天一联考2017-2018高一数学(一)
- 格式:doc
- 大小:1.39 MB
- 文档页数:4
实用文档绝密☆启前用天一大联考学年高一年级阶段性测试(一)2017-2018学数考生注意:并将考生号条码粘贴在考生号填写在试卷和答题卡上,答题前,考生务必将自己的姓名、1. 答题卡上的制定位置。
如需改动,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
2.回答选择题时,写在本试用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
分,在每小题给出的四个选项中,只有一分,共60一、选择题:本题共12小题,每小题5.项是符合题目要求的BA?C?}Z?1?x?4?A{x?},4,8,9?B?{2,?1的非1.,设已知集合,C,则集合空子集的个数为A. 8 B. 7 C. 4 D. 31的定义域为函数2.?3)x)?lg(x?f(4?x A. B. C. D. [3,4) [0,1](3,4)(3,4]3x的零点位于区间函数3.29?x??f(x)? A. B. D . C. (2,3)(3,1)2),4(1,)(0x?2,x?0f[f(?2)]??f(x),则已知函数4. ?0?logx?,2 A. 4 B. 3 C. 2 D.1????0,上单调递减,则不等式在若定义在R上的奇函数5.)xy?f(的解集是)1f(?(logfx)?3111?????? B. A. ??,?,????,??????? 333??????实用文档111???? D. C. ,0?,????333????则下列函数中图像不经P的图像恒过点,6.函数且)1tt?0?xf(x)?log(?3)?3(t P的是过点A. B. )4y?log(2x?1x?y?2x?2 C.D.12?y?5y?x?1?1?x111???2?xB1?,?A?3x3a?x?a?(?)已知集合,若的取7.,则a B?A??3273???值范围是????,10??,1 D. B. C.A. )1)(0,(?2,0322m?x?6m?5)(f(x)?2m 8.若幂函数没有零点,则的图像)xf(不具有轴对称 D. 关于x轴对称 C. 关于yB. A. 关于原点对称对称性m=若函数为奇函数,则9.)x1??x()?ln(1?x)mln(f A. 2 B. 1 C.-1D. -22)?x110log(2 10.函数的图像大致为?xf()x13?11yx m =已知,则,且11.且2??0m?(7m?49?2)1m?yx A. 14 B. 7C. 4D.2实用文档x?,?12,x?(x)f的则实数m若不等式12.已知函数恒成立,mx?4?f(x)?,?21),1?xln(x??取值范围是????????,,020?2,2,??2?2 A.D. B. C.分。
2017-2018学年安徽省天一大联考高一(下)期末数学试卷(A卷)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)9°=()A.B.C.D.2.(5分)下列选项中,与向量(1,﹣2)垂直的单位向量为()A.(4,2)B.(﹣2,1)C.D.3.(5分)某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为;④中部地区学生小张被选中的概率为A.①④B.①③C.②④D.②③4.(5分)将小王6次数学考试成绩制成茎叶图如图所示,则这些数据的中位数是()A.81B.83C.无中位数D.84.55.(5分)一个盒子中装有红、黄、蓝三种颜色的球各5个,从中任取3个球.事件甲:3个球都不是红球;事件乙:3个球不都是红球;事件丙:3个球都是红球;事件丁:3个球中至少有1个红球,则下列选项中两个事件互斥而不对立的是()A.甲和乙B.甲和丙C.乙和丙D.乙和丁6.(5分)已知在边长为2的正方形内,有一月牙形图形,向正方形内随机地投射100个点,恰好有15个点落在了月牙形图形内,则该月牙形图形的面积大约是()A.3.4B.0.3C.0.6D.0.157.(5分)若锐角α满足,则=()A.B.C.D.38.(5分)已知△ABC满足﹣=k×(其中k是非零常数).则△ABC的形状是()A.正三角形B.钝角三角形C.直角三角形D.等腰三角形9.(5分)如图所示的程序框图,若输入的x的值为a(a∈R),则输出u=()A.a B.﹣a C.|a|D.﹣|a|10.(5分)函数在区间[﹣3,5]上的所有零点之和等于()A.﹣2B.0C.3D.211.(5分)设非零向量,夹角为θ,若||=2||,且不等式|2|≥|+λ|对任意θ恒成立,则实数λ的取值范围为()A.[﹣1,3]B.[﹣1,5]C.[﹣7,3]D.[5,7]12.(5分)=()A.B.C.D.1二、填空题:本题共4小题,每小题5分,共20分13.(5分)从1~10这十个自然数中任选一个数,该数为质数的概率为.14.(5分)数据x1,x2,…,x n的平均数是3,方差是1,则数据5﹣x1,5﹣x2,…,5﹣x n 的平均数和方差之和是.15.(5分)如图是出租汽车计价器的程序框图,其中x表示乘车里程(单位:km),S表示应支付的出租汽车费用(单位:元).有下列表述:①在里程不超过3km的情况下,出租车费为8元;②若乘车8.6km,需支付出租车费20元;③乘车xkm的出租车费为8+2(x﹣3)④乘车xkm与出租车费S的关系如图所示:S(单位:元)则正确表述的序号是.16.(5分)如图为函数f(x)=A sin(2x+φ)(A>0,|φ|≤)的部分图象,对于任意的x1,x2∈[a,b],若f(x1)=f(x2),都有f(x1+x2)=,则φ等于.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知向量=(2,3),=(1,﹣1).(Ⅰ)若实数m,n满足m+n=(5,10),求m+n的值;(Ⅱ)若(+λ)∥(λ+),求实数λ的值.18.(12分)某企业根据供销合同生产某种型号零件10万件,规定:零件长度(单位:毫米)在区间(99,101]内,则为一等品;若长度在(97,99]或(101,103]内,则为二等品;否则为不合格产品.现从生产出的零件中随机抽取100件作样本,其长度数据的频率分布直方图如图所示.(Ⅰ)试估计该样本的平均数;(Ⅱ)根据合同,企业生产的每件一等品可获利10元,每件二等品可获利8元,每件不合格产品亏损6元,若用样本估计总体,试估算该企业生产这批零件所获得的利润.19.(12分)某中学每周定期举办一次数学沙龙,前5周每周参加沙龙的人数如表:(Ⅰ)假设x与y线性相关,求y关于x的回归直线方程;(Ⅱ)根据(Ⅰ)中的方程预测第8周参加数学沙龙的人数.附:对于线性相关的一组数据(x i,y i)(i=1,2,…,n),其回归方程为y=bx+a.其中b=,a=.20.(12分)函数的最小正周期为π,点为其图象上一个最高点.(Ⅰ)求f(x)的解析式;(Ⅱ)将函数f(x)图象上所有点都向左平移个单位,得到函数g(x)的图象,求g (x)在区间上的值域.21.(12分)甲乙两人玩卡片游戏:他们手里都拿着分别标有数字1,2,3,4,5,6的6张卡片,各自从自己的卡片中随机抽出1张,规定两人谁抽出的卡片上的数字大,谁就获胜,数字相同则为平局.(Ⅰ)求甲获胜的概率.(Ⅱ)现已知他们都抽出了标有数字6的卡片,为了分出胜负,他们决定从手里剩下的卡片中再各自随机抽出1张,若他们这次抽出的卡片上数字之和为偶数,则甲获胜,否则乙获胜.请问:这个规则公平吗,为什么?22.(12分)如图所示,扇形OAB中,,OA=1,矩形CDEF内接于扇形OAB.点G为的中点,设∠COG=x,矩形CDEF的面积为S.(Ⅰ)若,求S;(Ⅱ)求S的最大值.2017-2018学年安徽省天一大联考高一(下)期末数学试卷(A卷)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【考点】G4:弧度制.【解答】解:9°=9×=.故选:B.【点评】本题考查了角度制化为弧度制的应用问题,是基础题.2.【考点】9T:数量积判断两个平面向量的垂直关系.【解答】解:在A中,∵向量(4,2)的模为=2≠1,不是单位向量,故A 错误;在B中,∵向量(﹣2,1)的模为=,不是单位向量,故B错误;在C中,∵(1,﹣2)•(,)=﹣≠0,故C错误;在D中,∵(1,﹣2)•(﹣,)=0,向量(﹣,)的模为=1,∴向量(1,﹣2)垂直的单位向量为(﹣,),故D正确.故选:D.【点评】本题考查命题真假的判断,考查与已知向量垂直的单位向量的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.【考点】B3:分层抽样方法.【解答】解:在①中,用分层抽样的方法分别抽取东部地区学生:100×=48人,中部地区学生:100×=32人,西部地区学生20人:100×=20人,故①正确;在②中,因为学生层次差异较大,且学生数量较多,应该利用分层抽样,故②错误;在③中,西部地区学生小刘被选中的概率为=,故③正确;在④中,中部地区学生小张被选中的概率为=,故④错误.故选:B.【点评】本题考查命题真假的判断,考查分层抽样、简单随机抽样、概率性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.【考点】BA:茎叶图.【解答】解:由茎叶图得这些数据从小到大依次为:78,81,83,86,93,95,∴这些数据的中位数是:=84.5.故选:D.【点评】本题考查中位数的求法,考查中位数、茎叶图的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.【考点】C4:互斥事件与对立事件.【解答】解:一个盒子中装有红、黄、蓝三种颜色的球各5个,从中任取3个球.事件甲:3个球都不是红球;事件乙:3个球不都是红球;事件丙:3个球都是红球;事件丁:3个球中至少有1个红球,在A中,甲和乙能同时发生,不是互斥事件,故A错误;在B中,甲和丙是互斥而不对立事件,故B正确;在C中,乙和丙是对立事件,故C错误;在D中,乙和丁能同时发生,不是互斥事件,故D错误.故选:B.【点评】本题考查互斥而不对立事件的判断,考查互斥事件、对立事件的定义等基础知识,是基础题.6.【考点】CF:几何概型.【解答】解:设月牙图形的面积为S,由边长为2的正方形面积为4,且=,解得S=0.6,∴月牙图形的面积大约是0.6.故选:C.【点评】本题考查了利用面积比计算几何概型的概率问题,是基础题.7.【考点】GS:二倍角的三角函数.【解答】解:由锐角α满足,得,则====.故选:A.【点评】本题考查三角函数的化简求值,考查同角三角函数基本关系式及倍角公式的应用,是中档题.8.【考点】GZ:三角形的形状判断.【解答】解:△ABC中,﹣=k×(其中k是非零常数),如图所示;∴﹣=k×(﹣),∴+k=k+,∴(+k)=(k+),又、不共线,∴+k=k+=0,∴||=||,∴△ABC是等腰三角形.故选:D.【点评】本题考查了平面向量的线性运算问题,是基础题.9.【考点】EF:程序框图.【解答】解:若输入的x值为a,当a≤0时,y=2a,则y=log2y=a,当a>0时,y=2﹣a,则y=log2y﹣a=﹣a,则输出u=﹣|a|,故选:D.【点评】本题主要考查程序框图的识别和判断,根据条件结构进行求解即可.10.【考点】57:函数与方程的综合运用.【解答】解:函数=0,x∈[﹣3,5].∴(x﹣1)=kπ,解得x=3k+1,k∈Z.令k=﹣1,0,1,可得x=﹣2,1,4.∴函数在区间[﹣3,5]上的所有零点之和=﹣2+1+4=3.故选:C.【点评】本题考查了函数零点、三角函数求值、方程的解法,考查了推理能力与计算能力,属于中档题.11.【考点】9P:平面向量数量积的坐标表示、模、夹角.【解答】解:∵非零向量,夹角为θ,若||=2||,=2,不等式|2|≥|+λ|对任意θ恒成立∴,∴,整理可得,(13﹣λ2)+(8﹣4λ)cosθ≥0恒成立,∵cosθ∈[﹣1,1],∴,∴,∴﹣1≤λ≤3故选:A.【点评】本题主要考查了向量数量积的运算法则,恒成立问题的处理,函数思想的应用.12.【考点】GP:两角和与差的三角函数.【解答】解:=======.故选:A.【点评】本题考查三角函数的化简求值,考查两角和与差的三角函数,是中档题.二、填空题:本题共4小题,每小题5分,共20分13.【考点】CB:古典概型及其概率计算公式.【解答】解:从1~10这十个自然数中任选一个数,基本事件总数n=10,该数为质数包含的基本事件个数m=4,∴该数为质数的概率为p==0.4.故答案为:0.4.【点评】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.14.【考点】BC:极差、方差与标准差.【解答】解:根据题意,若数据x1,x2,…,x n的平均数是3,即(x1+x2+……+x n)=3,方差是1,即[(x1﹣3)2 +(x2﹣3)2+……+(x n﹣3)2]=1;则数据5﹣x1,5﹣x2,…,5﹣x n的平均数=[(5﹣x1)+(5﹣x2)+……(5﹣x n)]=5﹣(x1+x2+……+x n)=5﹣3=2,其方差S2=[(5﹣x1﹣2)2 +(5﹣x2﹣2)2+……+(5﹣x n﹣2)2]=[(x1﹣3)2 +(x2﹣3)2+……+(x n﹣3)2]=1,故数据5﹣x1,5﹣x2,…,5﹣x n的平均数和方差之和为2+1=3;故答案为:3.【点评】本题考查数据的平均数、方差的计算,关键是掌握平均数、方差的计算公式,属于基础题.15.【考点】EF:程序框图.【解答】解:由已知中程序框图可得:①在里程不超过3km的情况下,出租车费为8元,正确;②若乘车8.6km,此时按9km收取费用,需支付出租车费20元,正确;③乘车xkm的出租车费为8+2(x﹣3)只在x为整数时成立,不正确④乘车xkm与出租车费S的关系如图所示:S(单位:元),不正确故答案为:①②【点评】本题考查的知识点是程序框图,分段函数的应用,难度中档.16.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【解答】解:由三角函数的最大值可知A=2,不妨设=m,则x1+x2=2m,由三角函数的性质可知:2m+φ=2kπ+,k∈Z,则:f(x1+x2)=2sin[2(x1+x2)+φ]=2sin(2×2m+φ)=2sin[2×(2m+φ)﹣φ]=2sin[2×(2kπ+)﹣φ]=2sin[4kπ+π﹣φ]=2sinφ=,则sinφ=,结合|φ|≤,故,φ=.故答案为:.【点评】本题主要考查了由y=A sin(ωx+φ)的部分图象确定其解析式,考查了数形结合思想的应用,属于基础题.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.【考点】96:平行向量(共线).【解答】解:(Ⅰ)由题意得m+n=(2m+n,3m﹣n)=(5,10)∴,解得,∴m+n=2.(Ⅱ)+λ=(2+λ,3﹣λ),λa+b=(2λ+1,3λ﹣1)•∵(+λ)∥(λ+),∴(2+λ)(3λ﹣1)=(3﹣λ)(2λ+1)解得λ=±1.【点评】本题考查了向量共线定理及其向量坐标运算性质,考查了推理能力与计算能力,属于基础题.18.【考点】B8:频率分布直方图.【解答】解:(Ⅰ)由频率分布直方图可得各组的频率分别为0.02,0.18,0.38,0.30,0.10,0.02.平均数估计值是96×0.02+98×0.18+100×0.38+102×0.30+104×0.10+106×0.02=100.68.(Ⅱ)由题意知,一等品的频率为0.38,二等品的频率为0.48,不合格产品的频率为0.14.用样本估计总体,一等品约有3.8万件,二等品约有4.8万件,不合格产品约有1.4万件.故该企业生产这批零件预计可获利润3.8×10+4.8×8﹣1.4×6=68万元.【点评】本题主要考查了频率分布直方图,着重考查了频率分布直方图的理解和频率计算公式等知识,属于基础题.19.【考点】BK:线性回归方程.【解答】解:(Ⅰ),,以y关于x的回归直线方程是y=3x+9.(Ⅱ)当x=8时,由回归方程可得y=3×8+9=33,即第8周参加数学沙龙的人数预计为33人.【点评】本题考查线性回归分析,考查运算能力.20.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【解答】解:(Ⅰ)因为函数的最小正周期为π,得,解得ω=2;又点为其图象上一个最高点,得A=2,所以;又因为,所以;所以;(Ⅱ)由题意得,当时,;因为y=sin x在区间上单调递增,在区间上单调递减,且,,,所以g(x)在区间上的值域为(﹣1,2].【点评】本题考查了三角函数的图象与性质的应用问题,也考查了函数图象平移应用问题,是基础题.21.【考点】CC:列举法计算基本事件数及事件发生的概率.【解答】解:(Ⅰ)两人各自从自己的卡片中随机抽出一张,所有可能的结果有36种,分别为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),其中事件“甲获胜”包含的结果有15种,分别为:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4),(6,5).所以甲获胜的概率为p=(Ⅱ)两人各自从于里剩下的卡片中随机抽出一张,所有可能的结果有25种,分别为:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),其中卡片上的数字之和为偶数的结果有13种,分别为:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).根据规则,甲获胜的概率为,则乙获胜的概率为,所以这个规则不公平.【点评】本题考查概率的求法,考查考查概率的性质、古典概型的概率计算等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.22.【考点】GP:两角和与差的三角函数.【解答】解:(Ⅰ)如图所示,设OG与CF,DE分别交于M,N两点,由已知得CM=ND=OC sin x=sin x,CF=2CM=2sin x.OM=OC cos x=cos x,,∴.故,∴.当时,;(Ⅱ)∵,∴,当且仅当,即时,S取得最大值.【点评】本题考查三角函数模型和三角两数的性质,考查应用意识,是中档题.。
2017-2018学年度高一数学9月月考试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟。
学校:___________姓名:___________班级:___________考号:___________分卷I一、选择题(共12小题,每小题5.0分,共60分)1.已知集合M ={x ∈N +|2x ≥x 2},N ={-1,0,1,2},则(∁R M )∩N 等于( ) A . ∅ B . {-1} C . {1,2} D . {-1,0}2.已知集合P ={4,5,6},Q ={1,2,3},定义P ⊕Q ={x |x =p -q ,p ∈P ,q ∈Q },则集合P ⊕Q 的所有真子集的个数为( )A . 32B . 31C . 30D . 以上都不对3.定义A -B ={x |x ∈A ,且x ∉B },若A ={1,2,4,6,8,10},B ={1,4,8},则A -B 等于( ) A . {4,8} B . {1,2,6,10} C . {1} D . {2,6,10}4.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2 D .f (x )=和g (x )=5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图像是( )A .B .C .D .6.下列三个函数:①y =3-x ;②y =;③y =x 2+2x -10.其中值域为R 的函数有( ) A .0个 B .1个 C .2个 D .3个 7.一次函数g (x )满足g [g (x )]=9x +8,则g (x )是( ) A .g (x )=9x +8 B .g (x )=3x +8C .g (x )=-3x -4D .g (x )=3x +2或g (x )=-3x -4 8.下列函数中,在[1,+∞)上为增函数的是( ) A .y =(x -2)2 B .y =|x -1| C .y =D .y =-(x +1)2 9.若非空数集A ={x |2a + ≤x ≤3a -5},B ={x |3≤x ≤ },则能使A ⊆B 成立的所有a 的集合是( ) A . {a | ≤a ≤9} B . {a |6≤a ≤9} C . {a |a ≤9} D . ∅10.若函数f (x )= ,, , ,φ(x )=, , , ,则当x <0时,f (φ(x ))为( ) A . -x B . -x 2C .XD .x 2 11.若函数f (x )=的最小值为f (0),则实数m 的取值范围是( )A . [-1,2]B . [-1,0]C . [1,2]D . [0,2]12.已知函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,则实数k 的取值范围是( )A. [160,+∞) B. (-∞,40]C. (-∞,4 ]∪[ 6 ,+∞) D. (-∞, ]∪[8 ,+∞)分卷II二、填空题(共4小题,每小题5.0分,共20分)13.已知M={2,a,b},N={2a,2,b2},且M=N,则有序实数对(a,b)的值为________.14.已知函数y=f(x2-1)的定义域为{x|-2<x<3},则函数y=f(3x-1)的定义域为____________.15.设函数f(x)=, ,, ,若f(f(a))=2,则a=_________.16.已知函数y=f(x)的定义域为{1,2,3},值域为{1,2,3}的子集,且满足f[f(x)]=f(x),则这样的函数有________个.三、解答题(共6小题,,共70分)17.(10分)用单调性的定义证明函数f(x)=2x2+4x在[-1,+∞)上是增函数.18(12分).根据下列函数解析式求f(x).(1)已知f(x+1)=2x2+5x+2;(2)已知f=x3+3-1;(3)已知af(x)+f(-x)=bx,其中a≠± 19(12分).已知集合A={x| ≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.20(12分).经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t( ≤t≤ )的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.21(12分).已知函数f(x)=(x-a)2-(a2+1)在区间[0,2]上的最大值为g(a),最小值为h(a)(a∈R).(1)求g(a)和h(a);(2)作出g (a )和h (a )的图像,并分别指出g (a )的最小值和h (a )的最大值各为多少?22(12分).已知函数f (x )的定义域是(0,+∞),当x >1时,f (x )>0,且f (x ·y )=f (x )+f (y ). (1)求f (1)的值;(2)证明:f (x )在定义域上是增函数;(3)如果f (3)=-1,求满足不等式f (x )-f (x - )≥ 的x 的取值范围.2017-2018学年度高一数学9月月考试卷答案解析1.【答案】D【解析】因为M ={1,2},所以(∁R M )∩N ={-1,0},故正确答案为D. 2.【答案】B【解析】由所定义的运算可知P ⊕Q ={1,2,3,4,5}, ∴P ⊕Q 的所有真子集的个数为25-1=31.故选B. 3.【答案】D【解析】A -B 是由所有属于A 但不属于B 的元素组成,所以A -B ={2,6,10}.故选D. 4.【答案】D【解析】A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D. 5.【答案】C【解析】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图像一定是下降的,由此排除A ;再由小明骑车上学,开始时匀速行驶,可得出图像开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图像与x轴平行,由此排除D,后为了赶时间加快速度行驶,此一段时间段内函数图像下降的比较快,由此可确定C正确,B不正确.故选C.6.【答案】B【解析】7.【答案】D【解析】∵g(x)为一次函数,∴设g(x)=kx+b,∴g[g(x)]=k(kx+b)+b=k2x+kx+b,又∵g[g(x)]=9x+8,∴9,8,解得3,或3,4,∴g(x)=3x+2或g(x)=-3x-4.故选D.8.【答案】B【解析】y=(x-2)2在[2,+∞)上为增函数,在(-∞,2]为减函数;y=|x-1|= , ,,在[1,+∞)上为增函数,故选B.9.【答案】B 10.【答案】B【解析】x<0时,φ(x)=-x2<0,∴f(φ(x))=-x2.11.【答案】D【解析】当x≤ 时,f(x)=(x-m)2,f(x)min=f(0)=m2,所以对称轴x=m≥ .当x>0时,f(x)=x++m≥ +m=2+m,当且仅当x=,即x=1时取等号,所以f(x)min=2+m.因为f(x)的最小值为m2,所以m2≤ +m,所以 ≤m≤ .12.【答案】C【解析】由于二次函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,因此函数f(x)=4x2-kx-8在区间(5,20)上是单调函数.二次函数f(x)=4x2-kx-8图像的对称轴方程为x=8,因此8≤5或8≥ ,所以k≤4 或k≥ 6 .13.【答案】(0,1)或(4,)【解析】∵M={2,a,b},N={2a,2,b2},且M=N,∴或即或或4当a=0,b=0时,集合M={2,0,0}不成立,∴有序实数对(a,b)的值为(0,1)或(4,),故答案为(0,1)或(4,).14.【答案】{x| ≤x<3}【解析】∵函数y=f(x2-1)的定义域为{x|-2<x<3},∴-2<x<3.令g(x)=x2-1,则- ≤g(x)<8,故- ≤3x-1<8,即 ≤x<3,∴函数y=f(3x-1)的定义域为{x| ≤x<3}.15.【答案】【解析】若a≤ ,则f(a)=a2+2a+2=(a+1)2+1>0,所以-(a2+2a+2)2=2,无解;若a>0,则f(a)=-a2<0,所以(-a2)2+2(-a2)+2=2,解得a=.故a=.16.【答案】10【解析】∵f[f(x)]=f(x),∴f(x)=x,①若f:{ , ,3}→{ , ,3},可以有f(1)=1,f(2)=2,f(3)=3,此时只有1个函数;②若f:{ , ,3}→{ },此时满足f(1)=1;同理有f:{ , ,3}→{ };f:{ , ,3}→{3},共有3类不同的映射,因此有3个函数;③首先任选两个元素作为值域,则有3种情况.例如选出1,2,且对应关系f:{ , ,3}→{ , },此时满足f(1)=1,f(2)=2.则3可以对应1或2,又有2种情况,所以共有3× =6个函数.综上所述,一共有1+3+6=10个函数.17.【答案】设x1,x2是区间[-1,+∞)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=(2+4x1)-(2+4x2)=2(-)+4(x1-x2)=2(x1-x2)(x1+x2+2).∵- ≤x1<x2,∴x1-x2<0,x1+x2+2>0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在[-1,+∞)上是增函数.18.【答案】(1)方法一(换元法)设x+1=t,则x=t-1,∴f(t)=2(t-1)2+5(t-1)+2=2t2+t-1,∴f(x)=2x2+x-1.方法二(整体代入法)∵f(x+1)=2x2+5x+2=2(x+1)2+(x+1)-1,∴f(x)=2x2+x-1.(2)(整体代入法)∵f=x3+3-1=3-3x2·-3x·-1=3-3-1,∴f(x)=x3-3x-1(x≥ 或x≤-2).(3)在原式中以-x替换x,得af(-x)+f(x)=-bx,于是得+ - = ,- + =-消去f(-x),得f(x)=.故f(x)的解析式为f(x)=x(a≠± ).19.【答案】(1)因为A={x| ≤x<7},B={x|3<x<10},所以A∪B={x| ≤x<10}.因为A={x| ≤x<7},所以∁R A={x|x<2或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x| ≤x<7},C={x|x<a},且A∩C≠∅,所以a>2.20.【答案】(1)y=g(t)·f(t)=(80-2t)·( -|t-10|)=(40-t)(40-|t-10|)=3 4 , ,4 5 ,(2)当 ≤t<10时,y的取值范围是[1 200,1 225],在t=5时,y取得最大值1 225;当 ≤t≤ 时,y的取值范围是[600,1 200],在t=20时,y取得最小值600.综上,第5天,日销售额y取得最大值1 225元;第20天,日销售额y取得最小值600元.21.【答案】( )∵f(x)=(x-a)2-(a2+1),又x∈[ , ],∴当a≤ 时,g(a)=f(2)=3-4a,h(a)=f(0)=-1;当0<a≤ 时,g(a)=f(2)=3-4a,h(a)=f(a)=-(a2+1);当1<a<2时,g(a)=f(0)=-1,h(a)=f(a)=-(a2+1);当a≥ 时,g(a)=f(0)=-1,h(a)=f(2)=3-4a.综上可知g(a)=3 4h(a)=3 4(2)g(a)和h(a)的图像分别为:由图像可知,函数y=g(a)的最小值为-1,函数y=h(a)的最大值为-1.【解析】22.【答案】(1)解令x=y=1,得f(1)=2f(1),故f(1)=0.(2)证明令y=,得f(1)=f(x)+f()=0,故f()=-f(x).任取x1,x2∈( ,+∞),且x1<x2,则f(x2)-f(x1)=f(x2)+f()=f().由于>1,故f()>0,从而f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.(3)解由于f(3)=-1,而f(3)=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x=y=3,得f(9)=f(3)+f(3)=2.故所给不等式可化为f(x)-f(x- )≥f(9),∴f(x)≥f[9(x-2)],∴x≤94.又∴ <x≤94,∴x的取值范围是94.【解析】。
九年级第二学期阶段性测试数学试卷(一)天一大联考2017-2018学年高一年级阶段性测试(一)数学1. 已知集合,,设,则集合C的非空子集的个数为A. 8B. 7C. 4D. 32. 函数的定义域为A. B. C. D.3. 函数的零点位于区间A. B. C. D .4.已知函数,则A. 4B. 3C. 2D.15.若定义在R上的奇函数在上单调递减,则不等式的解集是A. B.C. D.6.函数且的图像恒过点P,则下列函数中图像不经过点P的是A. B.C. D.7.已知集合,若,则a的取值范围是A. B. C. D.8.若幂函数没有零点,则的图像A. 关于原点对称B. 关于x轴对称C. 关于y轴对称D. 不具有对称性9.若函数为奇函数,则m=A. 2B. 1C.-1D. -210.函数的图像大致为11.已知且,且,则m =A. 14B. 7C. 4D.212.已知函数若不等式恒成立,则实数m的取值范围是A. B. C. D.2、填空题:本题4小题,每小题5分,共20分。
13.函数的值域是 .14.若,则x= .15.函数在区间上最大值为5,最小值为4,则t的取值范围为 .16.已知方程有唯一实数根,则实数t的取值范围是 .三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)计算下列各式:(1)(2)18.(12分)已知集合(1)若时,求(2)若求实际a的取值范围.19.(12分)已知是上的奇函数,且当时,(1)求函数的解析式;(2)补全的图像(图中小正方形的边长为1),并根据图像写出的单调区间.20.(12分)已知函数(1)当时,函数的图象在x轴的下方,求实数t的取值范围;(2)若函数在上不单调,求实数t的取值范围.21.(12分)某家用电器公司生产一新款热水器,首先每年需要固定投入200万元,其次每生产1百台,需再投入0.9万元,假设该公司生产的该款热水器当年能全部售出,但每销售1百台需另付运输费0.1万元,根据以往的经验,年销售总额(万元)关于年产量x(百台)的函数为(1)将年利润表示为年产量x的函数;(2)求该公司生产的该款热水器的最大年利润及相应的年产量。
2017-2018学年 数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{|A x y =,{}2,1,1,2B =--,则A B =( )A .{}12,B .()1,2C .{}12--,D .[1,)+∞2.在等比数列{}n a 中,若45627a a a =,则19a a =( ) A .3B .6C .27D .93.已知p :0x R ∃∈,200460x x ++<,则p ⌝为( ) A .x R ∀∈,200460x x ++≥ B .0x R ∃∈,200460x x ++> C .x R ∀∈,200460x x ++>D .0x R ∃∈,200460x x ++≥4.设函数3log ,09,()(4),9,x x f x f x x <≤⎧=⎨->⎩则1(13)2()3f f +的值为( )A .1B .0C .2-D .25.已知向量a ,b 的夹角为23π,且(3,4)a =-,||2b =,则|2|a b +=( )A .B .2C .D .846.函数13()||f x x x =-的图象大致是( )7.将函数()sin()f x x ωϕ=+(0ω>,22ππϕ-<<)图象上所有点的横坐标缩短为原来的一半,再向右平移6π个单位长度得到函数sin y x =的图象,则ω,ϕ的值分别为( )A .12,6π B .23π,C .2,6πD .1,26π- 8.曲线cos 16y ax x =+在2x π=处的切线与直线1y x =+平行,则实数a 的值为( )A .2π-B .2πC .2πD .2π-9.过双曲线22221(0,0)x y a b a b-=>>的右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,与双曲线的渐进线交于C ,D 两点,若3||||5AB CD ≥,则双曲线离心率的取值范围为( ) A .5[,)3+∞ B .5[,)4+∞C .5(1,]3D .5(1,]410.设函数[]2(2),(1,),()1||,1,1,f x x f x x x -∈+∞⎧⎪=⎨-∈-⎪⎩若关于x 的方程()log (1)0a f x x -+=(0a >且1a ≠)在区间[]0,5内恰有5个不同的根,则实数a 的取值范围是( )A .(B .)+∞C .)+∞D .11.对于正整数k ,记()g k 表示k 的最大奇数因数,例如(1)1g =,(2)1g =,(10)5g =.设(1)(2)(3)(2)n n S g g g g =++++….给出下列四个结论:①(3)(4)10g g +=;②*m N ∀∈,都有(2)()g m g m =;③12330S S S ++=;④114n n n S S ---=,2n ≥,*n N ∈.则其中所有正确结论的序号为( )A .①②③B .②③④C .③④D .②④12.等腰直角△AOB 内接于抛物线22(0)y px p =>,O 为抛物线的顶点,OA OB ⊥,△AOB 的面积是16,抛物线的焦点为F ,若M 是抛物线上的动点,则||||OM MF 的最大值为( )A B C D 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知1sin cos 2θθ+=,则sin(2)πθ-= . 14.过点C (3,4)作圆225x y +=的两条切线,切点分别为A ,B ,则点C 到直线AB 的距离为 .15.已知数列{}n a 是公差不为0的等差数列,11a +,21a +,41a +称等比数列,且2312a a +=-,则n a = .16.在△ABC 中,若3sin 2sin C B =,点E ,F 分别是AC ,AB 的中点,则BECF的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数2()2cos f x x x m =--. (1)求函数()f x 的最小正周期与单调递增区间;(2)若53,244x ππ⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最大值为0,求实数m 的值. 18.已知圆22(1)25x y -+=,直线50ax y -+=与圆相交于不同的两点A ,B . (1)求实数a 的取值范围;(2)若弦AB 的垂直平分线l 过点(2,4)P -,求实数a 的值.19.已知等差数列{}n a 满足12231()()()2(1)n n a a a a a a n n +++++++=+…(*n N ∈). (1)求数列{}n a 的通项公式; (2)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n S . 20.已知函数2()log ()(1)f x g x k x =+-.(1)若2(log )1g x x =+,且()f x 为偶函数,求实数k 的值;(2)当1k =,2()(1)g x ax a x a =+++时,若函数()f x 的值域为R ,求实数a 的取值范围.21.已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率12e =,且椭圆C 经过点(2,3)P ,过椭圆C 的左焦点1F 且不与坐标轴垂直的直线交椭圆C 于A ,B 两点. (1)求椭圆C 的方程;(2)设线段AB 的垂直平分线与x 轴交于点G ,求△1PFG 的面积S 的取值范围. 22.已知函数()ln f x b x =.(1)当1b =时,求函数2()()G x x x f x =--在区间1,2e ⎡⎤⎢⎥⎣⎦上的最大值与最小值;(2)若在[]1,e 上存在0x ,使得0001()bx f x x +-<-成立,求b 的取值范围.天一大联考2016-2017学年高中毕业班阶段性测试(二)数学(理科)答案一、选择题二、填空题 13.34-14.4 15.21n -- 16.17(,)48三、解答题 17.解:(1)2()2cos f x x x m =--1cos 222x x m +=--1sin(2)62x m π=---,(2)因为53,244x ππ⎡⎤∈⎢⎥⎣⎦,所以42,643x πππ⎡⎤-∈⎢⎥⎣⎦,则当262x ππ-=,3x π=时,函数取得最大值0,即1102m --=,解得12m =.18.解:(1)把直线50ax y -+=代入圆的方程,消去y 整理,得22(1)2(51)10a x a x ++-+=, 由于直线50ax y -+=交圆于A ,B 两点, 故224(51)4(1)0a a ∆=--+>,即21250a a ->,解得512a >或0a <, 所以实数a 的取值范围是5(,0)(,)12-∞+∞.(2)由于直线l 为弦AB 的垂直平分线,且直线AB 斜率为a ,则直线l 的斜率为1a-, 直线l 的方程为1(2)4y x a=-++,即240x ay a ++-=w , 由于l 垂直平分弦AB ,故圆心(1,0)M 必在l 上, 所以10240a ++-=,解得34a =, 由于35(,)412∈+∞,所以34a =符合题意. 19.解:(1)设等差数列{}n a 的公差为d ,由已知得1212234,()()12,a a a a a a +=⎧⎨+++=⎩即12234,8,a a a a +=⎧⎨+=⎩所以1111()4,()(2)8,a a d a d a d ++=⎧⎨+++=⎩解得11,2,a d =⎧⎨=⎩所以21n a n =-.(2)由(1)得112122n n n a n ---=, 所以122235232112222n n n n n S ----=+++++…,①3252321223222n n n n n S ----=+++++…,②②-①得22122221222222n n n n S ---=+++++-111112123222612212n n n n n -----+=+⨯-=-- .20.解:(1)令2log t x =,则2t x =,代入2(log )1g x x =+,得()21tg t =+, ∴2()log (21)(1)x f x k x =++-.∵函数()f x 是偶函数,∴()()f x f x -=, ∴22log (21)(1)log (21)(1)x x k x k x -++-=+--,即221log 2(1)21x x k x -+=--+,2log 22(1)x k x =--,∴2(1)x k x =--对一切x R ∈恒成立,∴2(1)1k -=-,即12k =. (2)设当1k =时,22()log (1)f x k ax a x a ⎡⎤=+++⎣⎦,当0a ≠时,要使函数()f x 的值域为R ,则0,0,a >⎧⎨∆≥⎩即220,(1)40,a a a >⎧⎨+-≥⎩解得01a <≤. 综上所述a 的取值范围为[]0,1.21.解:(1)设椭圆C 的方程为22221x y a b+=(0a b >>),则221,2491,c a c a b ⎧=⎪⎪⎪=⎨⎪⎪+=⎪⎩解得2216,12,a b ⎧=⎪⎨=⎪⎩故椭圆C 的方程为2211612x y +=.(2)设直线AB 的方程为(2)y k x =+(0k ≠).由22(2),34480y k x x y =+⎧⎨+-=⎩消去y 并整理得2222(34)1616(3)0k x k x k +++-=. 易知0∆>,设11(,)A x y ,22(,)B x y ,则2122164+3k x x k -+=,2122164843k x x k -=+,设00(,)M x y 是AB 的中点,则2020028,436(2).43k x k k y k x k ⎧-=⎪⎪+⎨⎪=+=⎪+⎩线段AB 的垂直平分线MG 的方程为001()y y x x k-=--,令0y =,得2200222862343434c k k x x ky k k k-=+=+=-+++. 因为0k ≠,所以102c x -<<, 因为1113|||||2|22PF C P G S S F G y x ∆==⋅=+,1(,0)2G x ∈-,所以S 的取值范围是9(,3)4.22.解:(1)当1b =时,2()()G x x x f x =--2ln (0)x x x x =-->,(21)(1)'()x x G x x+-=,令'()0G x =,得1x =,当x 变化时,()G x ,'()G x 的变化情况如下表:因为111()ln ln 212424G =--=-+<,(1)0G =, 2()1(1)11G e e e e e =--=-->,所以2()()G x x x f x =--在区间1,2e ⎡⎤⎢⎥⎣⎦上的最大值与最小值分别为:2max ()()1G x G e e e ==--,min ()(1)0G x G ==.(2)设1()ln bh x x b x x+=-+. 若在[]1,e 上存在0x ,使得0001()b x f x x +-<-,即0001ln 0bx b x x +-+<成立, 则只需要函数1()ln bh x x b x x+=-+在[]1,e 上的最小值小于零. 又2221(1)'()1b b x bx b h x x x x +--+=--=[]2(1)(1)x x b x +-+=, 令'()0h x =,得1x =-(舍去)或1x b =+.①当1b e +≥,即1b e ≥-时,()h x 在[]1,e 上单调递减,故()h x 在[]1,e 上的最小值为()h e ,由1()0bh e e b e +=+-<,可得211e b e +>-. 因为2111e e e +>--,所以211e b e +>-. ②当11b +≤,即0b ≤时,()h x 在[]1,e 上单调递增, 故()h x 在[]1,e 上的最小值为(1)h ,由(1)110h b =++<, 可得2b <-(满足0b ≤).③当11b e <+<,即01b e <<-时,()h x 在(1,1)b +上单调递减,在(1,)b e +上单调递增,故()h x 在[]1,e 上的最小值为(1)2ln(1)h b b b b +=+-+. 因为0ln(1)1b <+<,所以0ln(1)b b b <+<,所以2ln(1)2b b b +-+>,即(1)2h b +>,不满足题意,舍去.综上可得2b <-或211e b e +>-,所以实数b 的取值范围为21(,2)(,)1e e +-∞-+∞-.。
豫南九校2017-2018学年上期期末联考高一数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2A =,则集合(){,|,}B x y x A y A =∈∈中元素的个数为( ) A. 1 B. 2C. 3D. 4【答案】D 【解析】 【分析】由题意,集合B 是由点作为元素构成的一个点集,根据,x A x B ∈∈,即可得到集合B 的元素. 【详解】由题意,集合B 中元素有(1,1),(1,2),(2,1),(2,2),共4个.故选D . 【点睛】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性.2.已知直线1:10l ax y +-=与直线22:0l x ay a ++=平行,则a 的值为A .1B. -1C. 0D. -1或1【答案】A 【解析】由于直线l 1:ax +y -1=0与直线l 2:x +ay +2a =0平行所以210a -=, 即a =-1或1,经检验1a =成立. 故选A.3.函数()21,02log ,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,则1(())8f f =( )A.14B. 4C.18D. 8【答案】D 【解析】因为函数()21,02log ,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,所以211388f log ⎛⎫==- ⎪⎝⎭,()3113882f f f -⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选A. 【思路点睛】本题主要考查分段函数的解析式、指数与对数的运算,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.本题解答分两个层次:首先求出18f ⎛⎫⎪⎝⎭的值,进而得到18f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值.4.设,αβ是两个不同的平面,m 是直线且m α⊂,//m β,若使//αβ成立,则需增加条件( ) A. n 是直线且n ⊂α,//n β B. ,n m 是异面直线,//n β C. ,n m 是相交直线且n ⊂α,//n β D. ,n m 是平行直线且n ⊂α,//n β【答案】C 【解析】【详解】要使//αβ成立,需要其中一个面的两条相交直线与另一个面平行,,n m 是相交直线且n ⊂α,//n β,m α⊂,//m β,由平面和平面平行的判定定理可得//αβ. 故选C.5.已知函数()223f x x ax =--在区间[]1,2上是单调增函数,则实数a 的取值范围为( )A. (),1-∞B. (],1-∞C. ()2,+∞D. [)2,+∞【答案】B 【解析】 【分析】根据二次函数的图象与性质,可知区间[]1,2在对称轴0x a =的右面,即1a ≤,即可求得答案.【详解】函数()223f x x ax =--为对称轴0x a =开口向上的二次函数,在区间[]1,2上是单调增函数,∴区间[]1,2在对称轴0x a =的右面,即1a ≤, ∴实数a 的取值范围为(],1-∞.故选B.【点睛】本题考查二次函数的图象与性质,明确二次函数的对称轴、开口方向与函数的单调性的关系是解题关键.6.已知矩形ABCD ,6AB =,8BC =,沿矩形的对角线AC 将平面ACD 折起,若,,,A B C D 四点都在同一球面上,则该球面的面积为( ) A. 36π B. 64πC. 100πD. 200π【答案】C 【解析】矩形ABCD,AB=6,BC=8,矩形的对角线AC=10为该球的直径,所以该球面的面积为100π. 故选C.7.设()f x 是定义在实数集上的函数,且(2)()f x f x -=,若当1x ≥时,()ln f x x =,则有( ) A. (1)(0)(2)f f f -<= B. (1)(0)(2)f f f ->= C. (1)(0)(2)f f f -<< D. (1)(0)(2)f f f ->>【答案】B 【解析】由f (2-x )=f (x )可知函数f (x )的图象关于x =1对称,所以()()02f f =,()()13f f -=,又当x ≥1时,f (x )=ln x 单调递增,所以()()()102f f f ->=,故选B.8.已知2()f x ax bx =+是定义在[1,2]a a -上的偶函数,那么()f x 的最大值是( ) A. 0 B.13C.427D. 1【答案】C 【解析】∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13. 又f (-x )=f (x ),∴b =0,∴()213f x x =,所以()21243327min f x ⎛⎫=⨯=⎪⎝⎭. 故选C.9.某四面体的三视图如图,则该四面体的体积是( )A. 1B.43C.32D. 2【答案】B 【解析】在正方体ABCD -A 1B 1C 1D 1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D 1-BCB 1,如图所示,该四面体的体积为114V 222323=⨯⨯⨯⨯=. 故选B .点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.10.已知实数,x y 满足方程22410x y x +--=,则2y x -的最小值和最大值分别为( ) A. -9,1 B. -10,1C. -9,2D. -10,2【答案】A 【解析】22410x y x +--=即为()2225x y -+=y -2x 可看作是直线y =2x +b 在y 轴上的截距,当直线y =2x +b 与圆相切时,纵截距b 取得最大值或最小值,=解得b =-9或1.所以y -2x 的最大值为1,最小值为-9. 故选A.11.已知函数2()21f x ax x =-+,若对一切1[,2]2x ∈,()0f x >都成立,则实数a 的取值范围为( ) A. 1[,)2+∞ B. 1(,)2+∞C. (1,)+∞D. (,1)-∞【答案】C 【解析】由题意得,对一切1,22x ⎡⎤∈⎢⎥⎣⎦,f (x )>0都成立,即22221211a (1)1x x x x x->=-=--+, 而21(1)11x--+≤,则实数a 的取值范围为()1,+∞. 故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x > ,若()0f x <恒成立max ()0f x ⇔<;(3)若()()f x g x > 恒成立,可转化为min max ()()f x g x >(需在同一处取得最值) . 12.已知,AC BD 为圆229O x y +=:两条互相垂直的弦,且垂足为()1,2M ,则四边形ABCD 面积的最大值为( ) A. 10 B. 13C. 15D. 20【答案】B 【解析】。
安徽省天一大联考2017-2018学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ()A. B. C. D.【答案】B【解析】分析:将角度制转化为弧度制即可.详解:由角度制与弧度制的转化公式可知:.本题选择B选项.点睛:本题主要考查角度值转化为弧度制的方法,意在考查学生的转化能力和计算求解能力.2. 下列选项中,与向量垂直的单位向量为()A. B. C. D.【答案】D【解析】分析:由题意逐一考查所给的选项即可.详解:逐一考查所给的选项:,选项A错误;,选项B错误;,选项C错误;,且,选项D正确;本题选择D选项.点睛:本题主要考查向量垂直的充分必要条件,单位向量的概念及其应用等知识,意在考查学生的转化能力和计算求解能力.3. 某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为;④中部地区学生小张被选中的概率为A. ①④B. ①③C. ②④D. ②③【答案】B【解析】分析:由题意逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生48人、中部地区学生32人、西部地区学生20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误;③西部地区学生小刘被选中的概率为,题中的说法正确;④中部地区学生小张被选中的概率为,题中的说法错误;综上可得,正确的说法是①③.本题选择B选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.4. 将小王6次数学考试成绩制成茎叶图如图所示,则这些数据的中位数是()。
天一大联考2017—2018学年高一年级期末考试(安徽版)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()A. B. C. D.【答案】B【解析】分析:将角度制转化为弧度制即可.详解:由角度制与弧度制的转化公式可知:.本题选择B选项.点睛:本题主要考查角度值转化为弧度制的方法,意在考查学生的转化能力和计算求解能力.2.下列选项中,与向量垂直的单位向量为()A. B. C. D.【答案】D【解析】分析:由题意逐一考查所给的选项即可.详解:逐一考查所给的选项:,选项A错误;,选项B错误;,选项C错误;,且,选项D正确;本题选择D选项.点睛:本题主要考查向量垂直的充分必要条件,单位向量的概念及其应用等知识,意在考查学生的转化能力和计算求解能力.3.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为;④中部地区学生小张被选中的概率为A. ①④B. ①③C. ②④D. ②③【答案】B【解析】分析:由题意逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生48人、中部地区学生32人、西部地区学生20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误;③西部地区学生小刘被选中的概率为,题中的说法正确;④中部地区学生小张被选中的概率为,题中的说法错误;综上可得,正确的说法是①③.本题选择B选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.4.将小王6次数学考试成绩制成茎叶图如图所示,则这些数据的中位数是()A. 81B. 83C. 无中位数D. 84.5【答案】D【解析】分析:由题意结合茎叶图首先写出所有数据,然后求解中位数即可.详解:由茎叶图可知,小王6次数学考试的成绩为:,则这些数据的中位数是.本题选择D选项.点睛:茎叶图的绘制需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据.5.一个盒子中装有红、黄、蓝三种颜色的球各5个,从中任取3个球.事件甲:3个球都不是红球;事件乙:3个球不都是红球;事件丙:3个球都是红球;事件丁:3个球中至少有1个红球,则下列选项中两个事件互斥而不对立的是()A. 甲和乙B. 甲和丙C. 乙和丙D. 乙和丁【答案】B【解析】分析:由题意逐一考查事件之间的关系即可.详解:由题意逐一考查所给的两个事件之间的关系:A.甲和乙既不互斥也不对立;B.甲和丙互斥而不对立;C.乙和丙互斥且对立;D.乙和丁既不互斥也不对立;本题选择B选项.点睛:“互斥事件”与“对立事件”的区别:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.6.已知在边长为2的正方形内,有一月牙形图形,向正方形内随机地投射100个点,恰好有15个点落在了月牙形图形内,则该月牙形图形的面积大约是()A. 3.4B. 0.3C. 0.6D. 0.15【答案】C【解析】分析:由题意结合蒙特卡洛模拟的方法整理计算即可求得最终结果.详解:设该月牙形图形的面积大约是,由题意结合蒙特卡洛模拟方法可知:,解得:.本题选择C选项.点睛:本题主要考查几何概型的应用,古典概型的应用等知识,意在考查学生的转化能力和计算求解能力.7.若锐角满足,则()A. B. C. D. 3【答案】A【解析】分析:由题意结合三角函数的性质整理计算即可求得最终结果.详解:由同角三角函数基本关系可知:结合题意可得:.本题选择A选项.点睛:本题主要考查切化弦的方法,二倍角公式及其应用等知识,意在考查学生的转化能力和计算求解能力.8.已知满足 (其中是常数),则的形状一定是()A. 正三角形B. 钝角三角形C. 等腰三角形D. 直角三角形【答案】C【解析】分析:由题意结合向量的运算法则和平面几何的结论确定△ABC的形状即可.详解:如图所示,在边(或取延长线)上取点,使得,在边(或取延长线)上取点,使得,由题意结合平面向量的运算法则可知:,,而,据此可得:,从而:,结合平面几何知识可知:,而,故.即△ABC为等腰三角形.本题选择C选项.点睛:用平面向量解决平面几何问题时,有两种方法:基向量法和坐标系法,利用基向量的时候需要针对具体的题目选择合适的基向量,建立平面直角坐标系时一般利用已知的垂直关系,或使较多的点落在坐标轴上,这样便于迅速解题.9.如图所示的程序框图,若输入的的值为,则输出()A. B. C. D.【答案】D【解析】分析:由题意结合流程图分类讨论输出的值即可.详解:结合流程图分类讨论:若,则,输出值,若,则,输出值,即输出值为:.本题选择D选项.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.10.函数在区间上的所有零点之和等于()A. -2B. 0C. 3D. 2【答案】C【解析】分析:首先确定函数的零点,然后求解零点之和即可.详解:函数的零点满足:,解得:,取可得函数在区间上的零点为:,则所有零点之和为.本题选择C选项.点睛:本题主要考查三角函数的性质,函数零点的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.11.设非零向量夹角为,若,且不等式对任意恒成立,则实数的取值范围为()A. B. C. D.【答案】A【解析】分析:由题意首先利用平面向量数量积的运算法则进行化简,然后结合一次函数的性质整理计算即可求得最终结果.详解:不等式等价于:,即,①其中,,将其代入①式整理可得:,由于是非零向量,故:恒成立,将其看作关于的一次不等式恒成立的问题,由于,故:,解得:;且:,解得:;综上可得,实数的取值范围为.本题选择A选项.点睛:本题主要考查平面向量数量积的运算法则,恒成立问题的处理,函数思想的应用等知识,意在考查学生的转化能力和计算求解能力.12.A. B. C. D. 1【答案】A【解析】分析:由题意结合切化弦公式和两角和差正余弦公式整理计算即可求得最终结果.详解:由题意可得:.点睛:本题主要考查两角和差正余弦公式,二倍角公式及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本题共4小题,每小题5分,共20分13.从这十个自然数中任选一个数,该数为质数的概率为__________.【答案】0.4【解析】分析:由题意结合古典概型计算公式整理计算即可求得最终结果.详解:由质数的定义可知:这十个自然数中的质数有:等4个数,结合古典概型计算公式可知该数为质数的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.14.数据,,…,的平均数是3,方差是1,则数据,,…,的平均数和方差之和是__________.【答案】3【解析】分析:由题意结合平均数、方差的性质整理计算即可求得最终结果.详解:由题意结合平均数和方差的性质可知:数据,,…,的平均数为:,方差为:,则平均数和方差之和是.点睛:本题主要考查均值的性质、方差的性质等知识,意在考查学生的转化能力和计算求解能力.15.下图是出租汽车计价器的程序框图,其中表示乘车里程(单位:),表示应支付的出租汽车费用(单位:元).有下列表述:①在里程不超过的情况下,出租车费为8元;②若乘车,需支付出租车费20元;③乘车的出租车费为④乘车与出租车费的关系如图所示:则正确表述的序号是__________.【答案】①②【解析】分析:结合流程图逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法:①在里程不超过的情况下,,则,即出租车费为8元,该说法正确;②由流程图可知,超出的部分的计费方式为向上取整后每公里元,若乘车,,需支付出租车费为:元,该说法正确.当乘车里程为和时,出租车车费均为元,据此可知说法③④错误.综上可得,正确表述的序号是①②.点睛:本题主要考查流程图知识的应用,生活实际问题解决方案的选择等知识,意在考查学生的转化能力和计算求解能力.16.如图为函数的部分图象,对于任意的,,若,都有,则等于__________.【答案】【解析】分析:由题意结合三角函数的性质和函数图象的对称性整理计算即可求得最终结果.详解:由三角函数的最大值可知,不妨设,则,由三角函数的性质可知:,则:,则,结合,故.点睛:本题主要考查三角函数图象的对称性,诱导公式及其应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.已知向量,.(1)若实数满足,求的值;(2)若,求实数的值.【答案】(1)2;(2)【解析】分析:(1)由题意得,据此求解关于m,n的方程组有所以.(2)由题意可得,,结合向量平行的充分必要条件得到关于的方程,解方程可知.详解:(1)由题意得所以解得所以.(2),,·因为,所以解得.点睛:本题主要考查平面向量的坐标运算,向量平行的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.18.某企业根据供销合同生产某种型号零件10万件,规定:零件长度(单位:毫米)在区间内,则为一等品;若长度在或内,则为二等品;否则为不合格产品.现从生产出的零件中随机抽取100件作样本,其长度数据的频率分布直方图如图所示.(1)试估计该样本的平均数;(2)根据合同,企业生产的每件一等品可获利10元,每件二等品可获利8元,每件不合格产品亏损6元,若用样本估计总体,试估算该企业生产这批零件所获得的利润.【答案】(1)100.68;(2)68万元【解析】分析:(1)由频率分布直方图结合平均数计算公式可估计该样本的平均数为100.68.(2)由题意知,一等品的频率为0.38,二等品的频率为0.48,不合格产品的频率为0.14.据此可估计该企业生产这批零件所获得的利润为万元.详解:(1)由频率分布直方图可得各组的频率分别为0.02,0.18,0.38,0.30,0.10,0.02.平均数估计值是.(2)由题意知,一等品的频率为0.38,二等品的频率为0.48,不合格产品的频率为0.14.用样本估计总体,一等品约有3.8万件,二等品约有4.8万件,不合格产品约有1.4万件.故该企业生产这批零件预计可获利润万元.点睛:频率分布直方图问题需要注意:在频率分布直方图中,小矩形的高表示,而不是频率;利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.19.某中学每周定期举办一次数学沙龙,前5周每周参加沙龙的人数如下表:周序号12345参加人数1217152125(1)假设与线性相关,求关于的回归直线方程;(2)根据(1)中的方程预测第8周参加数学沙龙的人数.附:对于线性相关的一组数据,其回归方程为.其中,.【答案】(1);(2)33【解析】分析:(1)由题意结合回归方程计算公式可得,,则线性回归方程为.(2)利用(1)中求得的回归方程结合回归方程的预测作用可得第8周参加数学沙龙的人数预计为33人.详解:(1),,所以关于的回归直线方程是.(2)当时,由回归方程可得,即第8周参加数学沙龙的人数预计为33人.点睛:一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.20.函数的最小正周期为,点为其图象上一个最高点.(1)求的解析式;(2)将函数图象上所有点都向左平移个单位,得到函数的图象,求在区间上的值域【答案】(1);(2)【解析】分析:(1)由最小正周期公式可得.由最大值可知,结合三角函数的性质可得,则.(2)由题意得,结合三角函数的性质可知函数在区间上的值域为.详解:(1)因为最小正周期为,得,.点为其图象上一个最高点,得,,又因为,所以.所以.(2)由题意得,当时,.因为在区间上单调递增,在区间上单调递减,且,,,所以在区间上的值域为.点睛:本题主要考查三角函数解析式的求解,函数的平移变换,三角函数值域的求解等知识,意在考查学生的转化能力和计算求解能力.21.甲乙两人玩卡片游戏:他们手里都拿着分别标有数字1,2,3,4,5,6的6张卡片,各自从自己的卡片中随机抽出1张,规定两人谁抽出的卡片上的数字大,谁就获胜,数字相同则为平局.(1)求甲获胜的概率.(2)现已知他们都抽出了标有数字6的卡片,为了分出胜负,他们决定从手里剩下的卡片中再各自随机抽出1张,若他们这次抽出的卡片上数字之和为偶数,则甲获胜,否则乙获胜.请问:这个规则公平吗,为什么?【答案】(1);(2)见解析【解析】分析:(1)由题意列出所有可能的事件,结合古典概型计算公式可知甲获胜的概率为.(2)由古典概型计算公式可知甲获胜的概率为,则乙获胜的概率为,则这个规则不公平.详解:(1)两人各自从自己的卡片中随机抽出一张,所有可能的结果为:,,,共36种,其中事件“甲获胜”包含的结果为:,有15种.所以甲获胜的概率为.(2)两人各自从于里剩下的卡片中随机抽出一张,所有可能的结果为:,共25种.其中卡片上的数字之和为偶数的结果为:,共13种.根据规则,甲获胜的概率为,则乙获胜的概率为,所以这个规则不公平.点睛:本题主要考查古典概型计算公式及其应用,意在考查学生的转化能力和计算求解能力.22.如图所示,扇形中,,,矩形内接于扇形.点为的中点,设,矩形的面积为.(1)若,求;(2)求的最大值.【答案】(1);(2)【解析】分析:(1)设与,分别交于,两点,由几何关系可得,.由矩形面积公式可得,结合三角函数的性质可知时,.(2)结合(1)中矩形的面积表达式可知当时,取得最大值.详解:(1)如图所示,设与,分别交于,两点,由已知得,.,,所以.故,所以,当时,.(2)因为,所以,当且仅当,即时,取得最大值.点睛:本题主要考查三角函数的应用,三角函数的性质,利用三角函数求最值等知识,意在考查学生的转化能力和计算求解能力.。
绝密☆启前用天一大联考2017-2018学年高一年级阶段性测试(一)英语考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答題卡上的指定位置。
2.回答选择題时,埠出每小题答案后,用铅笔把答题卡对应題目的答案标号涂黑。
如需改动,用橡皮檫干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有2分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分15分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时&来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A.£19.15.B.£9.18.C.£9.15.答案是C。
1.What will the woman do first?A.Buy a new computer.B.Surf some websites.C.Walk the dog.2.What is the weather like during the weekend?A.Cold.B.Warm.C.Hot.3.What are the speakers doing?A.Visiting a zoo.B.Making a film.C.Watching TV.4.What does the woman think the man should listen to?A.Study tapes.B.Music.C.News.5.What are the speakers mainly talking about?A.Where to eat.B.When to eat.C.C.Whom to eat with.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。