河南省天一大联考2019-2020学年高一上学期阶段性测试(二)数学
- 格式:pdf
- 大小:406.71 KB
- 文档页数:4
河南天一大联考2024届高一数学第二学期期末考试试题 注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知5a =,3b =,且12a b ⋅=-,则向量a 在向量b 上的投影等于( ) A .-4 B .4 C .125- D .1252.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是( )A .B .C .D .3.下列函数中,既是偶函数又在(,0)-∞上是单调递减的是A .cos y x =-B .lg y x =C .21y x =-D .x y e -=4.在正方体1111ABCD A B C D -中,M 、N 分别是棱1AA 和AB 的中点,P 为上底面1111D C B A 的中心,则直线PB 与MN 所成的角为( ) A .30° B .45° C .60° D .90°5.若a 、b 、c >0且a (a +b +c )+bc =4-32a +b +c 的最小值为( ) A . 3-1B . 3 1C .3 2D .3 26.已知直线1:230l x ay +-=与()2:110l a x y -++=,若12l l //,则a =( ) A .2 B .1 C .2或-1 D .-2或17.若两个球的半径之比为1:3,则这两球的体积之比为( )A .1:3B .1:1C .1:27D .1:98.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,5sin 7A =,5a =,7b =,则sin B 等于( )A .35B .45C .37D .19.函数tan()42y x ππ=-的部分图像如图所示,则()OA OB AB +⋅的值为( )A .1B .4C .6D .710.下列命题正确的是( )A .有两个面平行,其余各面都是四边形的几何体叫棱柱.B .有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.二、填空题:本大题共6小题,每小题5分,共30分。
“天一大联考·齐鲁名校联盟”2024—2025学年高三年级第二次联考数学一、单项选择题:本题共8小题,每小题5分,共40分.1.已知集合{}1,2,3,4,5,6U =,{}13,5A =,,{}1,2,3B =,则()U A B =ð()A.{}2,4,5,6 B.{}4,6 C.{}2,4,6 D.{}2,5,62.已知0,0m n >>,且3m n +=的最大值为()A.8B. C. D.2+3.函数)()(e e x x f x x -=-的图象大致为()A. B. C. D.4.一块扇形薄铁板的半径是30,圆心角是120 ,把这块铁板截去一个半径为15的小扇形后,剩余铁板恰好可作为一个圆台的侧面,则该圆台的体积为()A.π9B.1750π9C.π3D.5.设等比数列{}n a 的前n 项和为n S ,则“数列{}n S 为递增数列”是“321a a a >>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.函数221,2()2,2x x f x x x ⎧-<-=⎨-≥-⎩的最小值为()A .4- B.2- C.3D.57.已知数列{}n a 满足:11a =,点()1,n n n a a ++在函数1y kx =+的图象上,其中k 为常数()0k ≠,且124,,a a a 成等比数列,则k 的值为()A.2B.3C.4D.58.已知定义在R 上的函数()f x 满足()1(1)f x f x =--,若函数442x x y =+与函数()y f x =的图象的交点为112220252025(),),(,),,(,x y x y x y ,则20251)(i i i x y =+=∑()A.0B.20252C.2025D.60752二、多项选择题:本题共3小题,每小题6分,共18分.9.下列说法正确的是()A.若,a b c >∈R ,则22ac bc >B.若22,a b c c c>∈R ,则a b >C.若a b >,则22a b >D.函数2sin sin y x x=+的最小值为10.如图,有一列曲线012,,, P P P ,已知0P 所围成的图形是面积为1的等边三角形,1(0,1,2,3,)k P k += 是对k P 进行如下操作得到的:将k P 的每条边三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉,记k S 为曲线k P 所围成图形的面积,则()A.3P 的边数为128B.24027S =C.n P 的边数为34n⨯ D.834()559nn S =-⋅11.已知函数()32,f x x ax a =-+∈R ,则()A.()f x 的图象关于点()0,2对称B.(),a f x ∃∈R 仅有一个极值点C.当1a =时,()f x 图象的一条切线方程为240x y -+=D.当3a <时,()f x 有唯一的零点三、填空题:本题共3小题,每小题5分,共15分.12.已知集合*2{13,{|(2)20}|}A x x B x ax a x =∈≤<=-++=N ,若“x B ∈”是“x A ∈”的充分不必要条件,则实数a 的所有取值组成的集合是______.13.蜜蜂被举为“天才的建筑师”,蜂巢结构是一种在一定条件下建筑用材最少的结构.如图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱,,,,,AG BH CI DJ EK FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形,,PGHI PIJK PKLG 构成,10928GPI IPK KPG θ'∠=∠=∠=≈ ,设1BC =,则上顶的面积为______.(参考数据:1cos ,tan32θθ=-=)14.已知函数()ln f x x x =,则()f x 的最小值为______;设函数()()2g x x af x =-,若()g x 在()0,∞+上单调递增,则实数a 的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知数列{}n a 满足()2*112,1n n n a a a a n +==-+∈N.(1)比较20242026,a a 的大小,并写出过程;(2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:1n S <.16.已知函数()f x 与其导函数()f x '的定义域均为R ,且()f x 为奇函数,当0x >时,()()()2,10f x f x f ->='.(1)判断()y f x '=的奇偶性;(2)解不等式()0f x >.17.如图,在四棱锥P ABCD -中,侧棱PA ⊥底面,ABCD AB BC ⊥,且2,PA AB BC AD CD =====(1)证明:BD ⊥平面PAC ;(2)求平面PBC 与平面PAD 夹角的正弦值.18.设函数()ln(1)(0)f x x k x k =+-≠.(1)讨论()f x 的单调区间.(2)已知直线l 是曲线()y f x =在点(,())(2)t f t t >处的切线.(i )求直线l 的方程;(ii )判断直线l 是否经过点(2,2).19.设数阵111202122x x X x x ⎛⎫=⎪⎝⎭,其中{}11122122,,,1,2,3,4,5,6x x x x ∈.设{}{}12,,,1,2,3,4,5,6k B n n n =⊆ ,其中*12,k n n n k <<<∈N 且6k ≤.定义变换t M 为“对于数阵的每一列,若其中有t 或t -,则将这一列中所有数均保持不变;若其中没有t 且没有t -,则这一列中每个数都乘以()121,,,k t n n n -= ”,()0B M X 表示“将0X 经过1n M 变换得到1X ,再将1X 经过2n M 变换得到2,X ,以此类推,最后将1k X -经过k n M 变换得到k X ”.记数阵k X 中四个数的和为()0B T X .(1)若{}021,2,534X B ⎛⎫==⎪⎝⎭,写出0X 经过2M 变换后得到的数阵1X ,并求()0B T X 的值;(2)若{}012321,,,34X B n n n ⎛⎫== ⎪⎝⎭,求所有()0B T X 取值的和;(3)对任意确定的一个数阵0X ,证明:所有()0B T X 取值的和不大于8-;(4)如果01336X ⎛⎫=⎪⎝⎭,其他条件不变,你研究(1)后得出什么结论?“天一大联考·齐鲁名校联盟”2024—2025学年高三年级第二次联考数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合{}1,2,3,4,5,6U =,{}13,5A =,,{}1,2,3B =,则()U A B =ð()A.{}2,4,5,6 B.{}4,6 C.{}2,4,6 D.{}2,5,6【答案】A 【解析】【分析】由集合的交集运算、补集运算即可求解.【详解】由题意集合{}1,2,3,4,5,6U=,{}13,5A =,,{}1,2,3B =,则{}1,3A B = ,(){}2,4,5,6U A B = ð.故选:A.2.已知0,0mn >>,且3m n +=,则的最大值为()A.8B.C.D.2【答案】B 【解析】【分析】根据给定条件,利用配凑法及基本不等式求出最大值.【详解】由0,0mn >>,3m n +=,得6(2)(1)m n =+++≥,当且仅当213m n +=+=,即1,2m n ==时取等号,==≤的最大值为故选:B3.函数)()(e e x x f x x -=-的图象大致为()A. B. C. D.【答案】B 【解析】【分析】利用函数()f x 奇偶性排除两个选项,再利用0x >时,函数值的正负判断即可.【详解】函数)()(e e x x f x x -=-的定义域为R ,()()(e )e x x f x x f x -=-=--,因此函数()f x 是偶函数,其图象关于y 轴对称,排除AC ;当0x >时,0e e 1x x -<<<,则()0f x <,排除D ,选项B 符合题意.故选:B4.一块扇形薄铁板的半径是30,圆心角是120 ,把这块铁板截去一个半径为15的小扇形后,剩余铁板恰好可作为一个圆台的侧面,则该圆台的体积为()A.π9B.1750π9C.π3D.【答案】C 【解析】【分析】根据给定条件,求出原扇形及截去的小扇形围成的圆锥体积,再利用圆台的定义求出圆台体积.【详解】半径为30,圆心角为120 的扇形围成圆锥的底面圆半径r ,则2π2π303r =⋅,解得10r =,该圆锥的高h=2211ππ10π333V r h ==⋅⋅=,截去半径为15的小扇形围成圆锥的底面圆半径0r ,则02π2π153r =⋅,解得05r =,该圆锥的高0h==2200011ππ5π333V r h ==⋅⋅=,所以该圆台的体积为0π27π31π33VV -=-=.故选:C5.设等比数列{}n a 的前n 项和为n S ,则“数列{}n S 为递增数列”是“321a a a >>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】D 【解析】【分析】由321a a a >>可得10,01a q <<<或10,1a q >>,由{}n S 递增得出0n a >恒成立,再由充分条件、必要条件的定义判断即可.【详解】令等比数列{}n a 的公比为q ,由321a a a >>,得1112a a a q q >>,则10,01a q <<<或10,1a q >>,由数列{}n S 为递增数列,得110n n n a S S ++=->,即N n *∀∈,10n a q >,因此10,0a q >>,所以“数列{}n S 为递增数列”是“321a a a >>”的既不充分也不必要条件.故选:D6.函数221,2()2,2x x f x x x ⎧-<-=⎨-≥-⎩的最小值为()A.4- B.2- C.3 D.5【答案】B 【解析】【分析】根据给定条件,分段探讨函数()f x 的单调性,进而求出最小值.【详解】当2x <-时,函数()21x f x =-在(,2)-∞-上单调递增,31()4f x -<<-;当2x ≤-时,函数2()2f x x =-在[2,0]-上单调递减,在[0,)+∞上单调递增,()(0)2f x f ≥=-,所以当0x =时,min ()2f x =-.故选:B7.已知数列{}n a 满足:11a =,点()1,n n n a a ++在函数1y kx =+的图象上,其中k 为常数()0k ≠,且124,,a a a 成等比数列,则k 的值为()A.2B.3C.4D.5【答案】A 【解析】【分析】根据递推公式求出2a ,4a ,再根据124,,a a a 成等比数列,可求k 的值.【详解】因为点()1,n n n a a ++在函数1y kx =+的图象上,所以11n n a a kn ++=+⇒11n n kn a a +=+-,所以11a =,211k ka a =+-=,32211a k k a =+-=+,43312k k a a =+-=,因为124,,a a a 成等比数列,所以212k k =⨯⇒2k =或0k =(舍去).故选:A8.已知定义在R 上的函数()f x 满足()1(1)f x f x =--,若函数442x x y =+与函数()y f x =的图象的交点为112220252025(),),(,),,(,x y x y x y ,则20251)(i i i x y =+=∑()A.0B.20252C.2025D.60752【答案】C 【解析】【分析】根据给定条件,求出函数()f x 及442x xy =+的图象的对称中心,再结合中心对称图形的性质计算即得.【详解】依题意,由()1(1)f x f x =--,得()(1)1f x f x +-=,则函数()y f x =的图象关于点11(,)22对称,令4()42xxg x =+,则114444()(1)1424242424x x x x x x x g x g x --+-=+=+=++++⋅,因此函数()y g x =的图象关于点11(,)22对称,显然函数()y f x =与()y g x =的图象对称中心相同,则函数()y f x =与()y g x =的图象的交点关于点11(,22对称,不妨令点(,)i i x y 与20262026(,)(1,2,3,,2025)i i x y i --= 关于点11(,)22对称,则202620261,1i i i i x x y y --+=+=,20262026()()2i i i i x y x y --+++=,所以202512(202520252)i i i x y =+=⨯=∑.故选:C 【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,①存在常数a ,b 使得()(2)2()()2f x f a x b f a x f a x b +-=⇔++-=,则函数()y f x =图象关于点(,)a b 对称.②存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.若,ab c >∈R ,则22ac bc > B.若22,a b c c c>∈R ,则a b >C.若ab >,则22a b > D.函数2sin sin y x x=+的最小值为【答案】BC 【解析】【分析】对A 举反例即可;对B 根据不等式性质即可判断;对C ,利用指数函数单调性即可判断;对D 举反例即可.【详解】对A ,当0c=时,22ac bc =,故A 错误;对B ,当22a b c c >,则20c >,则a b >,故B 正确;对C ,根据指数函数2x y =在R 上单调递增,且a b >,则22a b >,故C 正确;对D ,当sin 1x =-时,2sin 3sin y x x=+=-<D 错误.故选:BC.10.如图,有一列曲线012,,,P P P ,已知0P 所围成的图形是面积为1的等边三角形,1(0,1,2,3,)k P k += 是对k P 进行如下操作得到的:将k P 的每条边三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉,记k S 为曲线kP 所围成图形的面积,则()A.3P 的边数为128 B.24027S =C.n P 的边数为34n⨯ D.834()559n n S =-⋅【答案】BCD 【解析】【分析】根据给定信息,归纳可得n P 的边数判断AC ;依次计算归纳得n P 所围图形的面积判断BD.【详解】依题意,令0P 图形的边长为a,214a =,边数是3;根据图形规律,1P 图形边长为3a,边数为0P 边数的4倍,即34⨯;2P 图形边长为23a ,边数为234⨯;依此类推,n P 图形边长为3n a,边数为34n ⨯,C 正确;3P 的边数为334192⨯=,A 错误;由图形规律知曲线n P 所围图形的面积n S 等于曲线1n P -所围面积加上每一条边增加的小等边三角形的面积,而每一个边增加的小等边三角形面积为2()43n ⨯,则121(34)()43n nn n aSS --=+⨯⨯,整理得1114()39n n n S S ---=⨯,数列1{}nn S S --是等比数列,1P图形的面积21413()433a S =+⨯⨯=,121321144[1(]4183499()433559()9()()1n n n n n S S S S S S S S ---=+⨯-=+-+--⨯++=- ,D 正确;2831640558127S =-⨯=,B 正确.故选:BCD 11.已知函数()32,f x x ax a =-+∈R ,则()A.()f x 的图象关于点()0,2对称B.(),a f x ∃∈R 仅有一个极值点C.当1a=时,()f x 图象的一条切线方程为240x y -+= D.当3a <时,()f x 有唯一的零点【答案】ACD 【解析】【分析】根据函数的奇偶性判断A ,根据三次函数的性质判断B ,根据导数的意义求切线判断C ,利用极值点的符号判断D.【详解】对A :设()3g x x ax =-,则函数()g x 为奇函数,图象关于原点()0,0对称,将()3g x x ax =-的图象向上平移2个单位,得函数()32f x x ax =-+的图象,故函数()f x 的图象关于点()0,2对称,A 正确;对B :由三次函数的性质可知,函数()f x 要么有2个极值点,要么没有极值点,所以B 错误;对C :当1a=时,()32f x x x =-+,()231f x x '=-.由()2f x '=⇒2312x -=⇒1x =或1x =-.若1x =,则2y =,所以()f x 在1x =处的切线方程为:即2y x =;若1x =-,则2y =,所以()f x 在1x =-处的切线方程为:()221y x -=+即240x y -+=.故C 正确;对D :因为()23f x x a '=-,若0a ≤,则()0f x '≥在(),-∞+∞上恒成立,则()f x 在(),-∞+∞上单调递增,由三次函数的性质可知,此时函数()f x 只有一个零点;若0a >,由()0f x '<⇒33x -<<,由()0f x '>⇒3x <-或3x >.所以函数()f x 在,3⎛-∞-⎝⎭和,3⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,在,33⎛⎫- ⎪ ⎪⎝⎭上单调递减,要使函数()f x 只有1个零点,须有03f ⎛⎫> ⎪ ⎪⎝⎭(因为()02f =,所以03f ⎛⎫-< ⎪ ⎪⎝⎭不成立),即32033a ⎛⎫-⋅+> ⎪ ⎪⎝⎭⇒3a <,得0<<3a .综上可知:当3a <时,函数()f x 有唯一的零点,故D 正确.故选:ACD 【点睛】方法点睛:本题可以结合三次函数的图象和性质进行分析.三、填空题:本题共3小题,每小题5分,共15分.12.已知集合*2{13,{|(2)20}|}A x x B x ax a x =∈≤<=-++=N ,若“x B ∈”是“x A ∈”的充分不必要条件,则实数a 的所有取值组成的集合是______.【答案】{0,2}【解析】【分析】用列举法表示集合A ,利用充分不必要条件的定义,借助集合的包含关系分类求解即得.【详解】依题意,{1,2}A =,{|(2)(1)0}B x ax x =--=,显然B ≠∅,由“x B ∈”是“x A ∈”的充分不必要条件,得BA ,当0a=时,{1}B =,符合题意,当0a ≠时,方程2(2)20ax a x -++=的根为1和2a,显然22a ≠,否则B A =,不符合题意,因此21a=,解得2a =,此时{1}B =,符合题意,所以实数a 的所有取值组成的集合是{0,2}.故答案为:{0,2}13.蜜蜂被举为“天才的建筑师”,蜂巢结构是一种在一定条件下建筑用材最少的结构.如图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱,,,,,AG BH CI DJ EK FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形,,PGHI PIJK PKLG 构成,10928GPI IPK KPG θ'∠=∠=∠=≈ ,设1BC =,则上顶的面积为______.(参考数据:1cos ,tan 232θθ=-=)【答案】924【解析】【分析】根据蜂房的结构特征,即可根据锐角三角函数以及三角形面积公式求解.【详解】依题意,由10928GPIIPK KPG θ'∠=∠=∠=≈ ,得10928GHI θ'∠=≈ ,在菱形PGHI 中,连接G I 并取其中点O,连接OH ,则2224tan2GOOH GO GI θ===,由正六边形ABCDEF 的边长1BC =,得2sin 603AC AB == ,由蜂巢结构特征知,AG CI =,又,AG CI都垂直于平面ABCDEF ,则//AG CI ,于是四边形ACIG 是平行四边形,有=3GI AC =,则26=44OH GI =,因此一个菱形的面积为1632223244GHISGI OH =⋅⋅=⨯ =,所以上顶的面积为3292344⨯=.故答案为:92414.已知函数()ln f x x x =,则()f x 的最小值为______;设函数()()2g x x af x =-,若()g x 在()0,∞+上单调递增,则实数a 的取值范围是______.【答案】①.1e-②.[]0,2【解析】【分析】空1,直接求导利用()f x 的单调性去求其最小值即可;空2,利用导数与单调性的关系建立不等式,利用不等式的恒成立解决参数范围即可.【详解】由题可知()ln f x x x =定义域为()0,∞+()ln 1f x x ='-显然,当10,e x ⎛⎫∈ ⎪⎝⎭时,′<0,()f x 单调递减;当1,+e x ∞⎛⎫∈ ⎪⎝⎭时,′>0,()f x 单调递增;所以()f x 的最小值为11e e f ⎛⎫=- ⎪⎝⎭;由题可知,()()22ln g x x af x x ax x=-=-所以()2ln g x x a x a =--'由题可知()2ln 0g x x a x a '=--≥恒成立,当0a <,显然当0x →时,()g x ∞'→-,故不成立;当0a=时,()2g x x '=,因为∈0,+∞,所以()20g x x '=>,故成立;当0a >时,由2ln 0x a x a --≥恒成立,得21ln xa x+≥恒成立,即max 21ln x a x +⎛⎫≥ ⎪⎝⎭不妨令()1ln x h x x +=,所以()2ln xh x x -='所以显然当∈0,1时,ℎ′>0,ℎ单调递增;当()1,+x ∞∈时,ℎ′<0,ℎ单调递减;所以()()max 11h x h ==,即2102a a ≥⇒<≤综上所述:[]0,2a ∈故答案为:1e-;0,2【点睛】关键点点睛,当不等式化简时,不要在不等式两边去随意乘或者除以一个未知数,要保证知道其正或负,再去作乘除计算.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知数列{}n a 满足()2*112,1n n n a a a a n +==-+∈N .(1)比较20242026,a a 的大小,并写出过程;(2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:1n S <.【答案】(1)20242026a a <(2)证明见解析.【解析】【分析】(1)证明数列的单调性,可比较给出的两项的大小.(2)先根据统计得到111111n n n a a a +=---,再求n S 进行判断即可.【小问1详解】因为211n n n a a a +=-+⇒()2212110n n n n n a a a a a +-=-+=-≥,所以1n n a a +≥.若1n n a a +=,则211n n n n a a a a +=-+=⇒1n a =,这与12a =矛盾.所以1n n a a +>.故20242026a a <.【小问2详解】由211n n n a a a +=-+⇒()2111n nn n n a a a a a +-=-=-,所以()11111111n n n n n a a a a a +==----⇒111111n n n a a a +=---.所以11111111nnn i i i i i S a a a ==+⎛⎫==- ⎪--⎝⎭∑∑1111111111n n a a a ++=-=----.由(1)可知:12n a +>,所以1n S <.16.已知函数()f x 与其导函数()f x '的定义域均为R ,且()f x 为奇函数,当0x >时,()()()2,10f x f x f ->='.(1)判断()y f x '=的奇偶性;(2)解不等式()0f x >.【答案】(1)偶函数,理由见解析(2)(1,0)(1,)-+∞ 【解析】【分析】(1)对()()f x f x -=-两边同时求导即可证明;(2)构造函数2()()ex f x h x =,求导得到其单调性即可得到()f x 在(1,)+∞上大于零,在(0,1)上小于零,再根据其为奇函数即可得到答案.【小问1详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x -=-,两边同时求导可得()()f x f x ''--=-,即()()f x f x ''-=,所以()y f x '=为偶函数.【小问2详解】因为当0x >时,()2()f x f x '->,所以()2()f x f x '>.构造函数2()()e x f x h x =,则2()2()()e xf x f x h x '-'=,所以当0x >时,()0,()h x h x >'在(0,)+∞上单调递增,又因为(1)0f =,所以(1)0,()h h x =在(1,)+∞上大于零,在(0,1)上小于零,又因为2e 0x>,所以()f x 在(1,)+∞上大于零,在(0,1)上小于零,因为()f x 是定义域为R 的奇函数,所以(0)0,()f f x =在(,1)∞--上小于零,在(1,0)-上大于零,综上所述,()0f x >的解集为(1,0)(1,)-+∞ .17.如图,在四棱锥P ABCD -中,侧棱PA ⊥底面,ABCD AB BC ⊥,且2,PA AB BC AD CD =====(1)证明:BD ⊥平面PAC ;(2)求平面PBC与平面PAD 夹角的正弦值.【答案】(1)证明见解析(2)5【解析】【分析】(1)首先证明AC BD ⊥,再利用线面垂直的性质得PA BD ⊥,最后线面垂直的判定即可证明;(2)建立合适的空间直角坐标系,求出相关平面的法向量,最后根据面面角的空间向量求法即可得到答案.【小问1详解】记AC BD O = ,如图.因为,AB BC AD CD ==,BD BD =,所以ABD CBD ≅ ,所以ADOCDO ∠=∠,由等腰三角形三线合一知90AOD COD ︒∠=∠=,即AC BD ⊥,又PA ⊥底面,ABCD BD ⊂平面ABCD ,所以PA BD ⊥,因为AC PA A ⋂=,且AC ⊂平面,PAC PA ⊂平面PAC ,所以BD ⊥平面PAC .【小问2详解】取PC 的中点M,连接OM ,则//OM PA ,所以OM ⊥平面ABCD ,所以,,OC OD OM 三条直线两两互相垂直,以,,OC OD OM 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系Oxyz ,由题意及(1)知1,2OAOD ==,则(1,0,0),(0,1,0),(1,0,0),(0,2,0),(1,0,2)A B C D P ---,所以(1,2,2),(1,2,0),(1,1,2),(1,1,0)PD AD PB BC =-==--=,设平面PAD 的法向量为()111,,m x y z =,同理设平面PBC的法向量为()222,,n x y z =,则2222220n PB x y z n BC x y ⎧⋅=--=⎪⎨⋅=+=⎪⎩ ,可取(1,1,1)n =- .所以cos ,5m n m n m n ⋅===-⋅,所以平面PBC 与平面PAD 夹角的余弦值为5,所以平面PBC 与平面PAD 夹角的正弦值为5.【点睛】18.设函数()ln(1)(0)f x x k x k =+-≠.(1)讨论()f x 的单调区间.(2)已知直线l 是曲线()y f x =在点(,())(2)t f t t >处的切线.(i )求直线l 的方程;(ii )判断直线l 是否经过点(2,2).【答案】(1)答案见解析;(2)(i )(1)ln(1)11k kty x k t t t =++----;(ii )不经过.【解析】【分析】(1)求出函数()f x 的导数,再按0k <和0k >分类求出()f x 的单调区间.(2)(i )由(1)结合导数的几何意义求出切线l 的方程;(ii )令2x =,求出y 的值并判断与2的大小.【小问1详解】函数()ln(1)f x x k x =+-的定义域为(1,)+∞,求导得(1)()111k x k f x x x --'=+=--,当0k<时,11k ->,由()0f x '<,得11x k <<-;由()0f x '>,得1x k >-,函数()f x 在(1,1)k -上单调递减,在(1,)k -+∞上单调递增,当0k>时,11k -<,则恒有()0f x '>,函数()f x 在(1,)+∞上单调递增,所以当0k <时,函数()f x 的单调递减区间是(1,1)k -,单调递增区间是(1,)k -+∞;当0k>时,函数()f x 的单调递增区间是(1,)+∞,无递减区间.【小问2详解】(i )由(1)知,()11kf t t '=+-,而()ln(1)f t t k t =+-,则直线l 的方程为ln(1)](1))1[(y k t k t x t t +--=+--,即(1ln(1)11k kty x k t t t =++----.(ii )由(i )知,直线l 的方程为(1)ln(1)11k kty x k t t t =++----,当2x =时,22(1)ln(1)2[ln(1)]111k kt ty k t k t t t t -=++--=++----,令21()ln(1)1ln(1)11t g t t t t t -=+-=-+---,而2t >,求导得22112()0(1)1(1)t g t t t t -'=-+=>---,函数()g t 在(2,)+∞上单调递增,因此()(2)0g t g >=,即2t ∀>,()0g t ≠,而0k ≠,于是22[ln(1)]21tk t t -++-≠-,所以直线l 不经过点(2,2).19.设数阵111202122x x X x x ⎛⎫= ⎪⎝⎭,其中{}11122122,,,1,2,3,4,5,6x x x x ∈.设{}{}12,,,1,2,3,4,5,6k B n n n =⊆ ,其中*12,k n n n k <<<∈N 且6k ≤.定义变换t M 为“对于数阵的每一列,若其中有t 或t -,则将这一列中所有数均保持不变;若其中没有t 且没有t -,则这一列中每个数都乘以()121,,,k t n n n -= ”,()0B M X 表示“将0X 经过1n M 变换得到1X ,再将1X 经过2n M 变换得到2,X ,以此类推,最后将1k X -经过k n M 变换得到k X ”.记数阵k X 中四个数的和为()0B T X .(1)若{}021,2,534X B ⎛⎫== ⎪⎝⎭,写出0X 经过2M 变换后得到的数阵1X ,并求()0B T X 的值;(2)若{}012321,,,34X B n n n ⎛⎫== ⎪⎝⎭,求所有()0B T X 取值的和;(3)对任意确定的一个数阵0X ,证明:所有()0B T X 取值的和不大于8-;(4)如果01336X ⎛⎫= ⎪⎝⎭,其他条件不变,你研究(1)后得出什么结论?【答案】(1)(2)40(3)证明见解析(4)()013BTX =【解析】【分析】(1)先写出12134X -⎛⎫= ⎪-⎝⎭,再计算得22134X -⎛⎫= ⎪-⎝⎭,最后相加即可;(2)分{1,2,3,4}B ⊆和{}32,3,B n =或{}331,4,,{5,6}B n n =∈以及{}11,5,6,{1,2,3,4}B n n =∈讨论即可;(3)分若1121x x ≠和1121x x =两大类讨论即可;(4)直接代入计算得11336X --⎛⎫= ⎪--⎝⎭,21336X ⎛⎫= ⎪⎝⎭即可得到答案.【小问1详解】因为021,{2,5}34X B ⎛⎫== ⎪⎝⎭,0X 经过2M 变换后得到数阵12134X -⎛⎫= ⎪-⎝⎭,1X 经过5M变换后得到数阵22134X -⎛⎫= ⎪-⎝⎭,所以()021340BT X =-+-+=.【小问2详解】若{1,2,3,4}B ⊆,则32134X -⎛⎫= ⎪-⎝⎭或32134X -⎛⎫= ⎪-⎝⎭,可得()00,4BT X =种情况;若{}32,3,B n =或{}331,4,,{5,6}B n n =∈,则32134X --⎛⎫= ⎪--⎝⎭,可得()010,4B T X =-种情况;若{}123,,B n n n =,从{1,4}和{2,3}中各取出一个元素a ,b ,12min{,},max{,},{5,6}n a b n a b n ==∈,则32134X ⎛⎫= ⎪⎝⎭,可得()010,8BT X =种情况;若{}11,5,6,{1,2,3,4}B n n =∈,则32134X -⎛⎫= ⎪-⎝⎭或32134X -⎛⎫= ⎪-⎝⎭,可得()00,4B T X =种情况.综上,所有()0BT X 取值的和为404(10)8104040⨯+⨯-+⨯+⨯=.【小问3详解】若1121x x ≠,在{1,2,3,4,5,6}的所有非空子集中,①含有11x且不含21x 的子集共42个,其中含有奇数个元素的集合有8个,经过变换后第一列均仍为1121,x x ,其中含有偶数个元素的集合有8个,经过变换后第一列均变为1121,x x --;②含有21x 且不含11x 的子集共42个,其中含有奇数个元素的集合有8个,经过变换后第一列均仍为1121,x x ,其中含有偶数个元素的集合有8个,经过变换后第一列均变为1121,x x --;③同时含有11x和21x 的子集共42个,其中含有奇数个元素的集合有8个,经过变换后第一列均变为1121,x x --,其中含有偶数个元素的集合有8个,经过变换后第一列均仍为1121,x x ;④不含11x也不含21x 的子集共421-个,其中含有奇数个元素的集合有8个,经过变换后第一列均变为1121,x x --,其中含有偶数个元素的集合有7个,经过变换后第一列均仍为1121,x x .若1121x x =,在{1,2,3,4,5,6}的所有非空子集中,①含有11x的子集共52个,其中含有奇数个元素的集合有16个,经过变换后第一列均仍为1121,x x ,其中含有偶数个元素的集合有16个,经过变换后第一列均变为1121,x x --;②不含11x的子集共521-个,其中含有奇数个元素的集合有16个,经过变换后第一列均变为1121,x x --,其中含有偶数个元素的集合有15个,经过变换后第一列均仍为1121,x x ;综上,经过变换后,所有k X 的第一列数的和为()()()112111211121(88881616)(88871615)2x x x x x x +++++--+++++++=--同理,经过变换后所有k X 的第二列数的和为()12222x x --.所以所有()0BT X 取值的和为()112112222x x x x ----,又因为11122122,,,{1,2,3,4,5,6}x x x x ∈,所以所有()0B T X 取值的和不超过8-.【小问4详解】如果01336X ⎛⎫= ⎪⎝⎭,其他条件不变,0X 经过2M 变换后得到数阵11336X --⎛⎫= ⎪--⎝⎭,1X 经过5M 变换后得到数阵21336X ⎛⎫=⎪⎝⎭,则(1)中()013B T X =.【点睛】关键点点睛:本题第三问的关键是利用分类讨论的思想,分1121x x ≠和1121x x =讨论即可.。
2019-2020学年河南省天一大联考高一上学期第二次阶段性测试数学试题一、单选题1.已知集合{}3M x x =<,{N x y ==,则RMN =( )A .{}23x x ≤≤ B .{}23x x <≤ C .{}23x x << D .{}23x x ≤<答案C先求得集合N,再由集合补集与交集的运算即可求解. 解:集合{N x y ==,求解得{}2N x x =≤则由补集运算可得{}2RN x x =>由交集运算可知{}{}{}3223RM N x x x x x x ⋂=<⋂>=<<故选:C 点评:本题考查了集合的补集与交集的简单运算,属于基础题.2.直线1l :2(1)40x m y -++=与直线2l :20mx y +-=垂直,则m 的值为( ) A .-1 B .1C .1或-1D .-2或-1答案B根据两直线1l :1110A x B y C ++=与2l :2220A x B y C ++=垂直,则12120A A B B +=得到方程,解得即可. 解:解:直线1l :2(1)40x m y -++=与直线2l :20mx y +-=,若12l l ⊥,需2(1)0m m -+=,解得1m =.故选:B 点评:本题考查两直线的位置关系求参数的值,属于基础题..3.已知某圆锥的侧面展开图是一个半径为6的半圆,则该圆锥的体积为( )A. B. C .54π D .81π答案A设圆锥的底面圆的半径为r ,根据侧面展开图的弧长与底面周长相同,求得底面半径,再由勾股定理求出圆锥的高,最后利用圆锥的体积公式计算可得. 解:解:设圆锥的底面圆的半径为r ,则由题意可得12262r ππ=⨯⨯.所以3r =,所以圆锥的高h ==所以该圆锥的体积2133V π=⨯⨯⨯=.故选:A 点评:本题考查圆锥的体积及侧面展开图的计算,属于基础题..4.设21log a e =,11e b e -⎛⎫= ⎪⎝⎭,ln 2c =,则( )A .b a c >>B .c b a >>C .b c a >>D .c a b >>答案C根据对指数函数与对数函数的图像与性质,判断出,,a b c 的范围,即可比较大小. 解:由指数函数与对数函数的图像与性质可知21log 0a e=< 1111eeb e e -⎛⎫= ⎪=⎭>⎝0ln21c <=<所以b c a >> 故选:C 点评:本题考查了指数函数与对数函数的图像与性质,利用中间值法比较大小,属于基础题. 5.下列函数既是偶函数又在区间(0,)+∞上是减函数的是( ) A .()|1|f x x =+ B .()1f x x x=+C .()f x =D .()4f x x -=答案D根据函数解析式,结合偶函数性质及函数的单调性,即可判断选项. 解:对于A,函数()|1|f x x =+不是偶函数,所以A 错误; 对于B,函数()1f x x x=+为奇函数,不是偶函数,所以B 错误;对于C,()ln f x =为偶函数,但在区间(0,)+∞上是增函数,所以C 错误;对于D,()441f x x x-==为偶函数,且在区间(0,)+∞上是减函数,所以D 正确. 综上可知,正确的为D 故选:D 点评:本题考查由函数解析式判断函数奇偶性及单调性,属于基础题. 6.下列区间,包含函数()12ln 3x f x x =--零点的是( ) A .(0,1) B .(1,2)C .(2,3)D .(3,4)答案C由函数单调性,结合零点存在定理,即可判断函数零点所在区间. 解:根据函数解析式可知()12ln 3x f x x =--在()0,∞+上为单调递增函数 且()152ln101331f =--=-< ()127ln 2ln 202362f =--=-<()12ln 3ln 310333f =--=->由零点存在定理可知,零点位于(2,3)内 故选:C 点评:本题考查了函数零点存在定理的应用.在判断函数零点所在区间时,需先判断函数的单调性,才能说明函数零点的唯一性,属于基础题.7.已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中不正确的是( )A .若//αγ,//βγ,则//αβB .若m α⊥,m β⊥,则//αβC .若//m α,//n α,则//m nD .若m α⊥,n α⊥,则//m n答案C根据线面、面面平行与垂直的判定定理及性质定理即可得解. 解:解:若//αγ,//βγ,则//αβ,故A 正确; 若m α⊥,m β⊥,一定有//αβ,故B 正确;若//m α,//n α,则m 与n 可以平行、相交或者异面,故C 错误; 若m α⊥,n α⊥,则一定有//m n ,故D 正确. 故选:C 点评:本题考查空间线面关系的判定和性质,属于基础题.8.某几何体的三视图如图所示,则该几何体的表面积为( )A .12B .822+C .8D .842+答案D根据三视图可知,该几何体是由棱长为2的正方体截得的四棱锥S ABCD -,画出直观图,结合图形计算可得. 解:解:由三视图可知,该几何体是由棱长为2的正方体截得的四棱锥S ABCD -.如图所示224ABCD S∴=⨯=,221222222BCS DCSS S ∆∆==⨯⨯+=, 122BSA DSA ABCD S S S ∆∆===所以它的表面积为22842ABCD BCS SS ∆+=+.故选:D 点评:本题考查空间几何体的三视图以及锥体的表面积计算,属于基础题.9.设直线0x y a ++=与圆C :222410x y x y +-++=相交于P ,Q 两点.若CP PQ =,则实数a 的值为( ) A .61-B .61-或61+C .16+D .16+或16-答案D首先将圆的方程配成标准式,由CP PQ =则||2PQ =,即可求出圆心到直线的距离,再用点到线的距离公式计算可得. 解:解:由222410x y x y +-++=,得22(1)(2)4x y -++=,所以圆心为(1,2)-,半径为2.因为CP PQ =所以||2PQ =,那么圆心(1,2)C -到直线0x y a ++=的距离为3232⨯=, 即|12|32a d -+==,所以16a =+或16-. 故选:D 点评:本题考查直线与圆的位置关系,点到直线的距离公式的应用,属于基础题.10.如图,在三棱锥S ABC -中,平面SAB ⊥平面SAC ,SAB ∆是边长为2的等边三角形,90ASC ∠=︒,23SC =,则直线BC 与平面SAC 所成角的正弦值为( )A 3B 3C .14D .18答案A取SA 的中点为M ,连接MC ,MB ,由面面垂直的性质得到BM ⊥平面SAC ,即可得到BCM ∠就是直线BC 与平面SAC 所成的角,再由线面垂直的性质及判定定理可得SC ⊥平面SAB ,即可得到SC SB ⊥,最后由勾股定理及三角函数求得.解:解:取SA 的中点为M ,连接MC ,MB .因为SAB ∆是边长为2的等边三角形, 所以BM SA ⊥,且3BM =,BM ⊂平面SAB , 又因平面SAB ⊥平面SAC ,平面SAB平面SAC SA =,所以BM ⊥平面SAC ,所以BCM ∠就是直线BC 与平面SAC 所成的角.又MC ⊂平面SAC ,可得BM MC ⊥.由BM ⊥平面SAC ,SC ⊂平面SAC 可得BM SC ⊥,又SC SA ⊥,SA ⊂平面SAB ,BM ⊂平面SAB ,BMSA M =所以SC ⊥平面SAB , 因为SB ⊂平面SAB , 所以SC SB ⊥.在Rt SBC ∆中,由23SC =,2SB =,可得224BC SC SB =+=. 在Rt MBC ∆中,3sin 4MB BCM BC ∠==.故选:A 点评:本题考查直线与平面所成的角,线面垂直的判定及性质的应用,属于难题. 11.已知偶函数()log ||a f x b x =-(0a >且1a ≠)在(,0)-∞上单调递减,则()f b a -与()21f a +的大小关系是( )A .()()21f b a f a >+-B .()()21f b a f a <+-C .()()21f b a f a =+-D .无法确定答案B根据偶函数性质,可求得b ,结合函数的单调性即可求得a 的取值范围.通过比较21a +与a -的大小关系,即可比较大小.解:因为()log ||a f x b x =-为偶函数 所以()()f x f x =-,即log ||log ||aa xb x b -=--所以||||x b x b -=--对()(),00,x ∈-∞+∞恒成立解得0b = 即()log ||a f x x =因为偶函数()log ||a f x x =(0a >且1a ≠)在(,0)-∞上单调递减,则()log ||a f x x =在()0,∞+上单调递增所以由对数函数的图像与性质可知1a > 而211a a +>-> 所以()()()21f a fa f a +>-=-故选:B 点评:本题考查了由偶函数的性质求参数,根据函数单调性比较抽象函数的大小关系,综合性较强,属于中档题.12.某几何体的三视图如图所示,则该几何体的外接球体积为( )A 82πB .42πC .43πD .6π答案A根据三视图画出直观图,将该四面体嵌入到一个直三棱柱中,四面体的外接球即直三棱柱的外接球,再将其转化为长方体,则长方体的体对角线为外接球的直径,再根据球的体积公式计算可得. 解:解:该几何体是一个四面体,画出其直观图,如图中的四面体ABCD .该四面体可以嵌入到一个直三棱柱中,四面体的外接球即直三棱柱的外接球.该三棱柱的底面是斜边长为2的等腰直角三角形,三棱柱的高为2,可以扩展到一个底面是边长为2的正方形,高为2的长方体中,从而求得其外接球半径为()()222122222r =++=,所以外接球体积348233V r ππ==.故选:A 点评:本题考查三视图的还原和外接球问题.二、填空题 13.计算:61log 022log 8lg 25lg 469.8+++=______.答案5根据指数的性质,对数的运算及对数的性质计算可得. 解: 解:61log 022log8lg 25lg 469.8+++()3221log 2lg 25412=+⨯++ 3121522=+++=. 故答案为:5 点评:本题考查指数、对数的运算,属于基础题.14.设函数()()142,1,log 21,1,x xx f x x -⎧<⎪=⎨-≥⎪⎩若()12f x =,则x =________.答案0或2log 3根据分段函数解析式,分段即可求得自变量的值. 解:当1x <时,()12x f x -=.若()12f x =,即1212x -=,解得0x =,符合题意当1x ≥时,()()4log 21x f x =-. 若()12f x =,即()41log 221x=-,所以212x -=则23x =,解得2log 3x =,符合题意 综上可知,若()12f x =时,0x =或2log 3x = 故答案为: 0或2log 3 点评:本题考查了分段函数的求值,属于基础题.15.数学家欧拉在1765年提出定理:三角形的外心、重心和垂心(外心是三角形三条边的垂直平分线的交点,重心是三角形三条中线的交点,垂心是三角形三条高所在直线的交点)依次位于同一条直线上这条直线被后人称为三角形的欧拉线.已知ABC ∆的顶点(1,2)B -,(3,4)C ,且AB AC =,则ABC ∆的欧拉线方程为______. 答案250x y +-=依题意,在ABC ∆中,AB AC =,所以它的外心、重心和垂心都在BC 的中垂线上,则ABC ∆的欧拉线方程即为BC 的中垂线,首先求出BC 的中点,再求出BC k ,最后利用点斜式计算可得. 解:解:由(1,2)B -,(3,4)C 可得BC 的中点坐标为(1,3),再由4213(1)2BC k -==--,所以BC 的中垂线方程为32(1)y x -=--,即250x y +-=.又因为ABC ∆中,AB AC =,所以它的外心、重心和垂心都在BC 的中垂线上,所以ABC ∆的欧拉线的方程为250x y +-=.故答案为:250x y +-= 点评:本题考查直线方程的求法及数学文化,属于基础题.16.已知函数()211x x xf -=-的图象与直线2y kx =+恰有两个交点,则实数k 的取值范围是________.答案(4,1)(1,0)--⋃-根据函数解析式,分类讨论即可确定解析式.画出函数图像,由直线所过定点,结合图像即可求得k 的取值范围. 解: 函数()211x x xf -=-定义域为{}1x x ≠当1x ≤-时,()2111x x x f x -==---当11x -<<时,()2111x x x f x -==+-当1x <时,()2111x x xf x -==---画出函数图像如下图所示:直线2y kx =+过定点()0,2由图像可知,当10k -<<时,与1x ≤-和11x -<<两部分图像各有一个交点; 当41-<<-k 时,与11x -<<和1x <两部分图像各有一个交点. 综上可知,当()()4,11,0k ∈--⋃-时与函数有两个交点 故答案为:()()4,11,0--⋃- 点评:本题考查了分段函数解析式及图像画法,直线过定点及交点个数的求法,属于中档题.三、解答题17.已知集合A 为函数()2log (1)f x x =-+的定义域,集合B 为函数()2233x x g x -=-的值域.(Ⅰ)求AB ;(Ⅱ)若{|112}C x a x a =-<<-,且()C AB ⊆,求实数a 的取值范围.答案(Ⅰ){}|10B x x A-<=≤;(Ⅱ)1,2⎡⎫+∞⎪⎢⎣⎭(Ⅰ)根据对数性质及二次根式有意义条件,先求得集合A,由指数的图像与性质,求得集合B,即可由集合交集的运算求得AB .(Ⅱ)讨论C =∅与C ≠∅两种情况.根据集合的包含关系,即可求得a 的取值范围. 解:(Ⅰ)由函数()f x 的定义域需满足10,10,x x ->⎧⎨+>⎩解得11x -<<,所以{}|11A x x =-<<. 设22t x x =-,则22(,1]t x x =-∈-∞, 所以3(0,3]t∈,所以{}|30}B y y =-<≤. 所以{}|10B x x A-<=≤.(Ⅱ)由于()C AB ⊆,若C =∅,则需112a a -≥-,解得23a ≥; 若C ≠∅,则需2,311,120,a a a ⎧<⎪⎪-≥-⎨⎪-≤⎪⎩解得1223a ≤<.综上,实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭. 点评:本题考查了函数定义域的求法,指数函数值域的求法,由集合的包含关系求参数,属于基础题.18.已知函数()21log 1x x xf -=+. (Ⅰ)设()11x x xh -=+,用定义证明:函数()h x 在(1,)-+∞上是增函数; (Ⅱ)若函数()()2x g x f x m =++,且()g x 在区间(3,5)上有零点,求实数m 的取值范围.答案(Ⅰ)见解析;(Ⅱ)2log 3337m -<<-(Ⅰ)任取12,(1,)x x ∈-+∞,且12x x <,代入解析式可求得()()21h x h x -,变形后即可判断函数的单调性.(Ⅱ)先判断出函数()f x 与()g x 的单调性,即可根据零点存在定理求得m 的取值范围. 解:(Ⅰ)证明:由题意得()11211x x x x h x -+-==++211x=-+. 任取12,(1,)x x ∈-+∞,且12x x <, 则()()212211h x h x x ⎛⎫-=-⎪+⎝⎭1211x ⎛⎫-- ⎪+⎝⎭122211x x =-++ ()()()2112211x x x x -=++.因为12,(1,)x x ∈-+∞,且12x x <, 所以210x x ->,110x +>,210x +>, 所以()()210h x h x ->,所以函数()h x 在(1,)-+∞上是增函数. (Ⅱ)由题意()f x 的定义域为(,1)(1,)-∞-+∞.由(Ⅰ)知,()f x 在(1,)+∞上单调递增,所以()()2x gx f x m =++在(3,5)上单调递增.因为()g x 在区间(3,5)上有零点,所以3252231(3)log 270,3151(5)log 2log 3330,51g m m g m m -⎧=++=+<⎪⎪+⎨-⎪=++=-++>⎪+⎩所以2log 3337m -<<-. 点评:本题考查了利用定义判断函数的单调性,由函数单调性及零点取值范围判断参数的取值情况,属于基础题.19.已知圆C 经过(2,1)A ,(0,3)B 两点,且圆心C 在直线2350x y -+=上. (Ⅰ)求圆C 的标准方程; (Ⅱ)若直线l :3yx与圆C 相交于M ,N 两点,求CMN ∆的面积.答案(Ⅰ)22(2)(3)4-+-=x y (Ⅱ)2(Ⅰ)设圆的方程为220x y Dx Ey F ++++=,依题意得到方程组,解得即可. (Ⅱ)联立直线与圆的方程求出交点坐标,再根据面积公式计算可得. 解:(Ⅰ)设圆的方程为220x y Dx Ey F ++++=.则圆心坐标为,22D E ⎛⎫-- ⎪⎝⎭ 由题意得520,930,350,2D E F E F E D ⎧⎪+++=⎪++=⎨⎪⎪-++=⎩解得4,6,9.D E F =-⎧⎪=-⎨⎪=⎩所以圆C 的方程为224690x y x y +--+=,标准方程为22(2)(3)4-+-=x y . (Ⅱ)由(Ⅰ)可知,圆C 的圆心为(2,3)C ,半径2r.联立223,(2)(3)4,y x x y =+⎧⎨-+-=⎩解得0,3x y =⎧⎨=⎩或2,5.x y =⎧⎨=⎩ 不妨设(0,3)M ,()2,5N .因为直线CM 的斜率为0,直线CN 的斜率不存在,所以CM CN ⊥.所以211||||222CMN S CM CN r ∆===. 点评:本题考查待定系数法求圆的方程、直线与圆的位置关系,属于中档题.20.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点,点Q 是1CC 的中点.(Ⅰ)求证:平面1//QBD 平面PAC ; (Ⅱ)求点1B 到平面PAC 的距离. 答案(Ⅰ)见解析(Ⅱ3(Ⅰ)首先证明1//QD 平面PAC ,再连接PQ ,可证//QB 平面PAC ,即可得证. (Ⅱ)连接1PB ,1CB ,由三角形的三边关系得到1PB PC ⊥,同理可证1PB PA ⊥,即可得到1PB ⊥平面PAC ,则点1B 到平面PAC 的距离即线段1PB 的长. 解:解:(Ⅰ)由题意可得1//CQ PD ,且1CQ PD =,所以四边形1CQD P 是平行四边形. 所以1//QD CP ,又因为1QD ⊄平面PAC ,PC ⊂平面PAC . 所以1//QD 平面PAC .如图,连接PQ ,则//PQ AB ,且PQ AB =,所以四边形PQBA 是平行四边形, 所以//QB PA ,又因为QB ⊄平面PAC ,PA ⊂平面PAC . 所以//QB 平面PAC .而1QBQD Q =,且QB ⊂平面1QBD ,1QD ⊂平面1QBD ,所以平面1//QBD 平面PAC .(Ⅱ)如图,连接1PB ,1CB ,易得2PC =13PB =15BC =, 所以22211PC PB B C +=,所以1PB C ∆是直角三角形,且1PB PC ⊥.同理1PB PA ⊥. 又PAPC P =,PA ⊂平面PAC ,PC ⊂平面PAC ,所以1PB ⊥平面PAC .所以点1B 到平面PAC 的距离即线段1PB 的长,所以点1B 到平面PAC 3点评:本题考查空间平行关系的证明、点到平面距离的计算,属于中档题.21.某公司的电子新产品未上市时,原定每件售价100元,经过市场调研发现,该电子新产品市场潜力很大,该公司决定从第一周开始销售时,该电子产品每件售价比原定售价每周涨价4元,5周后开始保持120元的价格平稳销售,10周后由于市场竞争日益激烈,每周降价2元,直到15周结束,该产品不再销售.(Ⅰ)求售价()f t (单位:元)与周次t (*t N ∈)之间的函数关系式;(Ⅱ)若此电子产品的单件成本()h t (单位:元)与周次()21(7)1008h t t --+=之间的关系式为[1,15]t ∈,()f x ,*t N ∈,试问:此电子产品第几周的单件销售利润(销售利润=售价-成本)最大?答案(Ⅰ)()1004,[1,5],120,[6,10],1402,[11,15],t t f t t t t +∈⎧⎪=∈⎨⎪-∈⎩()*t N ∈;(Ⅱ)第10周 (Ⅰ)根据题意,结合分段情况即可求得解析式.(Ⅱ)根据售价解析式及成本解析式,先表示出利润的函数解析式.结合二次函数性质即可求得最大值及对应的时间.解:(Ⅰ)当[1,5]t ∈时,()1004f t t =+; 当[6,10]t ∈时,()120f t =;当[11,15]t ∈时,()1202(10)f t t =--1402t =-.所以()1004,[1,5],120,[6,10],1402,[11,15],t t f t t t t +∈⎧⎪=∈⎨⎪-∈⎩()*t N ∈.(Ⅱ)由于单件电子产品的销售利润=售价-成本,即单件销售利润()()()g t f t h t =-,所以,当[1,5]t ∈时,()211004(7)1008t t g t =++--21949848t t =++21(9)48t =+-. 此时()g t 单调递增,所以当5t =时,()g t 取得最大值1648. 当[6,10]t ∈时,()21120(7)1008g t t =+--21(7)208t =-+.当10t =时,()g t 取得最大值1698. 当[11,15]t ∈时,()211402(7)1008t t g t =-+--2115369848t t =-+21(15)188t =-+. 当11t=时,()g t 取得最大值20.综上,该电子产品第10周时单件销售利润最大. 点评:本题考查了分段函数在实际问题中的应用,利润问题的最值求法,二次函数的性质应用,属于基础题.22.已知圆1C :22(3)4x y -+=,圆2C :223924x y ⎛⎫-+= ⎪⎝⎭.(Ⅰ)设直线2y x =被圆1C 所截得的弦的中点为P ,判断点P 与圆2C 的位置关系;(Ⅱ)设圆2C 被圆1C 截得的一段圆弧(在圆1C 内部,含端点)为Ω,若直线l :(4)y k x =-与圆弧Ω只有一个公共点,求实数k 的取值范围.答案(Ⅰ)点P 在圆2C 上.(Ⅱ)77k -<<或34k =±. (Ⅰ)将直线方程代入圆的方程,消去y ,得到2312100x x -+=,则124x x +=,从而得到P 的横坐标为2,再代入直线方程求出P 的坐标,即可判断点与圆2C 的位置关系;(2)设1C 和2C 的交点为A ,B ,直线l 恒过的定点为(4,0)Q ,求出两圆的交点坐标, 分直线l 与圆2C 相切时,与直线l 与圆弧Ω相交两种情况计算可得. 解:解:(1)将y x =代入圆1C 的方程可得2312100x x -+=. 设此方程的两实根分别为1x ,2x ,则124x x +=. 所以点P 的横坐标为2,从而可得(P .因为2239224⎛⎫-+=⎪⎝⎭,所以点P 在圆2C 上. (Ⅱ)如图,因为直线l :(4)y k x =-,400x y -=⎧⎨=⎩解得40x y =⎧⎨=⎩,即直线恒过的定点为(4,0).设1C 和2C 的交点为A ,B ,直线l 恒过的定点为(4,0)Q .由2222(3)4,39,24x y x y ⎧-+=⎪⎨⎛⎫-+=⎪ ⎪⎝⎭⎩解得53x =,3y =±.所以53A ⎛ ⎝⎭,5,3B ⎛ ⎝⎭. (ⅰ)当直线l 与圆2C 相切时.由22(4),39,24y k x x y =-⎧⎪⎨⎛⎫-+= ⎪⎪⎝⎭⎩可得()()2222138160k x k x k +-++=. 令()()2222386410kk k ∆=+-+=,则34k =±. 此时解得12553x =>,切点在圆弧Ω上,符合题意.(ⅱ)当直线l与圆弧Ω相交时,由图可知,要使交点只有一个,则l在QA和QB之间.因为25535743QAk==--,252535743QBk==-,所以5577k-<<.综上所述,k的取值范围是2525k<<或34k=±.点评:本题考查圆的方程与性质、圆与直线圆与圆的位置关系,属于中档题.。
2019-2020学年河南省天一大联考高二上学期阶段性测试(二)数学(文)试题一、单选题1.已知集合{}2560A x x x =-+≥,{}13B x x =-≤<,则A B =I ( ) A .[]1,2- B .[]1,3-C .[]2,3D .[)1,-+∞解:{}(][)2560=,23,A x x x =-+≥-∞⋃+∞,[)1,3B =-,所以[]1,2A B ⋂=-. 故选:A 点评:本题考查一元二次不等式的解法以及集合的运算,属于容易题. 2.如果0b a <<,那么下列不等式错误的是( ) A .33a b > B .b a >C .ln 2ln 2a b<D .11b a<解:由不等式性质知,当0b a <<时,有33a b >,b a >,ln 2ln 2a b >,11b a<成立,故选:C . 点评:本题考查不等式的基本性质及对数函数、指数函数的单调性,属于容易题. 3.命题“[)2,x ∀∈+∞,()2log 10x ->”的否定为( ) A .[)2,x ∀∈+∞,()2log 10x -< B .[)02,x ∃∈+∞,()20log 10x -≤ C .(),2x ∀∈-∞,()2log 10x -< D .()0,2x ∃∈-∞,()20log 10x -≤解:命题“[)2,x ∀∈+∞,()2log 10x ->”的否定为:[)02,x ∃∈+∞,()20log 10x -≤,故选:B 点评:本题主要考查了含量词命题的否定,属于容易题.4.“函数()(21)x f x a =-是增函数”是“2a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解:()(21)x f x a =-是增函数,需满足211,1a a ->>∴,“函数()(21)x f x a =-是增函数”是“2a >”的必要不充分条件, 故选B . 点评:本题考查了充分必要条件,考查指数函数的性质,是一道基础题.5.已知{}n a 是等差数列,且2a ,4038a 是函数()2162020f x x x =--的两个零点,则2020a =( )A .8B .8-C .2020D .2020-答案:A由根与系数的关系及等差中项即可求解. 解:因为2a ,4038a 是函数()2162020f x x x =--的两个零点,所以240382020216a a a +==, 所以20208a =. 故选:A 点评:本题考查了根与系数的关系,等差数列的基本性质,等差中项,属于容易题.6.已知双曲线C ,则该双曲线的实轴长为( )A .1 BC .2D .答案:D设双曲线C 的方程为()222210,0x y a b a b-=>>,半焦距为c ,求出双曲线的渐近线方程,根据题意求出c 的值,利用离心率可得出a 的值,进而可得出该双曲线的实轴长.解:设双曲线C 的方程为()222210,0x y a b a b -=>>,半焦距为c ,1b a ===,即双曲线的渐近线方程为y x =±,焦点(c,0)F 到一条渐近线的距离为d ==所以2c =,a =C 的实轴长为2a =.故选:D. 点评:本题考查双曲线的几何性质,涉及双曲线的渐近线斜率与离心率之间的关系,考查计算能力,属于中等题.7.在ABC V 中,a ,b ,c 分别是角A ,B ,C 的对边,若()()0a b c a b c ab ---++=且1sin 2A =,则B =( ) A .2π B .3π C .4π D .6π 答案:A由已知条件及余弦定理可求出3C π=,由1sin 2A =可求出A ,即可求解. 解:由()()0a b c a b c ab ---++=,可得222a b c ab +-=,根据余弦定理得222cos 122a b c C ab +-==,又()0,C π∈,所以3C π=.因为1sin 2A =,()0,A π∈, 所以6A π=或56A π=.当6A π=时,2B π=;当56A π=时,A C π+>,不合题意.点评:本题主要考查了解三角形,余弦定理的应用,分类讨论,属于中档题.8.已知抛物线()2:20C y px p =>的焦点为F ,准线为l ,点()02,M y 在抛物线C 上,M e 与直线l 相切于点E ,且3EMF π∠=,则M e 的半径为( ) A .23B .43C .2D .83答案:D过点M 作MH x ⊥轴,垂足为H ,由3EMF π∠=知2MF FH =,利用抛物线定义即可知ME MF =,求解即可. 解: 如图所示,依题意ME l ⊥,过点M 作MH x ⊥轴,垂足为H , 在Rt MFH V 中,2MF FH =,由抛物线定义可得ME MF =,则22222p p ⎛⎫-=+ ⎪⎝⎭,解得43p =, 故M e 的半径为8223p +=. 点评:本题考查抛物线的性质,直线与圆相切的性质,属于中档题.9.函数()y f x =的导函数()y f x ='的图象如图所示,则()y f x =的图象可能是( )A.B.C.D.答案:D根据函数的单调性与导数符号的关系判断即可. 解:根据导函数为正,则原函数递增,导函数为负,则原函数递减,导函数()y f x ='从左到右的符号依次为负、正、负、正,则原函数()y f x =的单调性从左到右依次为减、增、减、增,且在0x =附近单调递增,通过对比可知,D 中的图象正确. 故选:D. 点评:本题考查利用导数的图象判断原函数的图象,一般利用导数符号与原函数单调性之间的关系来判断,考查推理能力,属于中等题.10.已知函数()f x 的导函数为()f x ',在()0,∞+上满足()()xf x f x '>,则下列一定成立的是( )A .()()2019202020202019f f >B .()()20192020f f >C .()()2019202020202019f f <D .()()20192020f f <答案:A 构造函数()()f xg x x=,利用导数判断函数()y g x =在()0,∞+上的单调性,可得出()2019g 和()2020g 的大小关系,由此可得出结论.解: 令()()()0f x g x x x =>,则()()()2xf x f x g x x'-'=. 由已知得,当0x >时,()0g x '>.故函数()y g x =在()0,∞+上是增函数,所以()()20202019g g >,即()()2020201920202019f f >,所以()()2019202020202019f f >. 故选:A. 点评:本题考查利用构造函数法得出不等式的大小关系,根据导数不等式的结构构造新函数是解答的关键,考查推理能力,属于中等题.11.已知椭圆()2222:10x y E a b a b+=>>的左、右焦点分别为1F ,2F ,直线0x ty -=与椭圆E 交于A ,B 两点.若四边形12AF BF 面积的最大值为8,则a 的最小值为( )A B .2C .D .4答案:C当直线与x 轴垂直,即0t =时,四边形12AF BF 的面积最大,由面积公式及基本不等式求解即可. 解:设椭圆E 的半焦距为c .直线0x ty -=过原点,当其与x 轴垂直,即0t =时,四边形12AF BF 的面积最大,此时12282S c b =⨯⨯=, 所以4bc =,所以22228a b c bc ≥=+=,当且仅当b c =时等号成立.故a ≥故选:C 点评:本题考查椭圆的标准方程和几何性质,利用基本不等式求最值,属于中档题. 12.对于函数()f x ,将满足()00f x x =的实数0x 称为()f x 的不动点.若函数()log a f x x =(0a >且1a ≠)有且仅有一个不动点,则a 的取值范围是( )A .()0,1UB .(){0,1UC .()10,1e e ⎧⎫⎨⎬⎩⎭UD .()0,1答案:C令()f x x =,可得log a x x =,利用换底公式得出ln ln x x a =,进而得出ln ln xa x=,由题意得出函数ln y a =与函数()ln xg x x=的图象有且只有一个公共点,利用导数研究函数()y g x =的单调性与极值,利用数形结合思想可得出实数a 的取值范围. 解:函数()log a f x x =有且仅有一个不动点,则方程log a x x =仅有一个根. 由log a x x =可得ln ln x x a =,即ln ln xa x =,设()ln x g x x=,其中0x >. 则()21ln xg x x-'=,令()0g x '=,得x e =,列表如下: x()0,ee(),e +∞()g x ' +-()g xZ极大值]所以,函数()y g x =的单调递增区间为()0,e ,单调递减区间为(),e +∞,所以,函数()y g x =的极大值为()1g e e=,且当1x >时,()0g x >. 函数()y g x =的图象如图所示,所以ln 0a <或1ln a e=,即01a <<或1e a e =.故选:C.点评:本题考查函数新定义“不动点”问题的求解,将问题转化为函数的零点个数,并利用参变量分离法求解是解答的关键,在作函数的图象时,可利用导数分析函数的单调性与极值,考查数形结合思想的应用,属于中等题.二、填空题13.函数()321f x x x =--的图象在点()()0,0f 处的切线方程为________.答案:10x y ++=求出()0f 和()0f '的值,利用点斜式可得出所求切线的方程,化为一般式即可. 解:由题知()261f x x '=-,()01f '∴=-,又()01f =-,所以函数()y f x =的图象在点()()0,0f 处的切线方程为1y x +=-,即10x y ++=. 故答案为:10x y ++=. 点评:本题考查利用导数求函数的切线方程,考查导数几何意义的应用,属于基础题. 14.已知正项等比数列{}n a 中,1231a a a =,4562a a a =,则2122212log log log a a a +++L 的值为________.答案:6根据等比数列的性质可推出{}12n n n a a a ++为等比数列,求其前4项之积即可, 解:正项等比数列{}n a 中,12-11=(2,)n n n n n n a a a a a a q n n N ++*+≥∈,故{}12n n n a a a ++是等比数列,首项为1231a a a =,第二项为4562a a a =, 所以7894a a a =,1011128a a a =,因此数列{}n a 的前12项之积为12124864T =⨯⨯⨯=,6212221222log log log log 64log 26a a a +++===L .故答案为:6 点评:本题考查等比数列的性质,证明数列为等比数列,对数和的运算,属于中档题.15.已知实数x、y 满足1314x y x y x -≥⎧⎪+≥⎨⎪≤⎩,则2y k x +=的取值范围是________.答案:1,24⎡⎤⎢⎥⎣⎦作出不等式组所表示的可行域,利用2y k x+=的几何意义以及数形结合思想求出k 的最小值和最大值,即可得出k 的取值范围. 解:画出不等式组表示1314x y x y x -≥⎧⎪+≥⎨⎪≤⎩的平面区域,如图中阴影部分所示,其中()1,0A ,()4,1B -,2y k x +=表示可行域内的点与点()0,2P -连线的斜率, 因为直线PA 的斜率为0221PA k +==,直线PB 的斜率为12144PB k -+==,所以1,24k ⎡∈⎤⎢⎥⎣⎦.故答案为:1,24⎡⎤⎢⎥⎣⎦.点评:本题考查线性规划中非线性目标函数取值范围问题的求解,解题时要明确非线性目标函数的几何意义,利用数形结合思想求解,属于中等题.16.已知双曲线()222210,0x y a b a b-=>>的左、右顶点分别为1A 、2A ,虚轴的端点分别为1B 、2B ,渐近线方程为2y x =,若四边形1122A B A B 的内切圆的面积为18π,则a =________. 答案:33可计算出四边形1122A B A B 内切圆的半径r =,设双曲线的半焦距为c ,由双曲线的渐近线方程可得b =,c =,利用等面积法可得出关于a 的等式,解出即可. 解:由题可知,四边形1122A B A B 内切圆的半径r =,可知四边形1122A B A B 为菱形,设双曲线的半焦距为c ,因为双曲线的渐近线方程为y =,所以ba=,ca=菱形1122A B A B c ==, 由等面积法可知,菱形1122A B A B 的面积为1122422a b c r ⨯⨯=⨯⨯,所以ab =2=,得a =.故答案为:点评:本题考查双曲线的几何性质,涉及渐近线方程的应用,解题的关键就是确定a 、b 、c ,通过题意建立方程求解,考查计算能力,属于中等题.三、解答题17.已知函数()()232f x ax ax a R =++∈.(1)若x R ∀∈,()0f x >恒成立,求a 的取值范围;(2)若()()30f x ax bx b R -+>∈的解集为112x x x ⎧⎫<->-⎨⎬⎩⎭或,解不等式2100ax bx --<.答案:(1)80,9⎡⎫⎪⎢⎣⎭.(2)51,2⎛⎫- ⎪⎝⎭. (1)分0a =和0a ≠两种情况分类讨论求解(2)由根与系数的关系求出参数后解一元二次不等式即可. 解:(1)当0a =时,()20f x =>显然成立;当0a ≠时,需满足20980a a a >⎧⎨-<⎩,得809a <<.综上可得,a 的取值范围是80,9⎡⎫⎪⎢⎣⎭.(2)()30f x ax bx -+>即220ax bx ++>.根据题意,1x =-和12x =-是方程220ax bx ++=的两个实根,所以202042a b a b -+=⎧⎪⎨-+=⎪⎩,解得46a b =⎧⎨=⎩,经检验,符合题意.()()2461021250x x x x --=+-<,解得512x -<<,所以不等式2100ax bx --<的解集为51,2⎛⎫- ⎪⎝⎭.点评:本题主要考查了一元二次不等式恒成立问题,一元二次不等式求解,属于容易题. 18.已知:p 方程()222y m m x =--表示经过第二、三象限的抛物线;:q 方程2213x y m a a m+=+-表示焦点在x 轴上的椭圆.其中m R ∈,0a >. (1)若1a =,且p q ∧为真命题,求m 的取值范围; (2)若p 是q 的必要不充分条件,求a 的取值范围.答案:(1)m 的取值范围是()1,2.(2)20,3a ⎛⎤∈ ⎥⎝⎦.(1)分别求出p ,q 为真时的m 的范围,根据“p 且q ”是真命题,得到关于m 的不等式组,解出即可;(2)先求出q 为真时的m 的范围,结合p 是q 的必要不充分条件,得到关于m 的不等式组,解出即可. 解:(1)若p 为真:220m m --< 解得12m -<<,若q 为真:则1+3m30m m >-⎧⎨->⎩解得13m <<若“p 且q ”是真命题,则1213m m -<<⎧⎨<<⎩,解得12m <<;(2)若q 为真,则m 30a a m +>->, 即3a m a <<,由p 是q 的必要不充分条件, 则可得{|3}m a m a << {|12}m m -<<即032a a >⎧⎨≤⎩,解得203a <…. 点评:本题考查了充分必要条件,考查复合命题的判断,考查集合的包含关系,是一道中档题.19.如图所示,在ABC V 中,已知点D 在边BC 上,且90DAC ∠=︒,22cos 3DAB ∠=,6AB =.(1)若3sin 3C =,求线段BC 的长; (2)若点E 是BC 的中点,17AE =AC 的长. 答案:(1)46BC =(2)AC 的长为8.(1)求出sin BAC ∠,利用正弦定理求解即可(2)求出1cos 3BAC ∠=-,利用()224AB ACAE +=u u u r u u u r u u u r ,解关于AC u u u r 的一元二次方程即可.解:(1)由条件可得()22sin sin 90cos BAC DAB DAB ∠=︒+∠=∠=在ABC V 中,sin sin BC ABBAC C=∠,=得BC =(2)由(1)知sin 3BAC ∠=, 因为BAC ∠为钝角,所以1cos 3BAC ∠=-. 因为2AB AC AE +=u u u r u u u r u u u r ,所以()22222cos 4AB ACAB AC AB AC BAC AE +=++⋅∠=u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,所以213626683AC AC ⎛⎫++⨯⨯-⨯= ⎪⎝⎭u u u r u u ur ,整理得24320AC AC --=u u u r u u u r,解得8AC =u u u r(负值舍去),所以线段AC 的长为8. 点评:本题考查解三角形、正弦定理、诱导公式以及平面向量数量积的应用. 20.在正项等比数列{}n a 中,已知133510,40a a a a +=+=. (1)求数列{}n a 的通项公式;(2)令2log n n b a =,求数列{}2(1)n n b -的前100项的和100S . 答案:(1)2nn a =;(2)5050.(1)根据题意,求得首项1a 和公比q ,即可得到数列{}n a 的通项公式;(2)由(1)求得2log n n b a n ==,写出数列{}2(1)n n b -的前100项的和,即可求解.解:(1)设公比为q ,则由题意可知21221(1)10(1)40a q a q q ⎧+=⎨+=⎩ 又0q >,解得122a q =⎧⎨=⎩,所以112n nn a a q -==.(2)由(1)可得22log log 2nn n b a n ===,则数列{}2(1)n nb -的前100项的和()()()222222222222100123499100123499100S b b b b b b =-+-+--+=-++-+-+-+L L3711195199=++++L 50(3199)50502+==.点评:本题主要考查了等比数列的通项公式的求解,以及数列的分组求和的应用,其中解答中熟记等比数列的基本量的运算,以及合理分组求和是解答的关键,着重考查了推理与运算能力,属于基础题.21.已知函数()()2ln x e f x x x x=--,向量(),xa x e =v ,()sin ,cosb x x =-v ,函数()g x a b =⋅vv .(Ⅰ)求()f x 的极值;(Ⅱ)判断()g x 在区间,02π⎛⎫- ⎪⎝⎭内的零点个数.答案:(Ⅰ)极小值为2e -,没有极大值;(Ⅱ)()g x 在区间,02π⎛⎫- ⎪⎝⎭内有一个零点.(Ⅰ)利用导数研究函数()y f x =的单调性,由此可求出函数()y f x =的极值; (Ⅱ)求出函数()y g x =的解析式,利用导数判断函数()y g x =在区间,02π⎛⎫- ⎪⎝⎭上的单调性,结合零点存在定理即可判断出函数()y g x =在区间,02π⎛⎫- ⎪⎝⎭上的零点个数.解:(Ⅰ)函数()()2ln xe f x x x x=--的定义域为()0,∞+,()()()()()2221212122x xx x x e x e x x xe e f x x x x x x -----'=-+=-=,令()()20xx e x x ϕ=->,则()2xx e ϕ'=-,令()0x ϕ'=,得ln 2x =,由()0x ϕ'>,得ln 2x >,由()0x ϕ'<,得0ln 2x <<,所以,函数()y x ϕ=在()0,ln 2上单调递减,在()ln 2,+∞上单调递增. 所以()()ln 222ln 20x ϕϕ≥=->,于是,由()0f x '>得1x >,由()0f x '<得01x <<, 所以,函数()y f x =在()0,1上递减,在()1,+∞上递增. 所以,函数()y f x =的极小值为()12f e =-,没有极大值;(Ⅱ)()sin cos xg x a b x x e x =⋅=-+r r .()()()sin cos cos sin cos 1sin x x x x g x x x x e x e x e x x e x '=--+-=--+,当,02x π⎛⎫∈- ⎪⎝⎭时,0x e x ->,10x e +>,所以()cos 0x e x x ->,()1sin 0xe x +<,所以()0g x '>,所以,函数()y g x =在,02π⎛⎫- ⎪⎝⎭上单调递增又因为()010g =>,022g ππ⎛⎫-=-< ⎪⎝⎭, 因此,函数()y g x =在区间,02π⎛⎫- ⎪⎝⎭内有一个零点.点评:本题考查利用导数求函数的极值,同时也考查了利用导数判断函数的零点个数,一般利用导数研究函数的单调性与极值,结合零存在定理求解,考查推理能力,属于中等题.22.已知椭圆()2222:10x y E a b a b+=>>的右焦点为F ,过点20,9P ⎛⎫- ⎪⎝⎭的直线l 与E交于A ,B 两点.当l 过点F 时,直线l 的斜率为29,当l 的斜率不存在时,4AB =. (1)求椭圆E 的方程.(2)以AB 为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.答案:(1)22154x y +=.(2)以AB 为直径的圆恒过定点()0,2.(1)根据直线的斜率公式求得c 的值,由24b =,即可求得a 的值,求得椭圆方程; (2)当直线的斜率存在,设直线AB 的方程,代入椭圆方程,利用韦达定理及以AB 直径的圆的方程,令0x =,即可求得2y =,即可判断以AB 为直径的圆过定点(0,2). 解:(1)设椭圆半焦距为c ,由题意202909AFk c ⎛⎫-- ⎪⎝⎭==-,所以1c =. l 的斜率不存在时,24AB b ==,所以2b =,a =.所以椭圆E 的方程为22154x y +=.(2)以AB 为直径的圆过定点()0,2Q . 理由如下:当直线l 的斜率存在时,设l 的方程29y kx =-,1(A x ,1)y ,2(B x ,2)y , 联立方程组2229154y kx x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y , 整理得22201600(45)0981k k x x +--=, 所以122209(45)kx x k +=+,122160081(45)x x k =-+, 所以12122416()99(45)y y k x x k +=+-=-+,22121212224161620()98181(45)k k y y k x x x x k -=-++=+,以AB 为直径的圆的方程:1212()()()()0--+--=x x x x y y y y , 即2212121212()()0x x x x x x y y y y y y -+++-++=, 令0x =,则2222164(4544)09(45)9(45)y k y k k ++-=++, 解得2y =或222(4544)9(45)k y k +=-+,所以AB 为直径的圆过定点(0,2).当直线l 的斜率不存在时,()0,2A ,()0,2B -, 此时以AB 为直径的圆的方程为224x y +=. 显然过点(0,2).综上可知,以AB 为直径的圆过定点(0,2). 点评:本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理及圆的标准方程,考查转化思想,分类讨论思想,考查计算能力,属于中档题.。
河南省天一大联考2019-2020学年高中毕业班阶段测试理科数学试题数学(理科)试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|A x y ==, {}2|76<0B x x x =-+,则()R C A B ⋂=( ) A. {}|1<<3x x B. {}|1<<6x x C. {}|13x x ≤≤ D. {}|16x x ≤≤ 2.已知1510z i =-,234z i =+,且复数z 满足1211z z z =+,则z 的虚部为( ) A. 225 B. 225- C. 225i D. 225i - 3.某单位共有老年、中年、青年职工320人,其中有青年职工150人,老年职工与中年职工的人数之比为7∶10.为了了解职工的身体状况,现采用分层抽样方法进行调查,抽取的样本中有青年职工30人,则抽取的老年职工的人数为()A. 14B. 20C. 21D. 704.设等差数列{}n a 的前n 项和为n S ,若2372a a a =,540S =,则7a =( )A. 13B. 15C. 20D. 225.已知向上满足||2,a =r ||1b =r ,()a b b -⊥r r r ,则向量a r 与b r 的夹角为( ) A. 6π B. 3π C. 2π D. 23π 6.马拉松是一项历史悠久的长跑运动,全程约42千米.跑马拉松对运动员的身体素质和耐力是极大的考验,专业的马拉松运动员经过长期的训练,跑步时的步幅(一步的距离)一般略低于自身的身高,若某运动员跑完一次全程马拉松用了2.5小时,则他平均每分钟的步数可能为()A. 60B. 120C. 180D. 2407.某几何体的三视图如图所示,则该几何体的侧面积为( )A.2 B. 62+ C. D. 6+8.已知双曲线22:13x E y -=,F 为E 的左焦点,P ,Q 为双曲线E 右支上的两点,若线段PQ 经过点()2,0,∶PQF 的周长为PQ 的长为( )A. 2B.C. 4D.9.已知函数()()x x f x x e e -=-,若(21)(2)f x f x -<+,则x 的取值范围是() A. 1,33⎛⎫- ⎪⎝⎭ B. 1,3⎛⎫-∞- ⎪⎝⎭ C. (3,)+∞ D. 1,(3,)3⎛⎫-∞-+∞ ⎪⎝⎭U 10.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C 上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为( )A. 14B. 12C.D. 11.设函数()2sin f x x ππ=-在()0,∞+上最小的零点为0x ,曲线()y f x =在点()0,0x 处的切线上有一点P ,曲线23ln 2y x x =-上有一点Q ,则PQ 的最小值为( )A. B. C. D. 12.已知四棱锥P ABCD -四条侧棱都相等,底面是边长为2的正方形,若其五个顶点都在一个表面积为814π的球面上,则PA 与底面ABCD 所成角的正弦值为( )A. 23B. 23或3C. 3D. 13或3二、填空题:本题共4小题,每小题5分,共20分.13.设变量x ,y 满足约束条件7002x y x y x +-≤⎧⎪-≤⎨⎪≥⎩,则目标函数11y z x -=-最大值为__________.14.已知正项等比数列{n a }满足2464,80a a a =+=.记2log n n b a =,则数列{n b }的前50项和为________. 15.在()()51231x x -+的展开式中,含3x 项的系数为__________. 16.已知2tan tan()43παα-=,则cos(2)4πα-的值是______. 三、解答题:共70分.解答应写岀文字说明,证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.17.已知平面四边形ABCD 中,3AB =,4BC =,5CD =,6DA =,且内角B 与D 互补.(1)求cos A 的值.(2)求四边形ABCD 的面积.18.如图,在直三棱柱111ABC A B C -中,90ACB ∠=o ,12CA CB AA ===,M ,N 分别是1A B 与1CC 的中点,G 为ABN ∆的重心.(1)求证:MG ⊥平面ABN ;(2)求二面角1A AB N --的正弦值.19.已知动圆M 过点(2,0)P 且与直线20x +=相切.(1)求动圆圆心M 轨迹C 的方程;(2)斜率为()0k k ≠的直线l 经过点(2,0)P 且与曲线C 交于A ,B 两点,线段AB 的中垂线交x 轴于点N ,的求||||AB NP 的值. 20.设函数()()21ln 12f x k x k x x =+--(1)讨论函数()f x 的单调性;(2)设函数()f x 的图象与直线y m =交于()1,A x m ,()2,B x m 两点,且12x x <,求证:1202x x f +⎛⎫'< ⎪⎝⎭. 21.在平面直角坐标系xOy 中,直线l 的参数方程为121x m y m =+⎧⎨=-+⎩,(m 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2363cos 2ρθ=-,直线l 与曲线C 交于M ,N 两点. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)求|MN |22.设函数()|1||2|f x x x =++-.(1)求不等式()4f x …的解集; (2)设a ,b ,*c R ∈,函数()f x 的最小值为m ,且111234m a b c ++=,求证:2343a b c ++…..。
试卷类型:断高两版天一大联考2020-2021学年高中毕业班阶段性测试(二)考生注炼;1 .茶黑前,考生务必将由己的姓名、得生号附将在试总和答题卡上,畀将考生号备沙马格贴在卷题卡上 妁指定拉工.2 .回答选株越时,选出毋小题答第后,用能比把茶题卡对应始口的冬拿标号涂黑•如£改动,用他戌擦 干号后,再选涂其他答案标号.叫等非选舞题时,将答案写在芥题卡上・将在本试落上无效・3 .才被结束后,将本试落和在会卡L 外交囱.一,余项洁播超:本题共8小第,每小22 s 分,共40分.在每小册给出的四个洁项中■只有一项是符合题目要 求的. 1.已知集合 A 二卜12-»<8| ,B = {3]>51,财 4U& = A.(5,8)B.(2,8)C. [2f ♦«)D.( -8,8)2・若发数中铝f 网周=3 .已知i 。
」是公差为-2的等差数列.且5 ,明,勾成等比数列J1,1 A. -1 B.3C.250.494 .已知△48C 是边长为2的等边三角形•其中M 为8c 边的中点,乙招C 的平分线交线段AM 于点M 则AM •前之 A.B. -5C 一 本D, -14 3 w5 .若函数式*) = cos x-^sin x #( -a,a )上有最大值,用。
的取值苞陶足A,信,fB.侍“) C 信用D.(普)6 .已知定义在R 上的儡函数/“)在(-,0)上单词递增,明 A./(2--) vf (l 崛6)(人岫 y ) BH2"*) </(1% </0叫6) C0吗6) <42"号)y ) D,/Q 隰6> /) <式2 +)7在三梭他/ -88中,AC =。
,点E 是4)的中点,则“平面雨口平面月CD”是“月6 = 6。
”的A.充分不必要条件 B,必要不充分条件 C,充要条件D.既不充分也不必要条件8 .已知定义在R 上的曲数/("满足/") =4 -/(2 -G,若函数Y 与函数了 =〃幻的图象的交点为 .(*( ,夕J,(孙必),…■(&,九),则工(与*7*)= A. nB.争C.3nt>.6n二、多项选择题;本题共4小题,将小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求, 全部选对的得5分,部分选对的得3分,有选错的得0分,9 .将函数y = 86 2名的图象上所有点向左平移上个单位长度,再向上平移4个单位长度,得到函数y 二人动 的图绝容★启用前象,则⑷的图象的对称轴方程为刀二-泰+竽(A w Z)B J0)的图象的对称中心坐标为(竽+赤0)a W为C.汽乃的单调递增区间为[-碧+。
河南省天一大联考2024届高一数学第二学期期末学业水平测试试题考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知偶函数()y f x =在区间[0,)+∞上单调递增,且图象经过点(1,0)-和(3,5),则当[3,1]x ∈--时,函数()y f x =的值域是( ) A .[0,5]B .[1,5]-C .[1,3]D .[3,5]2.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的.祖暅原理的内容是:“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是,如果夹在两平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都是h ),其中:三棱锥的体积为V ,四棱锥的底面是边长为a 的正方形,圆锥的底面半径为r ,现用平行于这两个平面的平面去截三个几何体,如果得到的三个截面面积总相等,那么,下面关系式正确的是( ) A .3V a h =,3V r π=,1a r π= B .3V a h =,3V r h π=,ar π= C .3V a h =,3Vr hπ=,1a r π=D .3V a h =,3Vr h π=,a rπ= 3.一个三角形的三边长成等比数列,公比为x ,则函数25y x x =-的值域为( ) A .(54-,+∞) B .[ 54-,+∞) C .(54-,-1) D .[54-,-1) 4. 过点P (-2,4)作圆O :(x -2)2+(y -1)2=25的切线l ,直线m :ax -3y =0与直线l 平行,则直线l 与m 间的距离为( ) A .4B .2C .D .5.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③6.过两点A (2,)m -,B(m ,4)的直线倾斜角是045,则m 的值是( ) A .1- B .3 C .1 D .3-7.若{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9=( ) A .39B .20C .19.5D .338.为了得到函数2cos 23y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数cos 2y x =的图象( )A .向左平移6π个单位长度 B .向左平移3π个单位长度 C .向右平移6π个单位长度 D .向右平移3π个单位长度 9.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若ABC 的面积为2224b c a +-,则角A =( )A .π2 B .π3 C .π4D .π610.若线性方程组的增广矩阵是,解为,则的值为( )A .1B .2C .3D .4二、填空题:本大题共6小题,每小题5分,共30分。
绝密★启用前河南天一大联考2019-2020学年高三阶段性测试文科数学试题数学(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一是符合题目要求的1.已知集合{}{}23,760A x x B x x x =≥=-+<,则()R C A B =A, {}13x x << B. {}16x x <≤ C. {}13x x ≤≤ D. {}16x x ≤≤ 2已知1510z i =-,234z i =+,且复数:满足: 1211z z z =+,则z 的虚部为 A. 225 B. 225- C. 225i D. 225i - 3.某单位共有老年、中年、青年职工320人,其中有青年职工150人,老年职工与中年职工的人数之比为7:10.为了了解职工的身体状况,現采用分层抽样方法进行调查,抽取的样本中有青年职工30人,则抽取的老年职工的人数为A. 14 B,20 C.21 D.704.设等差数列{}n a 的前n 项和为S n ,若a 2a 3=2a 7,S 5=40,则a 7=A.13B.15C.20D.225.若1e ,2e 是夹角为60°的两个单位向量,已知a =1223e e +,则a =A.B.C.4D.6.马拉松是一项历史悠久的长跑运动,全程约42千米,跑马拉松对运动员的身体素质和耐力是极大的考验,专业的马拉松运动员经过长期的训练,跑步时的步幅(一步的距离)一般略低于自身的身高,若某运动员跑完一次全程马拉松用了2.5小时,则他平均每分钟的步数可能为A. 60B.120C.180D.2407.某几何体的三视图如图所示,则该几何体的体积为A.143π B. 113π C. 83π D. 73π附:台体的体积V ='1()3S S h +,其中S ,'S 分别为台体上、下底面的面积,为台体的高8.已知直角三角形的两直角边长分别为3和4,现向该三角形内随机撒一粒黄豆,则豆子落在其内切圆内的概率为 A. 4π B. 6π C. 3π D. 5π 9.已知双曲线E: 2213x y -=,F 为E 的左焦点,P ,Q 为双曲线E 右支上的两点,若线段PQ 经过点(2,0),△POF 的周长为PQ 的长为A.2C.4D. 10.已知函数()()x x f x x e e -=-,若f (2x -1)<f (x +2),则x 的取值范围是 A.1(,3)3- B. 1(,)3-∞- C. (3,)+∞ D. 1(,)(3,)3-∞-+∞11.已知点P 在曲线22ln y x x =-上,点Q 在直线32y x =-上,则PQ 的最小值为A. 13B. 1C. 10D. 14 12.已知椭圆C: 22221(0)x y a b a b+=>>的左、右顶点分別为A ,B ,点M 为椭圆C 上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为A. 14B. 12C.D. 4二、填空题:本题共4小题,每小题5分,共20分13.函数2sin22cosy x x=+的最小正周期为___________.14.设变量x,y满足约束条件70102x yx yx+-≤⎧⎪--≤⎨⎪≥⎩,则目标函数32z x y=+的最大值为_____.15.已知四棱锥的四个侧面均是边长为2的等边三角形,则该四棱锥的高为_______.16.已知平面四边形ABCD中,AB=3,BC=4,CD=5,DA=6,且内角B与D互补,则cosA=______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答(一)必考题:共60分17.(12分)某中学组织了“迎新杯”知识竞赛,随机抽取了120名考生的成绩(单位:分),并按[95,105),[105,115),[115,125),[125,135),[135,145]分成5组,制成频率分布直方图,如图所示(I)若规定成绩在120分以上的为优秀,估计样本中成鎖优秀的考生人数;(Ⅱ)求该中学这次知识竞赛成绩的平均数与方差的估计值(同一组中的数据用该组区间的中点值作代表)18.(12分)已知等差数列{}n a 与等比数列{}n b 都是递增数列,且满足a 3=b 3=5,a 1a 5=9,b 1+b 5=2a 7(I)求{}n a 的通项公式;(Ⅱ)设21n n c b -=,求数列n c 的前n 项和S n19.(12分)如图所示,在三棱锥P-ABC 中,平面PAB ⊥平面ABC ,△ABC 是边长为的等边三角形,PA =PB ,点O ,M 分别是AB ,BC的中点 (I)证明:AC ∥平面POM;(Ⅱ)求点B 到平面POM 的距离,20.(12分)已知动圆M 过点P(2,0)且与直线x +2=0相切(I)求动圆圆心M 的轨迹C 的方程;(Ⅱ)斜率为k (0k ≠)的直线l 经过点P(2,0)且与曲线C 交于A ,B 两点,线段AB 的中垂线交x 轴于点N ,求AB NP的值21.(12分)已知函数21()cos (0)2f x ax x a =-≠在[0,]4π上的最大值対2816- (I)求a 的值(II)求f (x )在区间(0,)2π上的零点个数(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系x o y 中,直线的参数方程为12(1x m m y m=+⎧⎨=-+⎩为参数),以坐标原点为极点,x 轴的正半轴为极轴建立概坐标系、曲线C 的极坐标方程为23632cos ρθ=-,直线l 与曲线C 交于M ,N 两点(I)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)求MN23.[选修4-5:不等式选讲](10分) 设函数()12f x x x =++-(I)求不等式f (x )≥4的解集;(II)设a ,b ,c R *∈,函数()f x 的最小值为m ,且111234m a b c ++=,求证: 2343a b c ++≥。
河南省天一大联考高一上学期第一次阶段性测试数学试题一、单选题1.已知集合{1,0,1,2,3,4},{|3}A B x x =-=<,则A B ⋂=( ) A .{1,0,1,2}- B .{1,0,1}- C .{0,1,2} D .{|3}x x <【答案】A【解析】根据集合的交运算,结合已知,进行求解. 【详解】由集合的交运算,可得{}1,0,1,2A B ⋂=-.故选:A. 【点睛】本题考查集合的交运算,属基础题.2.已知22,0,()log ,0x x f x a x x ⎧≤=⎨+>⎩,若()(2)1f f -=-,则实数a 的值为( )A .2-B .2C .0D .1【答案】D【解析】由已知条件,利用分段函数性质,先求出1(2)4f -=,再算出14f ⎛⎫⎪⎝⎭,即可求出a . 【详解】 由题意得:已知函数22,0,()log ,0,x x f x a x x ⎧≤=⎨+>⎩所以1(2)4f -=,则()1(2)214f f f a ⎛⎫-==-=- ⎪⎝⎭得1a =, 故选:D. 【点睛】本题考查分段函数的概念,还涉及函数的性质和函数值的求法,同时考查运算能力.3.函数1()lg f x x=+ ) A .(],2-∞- B .(]0,2C .()(]0,11,2D .(]1,2-【答案】C【解析】由函数解析式可知,根据对数真数大于0,分母不为0和二次根式的被开方数大于等于0,即可求出定义域. 【详解】由题意可得0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,化简得02x <≤且1x ≠,即()(]0,11,2x ∈⋃.故选:C. 【点睛】本题考查求具体函数的定义域的方法,注意函数的定义域是函数各个部分的定义域的交集.4.若()y f x =的定义域为R ,值域为[1,2],则(1)1y f x =-+的值域为( ) A .[2,3] B .[0,1] C .[1,2] D .[1,1]-【答案】A【解析】根据函数的平移规则,结合原函数的值域求解. 【详解】因为(1)1y f x =-+是将原函数()f x ,向右平移1个单位, 再向上平移1个单位得到,但是左右平移不改变值域, 故(1)1y f x =-+的值域为[]2,3. 故选:A. 【点睛】本题考查函数图像的上下平移和左右平移对函数值域的影响. 5.函数21()log 1xf x e x=--的零点所在的区间是( ) A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .(1,2)【答案】C【解析】将选项中区间左右端点代入函数解析式,若发现两端函数值异号,则零点就在该区间. 【详解】因为1202f ⎛⎫=<⎪⎝⎭,而()110f e =-> 则()1102f f ⎛⎫⋅<⎪⎝⎭,根据零点存在性定理可知 函数零点所在区间为:1,12⎛⎫ ⎪⎝⎭.故选:C. 【点睛】本题考查函数零点所在区间的确定,判断依据是零点存在性定理.6.设0.20.343,log 0.4,log 0.2a b c ===,则,,a b c 的大小关系是( ) A .a b c << B .c b a << C .c a b << D .b c a <<【答案】B【解析】将,,a b c 与1和0进行比较,从而得出结果. 【详解】0.20331a =>=,0.30.3log 0.4log 0.31?b =<=且0b >, 44log 0.2log 10c =<=,故a b c >>, 故选:B. 【点睛】本题考查指数式和对数式大小的比较,一般地,先与1和0进行比较,即可区分. 7.设m R ∈,幂函数1()(22)m f x m x +=+,且(1)(2)f a f a +>-,则a 的取值范围为( ) A .1,2⎛⎫+∞⎪⎝⎭B .1,22⎛⎤⎥⎝⎦C .(1,2]-D .[2,)+∞【答案】B【解析】由()f x 是幂函数,求得参数的值,再求解不等式即可. 【详解】因为1()(22)m f x m x+=+是幂函数,故221m +=,解得12m =-, 则()f x x =,其在[)0,+∞为单调增函数,则不等式(1)(2)f a f a +>-等价于102012a a a a+≥⎧⎪-≥⎨⎪+>-⎩,解得1,22a ⎛⎤∈ ⎥⎝⎦.故选:B. 【点睛】本题考查幂函数解析式的求解,以及利用函数单调性求解不等式. 8.函数|1|1()10x f x -=的图象大致为( ) A . B .C .D .【答案】A【解析】根据函数的定义域,以及单调性,结合选项进行选择. 【详解】 因为|1|1()10x f x -=定义域为R ,故排除C 、D 选项; 又1101x ->,故()()0,1f x ∈,故排除B . 故选:A. 【点睛】本题考查由函数的解析式,选择函数的图像.一般地,要从定义域、值域、单调性、特殊点出发进行选择.9.已知函数()22()log 2f x x x a =-+的最小值为3,则a =( ) A .6 B .7C .8D .9【答案】D【解析】判断函数的单调性,找到最小值点对应的自变量,代值计算即可. 【详解】若220x x a -+>在R 上恒成立, 则根据复合函数的单调性可知,()f x 区间(),1-∞单调递减,则()1,+∞单调递增,故()()()21log 13min f x f a ==-=,解得9a =,此时满足2290x x -+>在R 上恒成立, 若220x x a -+>在R 上不恒成立,则该函数没有最值. 综上所述:9a =. 故选:D. 【点睛】本题考查对数型复合函数的单调性的判断,遵循同增异减的原则.10.常见的三阶魔方约有194.310⨯种不同的状态,将这个数记为A ,二阶魔方有85603⨯种不同的状态,将这个数记为B ,则下列各数与AB最接近的是( )(参考数据:43 4.3log 10 2.1,0.63560-≈≈⨯) A .280.63-⨯ B .280.610⨯ C .280.63⨯ D .320.63⨯【答案】C【解析】根据题意,结合参考数据,应用对数运算法则,对数据进行估算. 【详解】由题可知:A B =1984.3105603⨯两边取对数可得1933384.310log log log 5603A B =+4198333333log log log 3log 10log 35A B -≈++- 333log log 419 2.185A B -≈-+⨯-35log 27.93A B ⨯≈故27.9533A B ≈⨯ 解得:27.90.63A B ≈⨯,故与之最接近的为280.63⨯. 故选:C. 【点睛】本题考查对数的运算,涉及数据的估算;要结合参考数据进行处理,是解决本题的重要思路.11.已知函数2()x x x xe e xf x e e--++=+的最大值为M ,最小值为m ,则M m +=( ) A .1 B .2C .211e e ++ D .221ee ++ 【答案】B【解析】对()f x 分离参数,构造一个奇函数,再进行求解. 【详解】因为2()x x x xe e xf x e e--++=+=1+2x x x e e -+ 不妨令()2x xxh x e e-=+,显然()h x 为奇函数, 故()()max 0min h x h x +=,则()()()()max 22max min min f x f x h x h x +=++=. 故选:B. 【点睛】本题考查函数的奇偶性与函数最值之间的关系,本题的难点在于分离常数,构造奇函数.12.设函数222,2,()54, 2.x a x f x x ax a x ⎧-<=⎨-+⎩若()f x 有两个零点,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2(2,)2⎡⎫⋃+∞⎪⎢⎣⎭C .1,2[4,)2⎡⎫⋃+∞⎪⎢⎣⎭D .1,2(4,)2⎡⎫⋃+∞⎪⎢⎣⎭【答案】C【解析】分段考虑函数的零点,结合一元二次方程根的分布,对参数进行讨论. 【详解】为方便说明,不妨令()22?(2)?h x a x =-<,()()22542g x x ax ax =-+≥因为()h x 是单调函数,故其在定义域上的零点个数可以是0或1; 对()g x ,因为290a =≥,故其可以在定义域有1个零点,或2个零点;故当()f x 有两个零点,只有下面两种可能: ①当()40,4a -∈时,即()0,4a ∈时,()h x 在其定义域内有1个零点,此时只要保证()g x 在其定义域1个零点即可,等价于方程22540x ax a -+=有1个根在区间[)2,+∞, 只需()20g <,即:241040a a -+<,解得1,22a ⎛⎫∈ ⎪⎝⎭或()20g =且522a <,解得12a =, 故1,22a ⎡⎫∈⎪⎢⎣⎭②当()40,4a -∉,即(][),04,a ∈-∞⋃+∞时,()h x 在其定义域内没有零点,此时只要保证()g x 在其定义域2个零点即可等价于方程22540x ax a -+=有2个根在区间[)2,+∞,只需()52220ag ⎧>⎪⎨⎪≥⎩,解得[)4,a ∈+∞综上所述:[)1,24,2a ⎡⎫∈⋃+∞⎪⎢⎣⎭. 故选:C. 【点睛】本题考查根据函数的零点个数求参数的范围,涉及二次方程根的分布,其难点是对参数进行分类讨论.二、填空题13.已知函数2(0,1)x y a a a =+>≠且的图象恒过点M ,则M 的坐标为________. 【答案】(0,3)【解析】根据函数平移,结合指数函数恒过定点()0,1即可求得. 【详解】因为xy a =恒过定点()0,1,又函数2x y a =+是由xy a =向上平移2个单位得到, 故2xy a =+恒过定点()0,3.故答案为:()0,3. 【点睛】本题考查指数型函数恒过定点的问题,其一般思路为,根据函数图像变换进行求解. 14.已知集合{}20,,32A m m m =-+,且2A ∈,则实数m 的值为___________. 【答案】3【解析】由集合A 的元素,以及2A ∈,分类讨论,结合集合元素互异性,即可得出实数m 的值. 【详解】由题可得,若2m =,则2320m m -+=,不满足集合元素的互异性,舍去; 若2322m m -+=,解得3m =或0m =,其中0m =不满足集合元素的互异性,舍去, 所以3m =. 故答案为:3. 【点睛】本题考查集合元素的互异性,结合元素与集合关系以及通过对集合中元素构成的特点求参数值.15.已知函数()log (0,1)a f x x b a a =+>≠的定义域、值域都是[1,2],则a b +=__________.【答案】52或3. 【解析】分析:分类讨论a 的取值范围,得到函数的单调性,代入数据即可求解. 详解:当01a <<时,易知函数()f x 为减函数,由题意有()()122log 21a fb f b ===+=,解得:1,22a b ==,符合题意,此时52a b +=; 当1a >时,易知函数()f x 为增函数,由题意有()()112log 22a fb f b ===+=,解得2,1a b ==,符合题意,此时3a b +=.综上可得:+a b 的值为52或3. 故答案为:52或3. 点睛:在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为{x |x >0}.对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.16.已知()f x 是定义在R 上的奇函数,且当0x 时,2log (1),01,()31,1,x x f x x x +<⎧=⎨--⎩则方程1()2f x =的所有实根之和为________. 21【解析】画出分段函数的图像,根据图像,结合解析式,进行求解. 【详解】根据分段函数的解析式,以及函数为奇函数,作图如下:由图容易知,因为31y x =--在区间[)1,+∞上,关于3x =对称, 且31y x =---+在区间(],1-∞上,关于3x =-对称, 故其与直线12y =的所有交点的横坐标之和为0. 故1()2f x =所有根之和,即为当()0,1x ∈时的根, 此时()21log 12x +=,解得21x =.21. 【点睛】本题考查函数图像的交点,涉及函数图像的绘制,函数奇偶性的应用,属函数综合题.三、解答题17.计算(1)142110.2542216--⎛⎫⎛⎫⨯--÷- ⎪ ⎪⎝⎭⎝⎭ (2)()()3334839322log 2log log 8log 3log 3log 2log 29-+-++ 【答案】(1)4-(2)34【解析】(1)根据指数运算法则,直接计算即可得出结果; (2)根据对数运算法则,直接计算即可得出结果. 【详解】解:(1)原式14421242444⎛⎫-⨯- ⎪⎝⎭=⨯--=--22=-4(2)原式232233log 2log 3log 328log log 2322329⨯⎛⎫⎛⎫=-++ ⎪⎪⎝⎭⎝⎭323111533log 9log 3log 212232624⎛⎫⎛⎫=-⨯+⨯⨯+=-⨯= ⎪ ⎪⎝⎭⎝⎭.【点睛】本题主要考查指数运算以及对数运算,熟记运算法则即可,属于基础题型.18.已知集合{}2{|32},|log 3,{|13}A x x B x x C x m x m =-<<=<=-<<+. (1)求R A C B ⋂;(2)若()C A B ⊆,求实数m 的取值范围.【答案】(1){|30}x x -<(2)(,4]-∞【解析】(1)求解对数不等式,再求补集和交集即可;(2)先求并集,对集合C 是否为空集进行讨论,分别求解.【详解】(1)∵函数2log y x =在(0,)+∞上单调递增,∴由2log 3x <得08x <<,∴{|08}B x x =<<.∴{|08}R B x x x =或.∴(){|30}R A B x x ⋂=-<.(2){|38}A B x x ⋃=-<<.若C =∅,则13m m -+,解得1m -.若C ≠∅,则13,13,38,m m m m -<+⎧⎪--⎨⎪+≤⎩,解得14m -<.∴实数m 的取值范围为(,4]-∞.【点睛】本题考查集合的运算,以及集合之间的包含关系,涉及对数不等式的求解.19.已知函数21()2x x f x a-=+的图象经过点11,3⎛⎫-- ⎪⎝⎭. (1)求a 的值;(2)求函数()f x 的定义域和值域;(3)判断函数()f x 的奇偶性并证明.【答案】(1)1;(2)定义域为R ,值域为(1,1)-;(3)()f x 是奇函数,证明见详解.【解析】(1)将函数过的点的坐标代入函数解析式,求解参数;(2)利用分母不为零求定义域,采用不等式法求函数值域;(3)先判断函数的定义域是否关于原点对称,再判断()f x 与()f x -之间的关系.【详解】(1)由题意知11112112(1)1232f a a -----===-++, 解得1a =.(2)因为212()12121x x x f x -==-++. ∵20x >,∴211x +>,∴()f x 的定义域为R .∵2(0,)x ∈+∞,∴2(0,2)21x ∈+, ∴()f x 的值域为(1,1)-.(3)函数()f x 是奇函数.证明如下:∵()f x 的定义域为R ,关于原点对称, 且2112()()2112x x x xf x f x -----===-++, ∴()f x 是奇函数,即证.【点睛】本题考查函数解析式,定义域和值域的求解,以及函数奇偶性的证明,涉及指数运算,属函数综合基础题.20.某投资公司计划在甲、乙两个互联网创新项目上共投资1200万元,每个项目至少要投资300万元.根据市场分析预测:甲项目的收益P 与投入a满足30P =-,乙项目的收益Q 与投入a 满足1505Q a =+.设甲项目的投入为x . (1)求两个项目的总收益关于x 的函数()F x .(2)如何安排甲、乙两个项目的投资,才能使总收益最大?最大总收益为多少?(注:收益与投入的单位都为“万元”)【答案】(1)1()260,3009005F x x x =-+≤≤;(2)甲项目投资500万元,乙项目投资700万元;360万元【解析】(1)由题意得,分别代入甲和乙的收益函数即可得出两个项目的总收益关于x 的函数()F x ;(2)利用换元法,令t x =,则103,30t ⎡⎤∈⎣⎦,得出关于t 的二次函数,根据已知区间内的二次函数即可求出最大值以及对于的x 值,即可得出答案.【详解】(1)由题知,甲项目投资x 万元,乙项目投资1200x -万元.所以11()4530(1200)504526055F x x x x x =-+-+=-++ 依题意得3001200300x x ≥⎧⎨-≥⎩解得300900x ≤≤. 故1()45260,3009005F x x x x =-++≤≤ (2)令t x =,则103,30t ⎡⎤∈⎣⎦.221145260(105)36055y t t t =-++=--+ 当105t =,即500x =,y 的最大值为360.所以当甲项目投资500万元,乙项目投资700万元时,总收益最大,最大总收益为360万元.【点睛】本题考查函数模型的应用以及二次函数的性质,利用换元法及二次函数求最值. 21.已知函数2()22f x x kx =-+.(1)若函数(1)f x -是偶函数.求k 的值,并在坐标系中画出()y f x =的大致图象; (2)若当[]1,2x ∈-时,()4f x ≥-恒成立,求k 的取值范围.【答案】(1)4k =-,图像见解析;(2)8,43⎡-⎣【解析】(1)根据(1)f x -是偶函数,得出()f x 的对称轴,结合二次函数对称轴,求出k ,便可以得出()f x 解析式,即可画出二次函数图像;(2)由条件,得出min ()4f x ≥-,分类讨论对称轴和所给区间比较,结合单调性,分别求出每种情况的最小值,分析加以排除,即可得出k 的取值范围.【详解】(1)由题得,函数(1)f x -是偶函数,可得函数()f x 的图象关于1x =-对称, 即14k =-,得4k =- 则2()242y f x x x ==++的大致图象如图所示.(2)因为当[]1,2x ∈-时,()4f x ≥-恒成立,所以min ()4f x ≥-.由题可知()f x 的对称轴为4k x =. 当14k ≤-,即4k ≤-时,()f x 在[]1,2-上单调递增, 此时min ()(1)224f x f k =-=++≥-,得8k ≥-,所以84k -≤≤-; 当24k ≥,即8k ≥时,()f x 在[]1,2-上单调递减, 此时min ()(2)8224f x f k ==-+≥-,得7k ≤,不符合条件; 当124k -<<,即48k -<<时,()f x 在(1,)4k -上单调递减,在,24k ⎛⎫ ⎪⎝⎭上单调递增, 此时22min()()24484k k k f x f ==-+≥-,得4343k -≤≤443k -<≤综上所述,k 的取值范围是8,43⎡-⎣.【点睛】本题考查二次函数的图像与性质,利用偶函数性质以及二次函数的对称轴、单调性、最值,同时还考查二次函数图像的画法和分类讨论思想,以及数形结合思想.22.设a R ∈,函数 ()1,11ln ,1ax x f x x a x x +⎧<⎪=-⎨⎪-≥⎩,且()()3f f e -=()1求()f x 的最大值()2若方程()()0f x f x --=在区间[)(),1k k k Z +∈上存在实根,求出所有可能的k 值【答案】(1)3;(2)3,0,2-【解析】(1)由(3)()f f e -=求得a ,分段考查函数值的取值范围可得最大值.(2)由()31,113ln ,1x x f x x x x +⎧<⎪=-⎨⎪-≥⎩,分类讨论,分11x -<<,1x ≥和1x ≤-三类讨论其零点,其中1x ≤-可由1x ≥得出,主要是()()0f x f x --=的解都是成对出现的.【详解】(1)由()()3f f e -=得31131a a -+=---,解得3a = 当1x <时,()3143311x f x x x +==+<-- 当1x ≥时,()3ln f x x =-单调递减,()()13f x f ≤=所以()f x 的最大值为3(2)由(1)知()31,113ln ,1x x f x x x x +⎧<⎪=-⎨⎪-≥⎩ 当11x -<<时,11x -<-<由()()0f x f x --=得3131011x x x x +-+-=---,解得0x =,因为[)00,1∈,故可取0k = 当1x >时,1x -<-,由()()0f x f x --=得313ln 01x x x -+--=--,整理得4ln 01x x -=+ 设()()4ln 11g x x x x =-≥+,易知()g x 在[)1,+∞上单调递减 又因为()()42ln 20,31ln 303g g =->=-<,所以()g x 在[)2,3上存在唯- -点, 从而原方程在[)2,3,上有且仅有一个实根.故可取2k =当非零实数0x 满足()()000f x f x --=时,0x -也满足()()000f x f x --=,即原方程的非零实根总是成对出现,所以在[)3,2--上也仅有一个实根,故可取3k =-. 综上所述,k 的值可以为3,0,2-.【点睛】本题考查对数型复合函数的最值,考查函数的零点问题.通过零点存在定理可确定函数零点所在区间.对分段函数一般需要分类讨论.。
2023-2024学年度第一学期联考高一数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
7.若31323221,51,21⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=c b a ,则a ,b ,c 的大小关系是()A.a <b <cB.c <a <bC.b <c <aD.b <a <c8.若函数2()|2|f x x a x =+-在(0,)+∞上单调递增,则实数a 的取值范围是()A .[]4,0-B .(],0-∞C .(],4-∞-D .(,4][0,)-∞-+∞ 二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
12.对任意两个实数,a b ,定义{},,min ,,a ab a b b a b ≤⎧=⎨>⎩,若()22f x x =-,()2g x x =,下列关于函数()()(){}min ,F x f x g x =的说法正确的是()A .函数()F x 是偶函数B .方程()0F x =有三个解C .函数()F x 在区间[1,1]-上单调递增D .函数()F x 最大值为1三、填空题:本题共4小题,前三小题每小题5分,第四小题第一个空2分,第二个空3分,共20分。
16.已知函数()f x 是定义在R 上的奇函数,当0x >时,2()22f x x ax a =-++,其中a ∈R .(1)当1a =时,(1)f -=__________;(2)若()f x 的值域是R ,则a 的取值范围为__________.四、解答题:本题共6小题,共70分。
解答应写出文字说明、证明过程或演算步棸。
17.(10分)已知集合{|24}A x x =≤<,{|3782}B x x x =-≥-,求(1)A∩B,A∪B.(2)R ()A B ⋃ð,()A BR ð18.(12分)计算下列各式(式中字母均是正数):(1)211511336622263a b a b a b ⎛⎫⎛⎫⎛⎫-÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)83184m n -⎛⎫ ⎪⎝⎭;(3).。