,例如药物的熔融温度、晶型转变等。
这些热性质参数对于药物的稳定性、生物利用度和制剂工艺的优化具有重要意义。
3.5 能量储存材料的研究DSC技术可以用来研究能量储存材料的热性质和相变行为。
能量储存材料,例如锂离子电池、超级电容器等,具有重要的能量储存和释放功能。
热重分析法的原理及其应用1. 简介热重分析法 (Thermogravimetric Analysis, TGA) 是一种重要的热分析技术,广泛应用于材料科学、化学、制药、食品、环境等领域。
通过测量样品在升温条件下失重的情况,可以分析样品的热性质、组成、分解行为、热稳定性等参数,为材料研究和质量控制提供重要的参考数据。
2. 原理热重分析法的原理基于样品在升温条件下的质量变化,主要通过测量样品的失重曲线来分析样品的热性质和分解行为。
2.1 实验装置热重分析实验通常使用热重分析仪进行,其基本组成包括热重秤、样品盘、加热器、温度控制系统和质量检测系统等。
2.2 实验步骤1.将待测样品放置在样品盘上,并记录样品的初始质量。
2.将样品盘放置在热重秤上,并将整个装置放入热重分析仪中。
3.设置升温程序和实验参数,如升温速率、起始温度和终止温度等。
4.开始实验,热重分析仪会根据设定的程序升温,并记录样品的质量变化。
5.实验结束后,得到样品的失重曲线图,可以根据曲线图进行数据分析。
2.3 数据分析通过分析失重曲线,可以获取以下信息:•质量损失情况:根据失重曲线的斜率和曲线的形态可以判断样品的质量损失情况,如是否有固定的失重阶段、失重速率等。
•分解温度:可以根据失重曲线上的温度峰值确定样品的分解温度,这是样品发生化学反应的温度范围。
•分解产物:失重曲线的特征包括不同的“台阶”,每个“台阶”对应不同的分解产物,可以分析样品的分解产物和分解机理。
•热稳定性:通过分析失重曲线的持续时间和失重量可以评估样品的热稳定性,用于判断材料的应用范围和安全性。
3. 应用热重分析法在许多领域都有广泛的应用。
3.1 材料学热重分析可以用于评估材料的热稳定性、热分解温度和分解产物。
这对于材料的研发、改性和应用具有重要意义。
例如,通过热重分析可以确定聚合材料的热稳定性,对于制造高温环境下工作的电子器件非常重要。
3.2 化学反应热重分析可以用于研究化学物质的热分解反应和催化反应。
药物分析中的差示扫描量热法研究差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种广泛应用于药物分析领域的热分析技术。
它通过测量物质在加热或冷却过程中吸收或放出的热量来研究其热力学性质和相变过程。
在药物分析中,差示扫描量热法被广泛用于药物研发、质量控制以及稳定性评价等方面。
本文将重点介绍差示扫描量热法在药物分析中的应用及其研究方法。
一、差示扫描量热法原理差示扫描量热法基于样品与参比品之间的热交换原理进行测量。
在实验中,将待测样品与已知热特性的参比品同时放入量热仪中,通过对两个样品进行同时加热或冷却,测量样品与参比品之间的温差和热量差,从而获得样品的热特性信息。
差示扫描量热法主要包括两种工作模式:差示扫描热量仪(DSC)和差示红外热量仪(DSC-IR)。
DSC主要用来测量样品的热量变化,可以得到样品的熔融点、结晶度、玻璃化转变、相分离等信息。
DSC-IR则结合了差示扫描热量仪和红外光谱仪的功能,可以通过红外光谱分析样品中的吸收峰来获取更加详细的化学信息。
二、差示扫描量热法在药物研发中的应用1. 药物配方研究差示扫描量热法可以用于研究药物的配方中所使用的各种成分对药物性质的影响。
通过对不同配方药物的扫描分析,可以对比不同药物的热力学特性差异,从而确定最佳的配方组合。
2. 药物溶解性研究差示扫描量热法可通过测量药物在不同温度下的溶解热来判断药物的溶解性。
通过分析药物的热解曲线,可以了解药物在不同溶剂中的溶解度,为药物的制剂开发提供重要依据。
3. 药物相变研究差示扫描量热法可用于研究药物的相变过程。
通过测量药物在不同温度下吸热或放热的情况,可以确定药物的熔点、晶型转变、溶解度等热力学参数,帮助药物科研人员了解药物的稳定性和相容性。
4. 药物质量控制差示扫描量热法可用于药物制剂的质量控制。
通过对药物样品的热分析,可以鉴定药物的成分、含量和纯度等质量指标,确保药物的质量符合规定标准。
热分析的原理与应用1. 热分析的基本原理热分析是一种通过对样品在不同温度或时间条件下的物理或化学变化进行分析的方法,其基本原理包括以下几个方面:•热重分析(TG):热重分析通过测量样品在升温过程中的质量变化来分析样品的成分和性质。
样品在升温时,其质量会随温度的变化而发生变化,这是因为样品中存在着各种物质的热分解、氧化、化合物变化等反应过程。
通过对样品质量随时间或温度的变化进行监测和分析,可以得到样品的热分解特性和成分信息。
•热差示扫描量热法(DSC):热差示扫描量热法是一种通过测量样品在升温或降温过程中与基准物质之间的温差来分析样品热性质的方法。
样品和基准物质在温度条件下可能会发生吸热或放热反应,从而产生温差。
通过测量样品和基准物质之间的温差,可以了解样品的热容量、热变化、相变等信息。
•差热分析(DTA):差热分析是一种通过测量样品和参比物在升温或降温过程中的温差来分析样品的性质和反应的方法。
样品和参比物在升温或降温过程中可能会发生物理或化学变化,从而产生温差。
通过测量样品和参比物之间的温差,可以推断出样品的热性质和反应特性。
2. 热分析的应用领域热分析在各个领域中有着广泛的应用,以下列举了其中的几个应用领域:•材料科学与工程:热分析可以用于材料的性能测试和品质控制。
通过热分析可以了解材料的热固化过程、热稳定性、相变行为、热膨胀系数等性质,从而指导材料的设计、工艺优化和使用条件的确定。
•环境科学:热分析可以用于环境污染物的检测和分析。
通过热分析可以了解样品中的有机和无机物质的热稳定性、燃烧特性等。
例如,使用热分析可以对废物和大气污染物中的有机物进行检测和定性分析。
•药物研发:热分析可以用于药物的研发过程中的药物稳定性测试和相变行为研究。
通过热分析可以了解药物在不同温度和湿度条件下的稳定性、热分解特性等,从而指导药物的储存和使用条件的确定。
•食品科学:热分析可以用于食品中成分和品质的分析和检测。
通过热分析可以了解食品中的蛋白质、脂肪、糖等成分的热稳定性、降解特性,从而判断食品的品质和存储条件。
差示扫描量热仪(DSC)在药物分析中的应用珀金埃尔默仪器(上海)有限公司朱兵刘继涛前言:药品的研发与生产必须监控其物化性质,如纯度、晶型、稳定性和安全性,以确保药物具有预期的药性。
众所周知,有机化合物包括药品常常具有多种结构及晶态,这势必影响到药品的加工条件、期稳定性、衰变及生物投递能力。
药品的最终组成中包含了多种活性组份以及它们之间相互作用而生成的产物,当然还有赋形剂、水分、药片涂层等,十分复杂。
因此对其全面的表征也变得越来越重要,其中最理想的测试方法之一就是热分析。
热分析具有用量少、方法灵敏、快速的特点,在较短的时间内可获得需要复杂技术或长期研究才能得到的各种信息。
差示扫描量热仪(DSC)是目前在医药领域应用最广的热分析仪之一,DSC通过测量药物热焓和温度随程序温控的变化,具体可以研究的信息如:z药物纯度z药物的多晶及亚稳态、无定形态的研究z优化冷冻干燥z脂质检测、蛋白质变性1. 药物纯度DSC在药物分析中最主要的应用之一是评估药物纯度。
自从上世纪六十年代商业DSC 产品出现以来,因DSC测定药物纯度快速、准确易于操作,这项技术已被广泛接受。
DSC 池体的响应时间和温度测量对于纯度的准确分析至关重要。
功率补偿型DSC因其炉体小(<1g),响应时间极快,而且其使用铂电阻测温精度高、准确好,因而非常适合纯度的准确测量。
众所周知,当物质中有微量杂质存在时,其熔点将会降低,同时熔程变宽。
图1. 不同纯度非那西汀样品的DSC熔融测试结果图1所示不同纯度的非那西汀(乙酰对氨苯乙醚)样品的DSC曲线,可以说明这一点。
而DSC测定纯度通过Var’tHoff 方程计算求得:1/Fs = [∆H/R] • [To – Ts] / To2• [1/X2]式中Ts为样品的瞬间熔解温度,To为纯物质的熔点(°K);△H为纯物质的熔融热(J/g),X2为杂质样品中的摩尔分数;R为气体常数(8.314J/mole),Fs则为温度Ts时样品已熔化的分数,Fs=As/At,As为温度为Ts时已熔融部分的熔融热,At为总熔融热。
差示扫描量热法在药物分析中的应用周苏钢(浙江大学药学院03级1班,杭州 310031)摘要:本文主要介绍了差示扫描量热法在药物分析中的应用,由于其技术的不断完善和分析仪器的改进及计算机技术的迅猛发展,其在药物纯度、确定药物晶型、中药鉴定及药物热稳定性等方面发挥越来越大的作用。
关键词:差示扫描量热法;晶型;热稳定性;药物纯度0引言差示扫描量热法(differential scanning calorimetry;DSC)是一种热分析法。
在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关系。
差示扫描量热仪记录到的曲线称DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。
该法使用温度范围宽(-175~725℃)、分辨率高、试样用量少。
适用于无机物、有机化合物及药物分析。
近年来,国外应用热分析方法测定药物纯度已见报道,美国药典也已将该分析方法测定药物纯度予以收载[1] ,预示了该方法良好前景。
以下就简单列举了DSC在药物分析中的一些应用。
1 在研究药物多晶型转变中的应用药物的多晶型现象是指同一药物具有多种晶型的现象。
许多药物都具有多晶型现象,且在药物的制备,如喷雾干燥、微囊化、混合粉碎等过程中均可能发生晶型转变。
晶型不同,药物的稳定性、溶解度、溶出度和生物利用度等方面有所不同。
因此确定药物的晶型,对药物制剂的开发和药效的发挥具有重要的作用。
不同的晶型具有不同的熔点和熔化焓,故可采用DSC研究晶型转变或判定其晶型。
尹化等[2]报道了采用DSC法用于西咪替丁晶型的研究。
西咪替丁存在着多晶型,且A晶型的生物有效性最佳。
[3]为考察国内西咪替丁原料的晶型状况,有学者抽检了国内各医药企业生产的该药,采用DSC法、红外分光光谱法及x射线衍射法均能对其进行定性鉴别;红外分光光谱法在测定混合晶型时存在局限性,而DSC法简单、易行,且可对混合晶型中不同晶型粗略定量。
热分析在药物研究中的应用药物研究是一个非常复杂的过程,需要综合采用多种技术手段进行分析。
其中,热分析作为一种热力学实验方法,在药物研究中发挥着重要的作用。
本文将从药物研究的角度出发,介绍热分析在药物研究中的应用。
一、热分析概述热分析是通过在固体、液态、气态样品中对加热或冷却过程中发生的物理、化学和相变事件进行观察或测定,以获得样品热稳定性、热性质、相变特性及其它物理化学指标的实验方法。
常见的热分析技术有热重分析、差示扫描量热法、动态热机械分析、热膨胀分析等。
热分析技术具有灵敏度高、快速准确、重现性好、适用性广等优点,因此广泛应用于材料科学、燃料化学、生物化学等学科领域。
同时,在药物研究中,热分析也成为了一种重要的分析方法。
二、药物研究中的热分析应用1.药物结构研究药物分子的结构对其效用和作用机理有着重要的影响。
热分析技术可以通过测量不同温度下药物的热重曲线、热容曲线和差示扫描量热曲线等,获得药物分子的热力学参数,如氧化和分解温度、熔点、蒸发热、热容、焓等。
从而进一步了解药物分子的化学结构和分子间的相互作用关系。
2.药物质量控制药物的质量控制涉及到药品的稳定性、相容性和制备等方面。
热分析法可以通过测定药品质量、热稳定性和相容性等指标,来协助药品制备和质量控制工作。
例如,对于某种药物原料或制品,可以通过差示扫描量热法测定其热稳定性,进而确定其保质期和储存条件。
这对药品制造企业来说具有重要的参考价值。
3.药物包装材料筛选药品包装材料的选用对药品的保护和稳定有重要影响。
燃烧热值法可以测定材料的热稳定性,差示扫描量热法可以测定材料的玻璃化转变温度和熔点。
通过这些测定方法,可以筛选出最佳的药品包装材料,从而保障药品的质量和安全。
4.药物分析和检测药物标准的制定需要依据药物的物理化学指标来进行。
热分析技术可以提供丰富的热力学数据,如热力学参数、热性质等,为药物分析和检测提供了可靠的依据。
另外,热分析技术还可以运用于药物的纯度、杂质和残留溶剂的检测。
热分析技术在药学领域中的应用摘要目的:综述热分析技术的基本原理、方法分类,展望热分析技术在药学领域中的应用前景。
方法:查阅近年来有关文献,并进行分析总结。
结果:差热分析法(DTA)、这差热扫描量热法(DSC)和热重法(TG)应用较多,主要在药物鉴别和药物分析上应用。
结论:尽管热分析技术在药学领域应用时间不长,但有着广阔的应用前景。
关键词热分析药学应用1 热分析技术所谓热分析技术,就是研究材料在加热或冷却过程中的物理、化学等性质的变化,对物质进行定性、定量的分析和鉴定物质,为新材料的研究和开发提供热性能数据和结构信息。
在热分析法中,物质在一定温度范围内发生的变化,包括与周围环境作用而经历的物理变化和化学变化(释放出结晶水和挥发性物质,热量的吸收或释放,某些变化还涉及到物质的增重或失重,发生热力学变化、热物理性质和电学性质变化等)。
热分析法的核心:研究物质在受热或冷却过程中产生的物理、化学性质的变迁速率与温度以及所涉及的能量和质量变化之间的关系。
国际热分析协会(International Confederation for Thermal Analysis, ICTA)的定义为:热分析是在程序控制温度(固定的升温或降温速率)下,测量物质的物理性质(质量、温度、热焓、尺寸、机械、声学、电学、磁学等)随温度变化的一类技术。
包括热重法(Thermogravimetry,TG),微熵热重法(Derivative Thermogravimetry,DTG),差热分析法(Differential thermal analysis,DTA),差示扫描量热法(Differential Scanning Calorimetry,DSC),热机械法(Thermogravimetry analysisi,TMA),以及释出气体分析(EGA)、热膨胀分析等等。
其中以差热分析法、差示扫描量热法、热重法、动态热机械分析法最为常用,被称为热分析技术中的四大支柱。
热分析法在药物分析中的应用与展望摘要:热分析技术指的是某些物理变化和化学变化发生在材料温度升高或降低时。
通过研究这些变化,可以确定材料的结构。
热分析技术不仅需要少量样品,而且需要灵活的测试条件,对样品的形状没有特殊要求。
更重要的是,它可以在一次测试中获得各种物理和化学信息。
因此,该技术得到广泛应用,并在化工、冶金、医药、建筑材料、环境保护和医药等领域提供了良好的发展前景。
关键词:热分析技术;物理、化学变化;药物分析;应用广泛;前言热分析技术被广泛用于研究物质的各种变化和反应,并可用于确定物质、确定其成分和特征参数等。
热分析是在程序控制的温度下执行的。
准确记录物理化学性质与温度之间的关系,并研究加热(或冷却)过程中物理化学变化,可用于研究药物的物理化学性质和热力学参数。
由于物质的温度变化(质量、温度、热量、机械质量、光量和磁量),开发了各种热分析和测试技术。
常用的测试方法有热重量分析、差热分析和差扫量热方法。
近年来,由于科学技术的进步和计算机的使用,热分析迅速发展,出现了新的仪器和测量方法,如热力学分析(TMA)、热力学分析(DMTA)和声热分析(STA)。
热分析逐渐扩大到医药科学及其生产。
热分析、差热分析和差热分析是热分析的三大支柱,广泛应用于医药领域。
一、热分析技术概述所谓热分析技术,是一种在温度控制下,利用程序来测量物质物理化学性质和温度之间关系的技术。
需要指出的是,通过这种技术,可以很好地分析相关物质在整个温度上升和下降过程中的物理化学变化。
就该技术而言,它具有灵敏度高的优点,可以检测微量样品,并且可以与其他分析方法一起应用。
通过这种技术,可以为药物加热或冷却时发生的物理和化学变化提供有价值的药物分析力学参数,为相关研究提供高效参考。
二、热分析技术的类型1.热重分析热分析技术通常用于热分析。
它使用计算机程序控制温度,然后测量材料的温度和重量,并多次调整温度以获得不同温度下材料重量变化的关系。