三年级奥数第讲数学趣题完整版
- 格式:docx
- 大小:151.99 KB
- 文档页数:5
三年级奥数数学趣题集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]数学趣题在日常生活中,常有一些妙趣横生,开发智力的问题,如:3个小朋友唱一首歌要3分钟,100个小朋友同时唱一首歌要几分钟?类似这样的问题一般不需要进行较复杂的计算,也不能用常规方法来解决,而常常需要用小朋友的灵感、技巧和机智获得答案。
对于趣味问题,首先读懂题意,然后要经过充分地分析和思考,运用基础知识以及自己的聪明才智巧妙地解决。
例题1:一条毛毛虫由幼虫长成成虫,每天长大一倍,30天能长大到20厘米。
问长大到5厘米要用多少天?☆同类练习:1.如果每人步行的速度相同,2个人一起从学校到儿童乐园要3小时,那么6个人一起从学校到儿童乐园要多少小时?2.一个池塘中的睡莲,每天长大一倍,经过10天可以把整个池塘遮完。
问睡莲要遮住半个池塘需要多少天?3.一条小青虫由幼虫长成成虫,每天长大一倍,20天能长大到36厘米,问长大到9厘米要多少天例题2:小猫要把15条鱼分成数量不等的四堆,问最多的一堆最多可以放多少条鱼?☆同类练习:1.小明要把20颗珠子分成数量不等的五堆,问最多的一堆中可以放多少颗珠子2.兔妈妈拿来一盘萝卜共25个,分给4只小兔,要使每只小兔分得的个数不相同,问分得最多的一只小兔最多分得几个萝卜3.王老师为18人的舞蹈队设计队形,要求分成人数不等的五队,最多的一队最多可以分几人?例题3:把100只桃子分装在7个篮子里,要求每个篮子里桃子的只数都带有6这个数字。
想想该怎么分?☆同类练习:1.把100个鸡蛋分装在6个盒子里,要求每个盒子里装的鸡蛋数目都带有6。
想想看,该怎么分配吧?2.7只箱子分别放有1个、2个、4个、8个、16个、32个、64个苹果,现在要从这7只箱子里取出87个苹果,但每只箱子要么不取,要么全取,你觉得应该怎么取呢?3.有人认为8是个吉祥数字,得到东西的数量都希望含有数字8.现有200块糖要分给5个小朋友,请你帮助设计一个符合要求的分糖方案。
三年级奥数讲座智巧趣题1、用数字1 , 1, 2, 2, 3, 3拼凑出一个六位数,使两个1之间有1个数字,两个2之间有2 个数字,两个3之间有3个数字。
解答:312132 2312132、把一根线绳对折,对折,再对折,然后从对折后的中间处剪开,这根线绳被剪成了多少段?解答:对折一次:2*2-仁3 段对折二次:4*2-3=5段对折三次:8*2-7=9段.3、有10张,卡片分别标有从2开始的10个连续偶数。
如果将它们分成5组,每组两张,计算同组中两个偶数和分别得到①34,②22,③16,④30,⑤&那么每组中的两张卡片上标的数各是多少?解答:10 个连续偶数是24,6,8,10,12,14,16,18,208=2+6 16=4+12 22=14+8 30=20+10 34=16+184、售货员把29个乒乓球分装在5个盒子里,使得只要顾客所买的乒乓个数小于30,他总可以恰好把其中的一盒或几盒卖出,而不必拆盒。
问这5个盒子里分别装着多少个乒乓球?解答:1+2+4+8+14=295、小明的左衣袋和右衣袋中分别装有6枚和8枚硬币,并且两衣袋中硬币的总钱数相等。
当任意从左边衣袋取出两个硬币与右边衣袋的任意两个硬币交换时,左边衣袋的钱总数要么比原来的钱数多2分,要么比原来的钱数少2分,那么两个衣袋中共有多少分钱?解答:2*6=5+7*1 共:2*6*2=24 分=2 角 4 分.6、如图10-1,这是用24根火柴摆成的两个正方形,请你只移动其中的4根火柴,使它变成两个完全相同的正方形。
■ • • • ■1、请将W 亍棋子分放在边长曲厘米、20煙米、W 匣米的3个盒子里,使大盒子里的棋子数 是中盒子毘棋子数的2倍,中盒子毘的棋子数是小盒子里棋子数的2倍。
河应当如何放置?解答*把小盒子放进中盒子里,大盒子另外放+小盒里放4亍,中盒里放4个,大盒里放W 个+ 歆今有101校硬币,其中有100枚同样的貞帀和I 枚伪币,伪币与真币和車量不同"现需弄清 楚伪帀究竟比真币轻,还是比真币重,但只有一架没有祛码的天平口那么怎样利用这架天平称两次, 来达到冃的?解答:分成50、50. t 三堆:第一次称两个5山如果平了,第二次从这40个任意拿1个〔当 然是真的)与第三堆的I 个称,自然会出结果:第一次称两个50不平是正常的,第二次我们把其中 的一堆(或重的或轻的都行)分成2乩25.称第二次:X 把轻的分成厉、25,如果平了.说明那 堆重的有假,当然假的是超重;如果不平,说明这50个轻的有假’假的是轻了; 2.把重的分成為、 25,道理同上。
第1讲智巧趣题1.盘子里有9个橘子,分给9个人,每人一个,盘子里仍留一个橘子,这是怎么回事?2.一个盒子里有10颗弹子,要分给5个小朋友,每人2颗,最后盒子里还要有2颗,你能做到吗?3.一位农民在自己的自行车两边分别带着5只鸡和4只兔去赶集。
因为兔比鸡重,他把鸡和兔互相交换一只后,两边的重量就相等了。
如果每只兔重3千克,那么每只鸡重多少千克?4.一位渔夫在自己的竹筐两边分别放着5条鱼和4只鸭去赶集。
因为鸭比鱼重,他把鱼和鸭互相交换一只后,两边的重量就相等了。
如果每只鸭重3千克,那么每条鱼重多少千克?5.一个池塘中的睡莲每天长大一倍,经过10天可以把整个池塘全部遮盖住,问睡莲要遮盖半个池塘需要多少天?6.“小淘气”青虫,每天长大一倍,经过3天体重达到20克。
问青虫在第几天达到80克?7.有一个月,星期二的天数比星期一多,星期三的天数比星期四多,这个月8号是星期几?8.有一个月,星期一的天数比星期日多,星期二的天数比星期三多,这个月29号是星期几?9.学校食堂买回100个鸡蛋,每袋装10个。
其中九只袋里装的鸡蛋,每个都是50克重。
另一个袋装的每只都是40克重的。
这十袋混在一起,只准用秤称一次,就能找出哪一袋装的每个是40克重的鸡蛋?10.一袋一袋的洗衣粉堆成十堆,每堆10袋洗衣粉,九堆洗衣粉是合格产品,每袋1斤,唯独有一堆分量不足,每袋只有9两。
从外形上看,看不出哪一堆是9两的。
用台秤一堆一堆去称吧,称的次数比较多。
有人找到一个办法,只称了一次,就找到了9两的那一堆。
这是个什么办法呢?11.有一艘军舰停靠在港口,军舰的外弦有一梯子。
梯子的第一级正好挨着水面,往上每隔25厘米有一级。
这时海水也正巧以每小时25厘米的速度涨潮。
经过多长时间海水涨到梯子的第3级?12.一只麻雀发现一个只装了半瓶果汁的汽水瓶里漂浮着一颗空心球。
小麻雀想用嘴把它叼出来玩耍,可是用什么办法呢?13.两个餐厅合买若干公斤鱼,都付了同样多的钱。
题目1:用一根0-9的数字重排列组成一个最小的两位数,这个最小的两位数是多少?解答:根据最小的两位数的定义,十位上的数字应为0。
个位上的数字既可以为1-9中的任意一个数字,所以最小的两位数是10。
题目2:求3+4+5+6+7+8+9的值。
解答:将要求和的数字按从小到大排列,即3+4+5+6+7+8+9=42题目3:小强几天之后就过生日了。
请大家帮忙计算一下,如果今天是星期二,那么他的生日将是星期几?解答:星期一到星期日依次为1-7,星期二再过一天就是星期三,再过一天就是星期四、所以小强的生日将是星期四题目4:小明有5个苹果,他吃了其中的3个。
请问小明还剩几个苹果?解答:小明吃了3个苹果后,还剩下5-3=2个苹果。
题目5:小猫有9只尾巴。
你知道小猫有几条腿吗?解答:一只猫有4条腿,所以9只小猫共有9×4=36条腿。
题目6:在1、2、3、4、5、6中任取2个数紧挨在一起,共有几种可能?解答:1、2、3、4、5、6中任取两个数,共有C(6,2)种组合方式。
C(6,2)=6!/(2!(6-2)!)=6×5/(2×1)=15种可能。
题目7:有一个数加上15等于36,这个数是多少?解答:设这个数为x,则x+15=36、解这个方程可得x=36-15=21,所以这个数是21题目8:一个长方形的周长是10m,宽是2m,你能求出它的长度吗?解答:设长方形的长为x,则2(x+2)=10。
解这个方程可得x=3,所以长方形的长度是3m。
题目9:在1、2、3、4、5中,最小的三位数是多少?解答:根据最小的三位数的定义,百位上的数字应为1、十位上和个位上的数字既可以为1-5中的任意两个数字,所以最小的三位数是123题目10:旺旺从家里到学校共需要2小时。
已经走了1小时,还需要多长时间才能到学校?解答:旺旺已经走了1小时,所以还需要2-1=1小时才能到学校。
三年级奥数专题第三讲数字趣谈【一】盒子里有红球和黄球各5个,最多摸出几个球,才能保证有两种不同颜色的球?练习1、小口袋里混合放着红、黄两种玻璃球各4个,它们的形状、大小完全一样,如果不用眼睛看,要保证一次拿出两粒不同颜色的玻璃球,至少要摸出几粒?2、布袋里有红、绿两种小木块各6块,形状、大小完全一样,要保证一次从布袋里取出颜色不同的木块,至少必须取出几块小木块?【二】一只小白兔5分钟吃一棵大白菜,5只小白兔同时吃5棵同样的大白菜,需要几分钟?练习1、三个人同时吃3个西红柿,用3分钟吃完。
六个人同时吃6个相同大小的西红柿,要几分钟才能吃完?2、4个小朋友同时削4枝同样的铅笔需要4分钟。
照这样的速度,7个小朋友同时削7枝铅笔,需要几分钟?【三】一条毛毛虫由幼虫长成成虫,每天长大一倍,18天能长到32厘米。
问长到4厘米时要用多少天?练习1、一个小池塘内有一片水浮莲,它每天能在水面上长大一倍,28天就把整个池塘全部遮满。
问水浮莲要遮住半个池塘需要多少天?2、一条小青虫由幼虫长成成虫,每天长大一倍,15天能长到6厘米。
问长到48厘米时需要多少天?【四】把14个玻璃球放进4个盒子里,要使每个盒子里都放有玻璃球且放的个数都不想等,问最多的一堆可以放几个玻璃球?练习1、五个同学共有37张画片,每两个同学间的画片张数都不相等,问其中最多的同学最多有多少张?2、20个乒乓球分成数量不相等的5堆,问最多的一堆最多有多少个乒乓球?【五】把100个桔子分装在6个篮子里,要求每个篮子里装的桔子的个数都含有数字“6”,想一想,应该怎么分?练习1、“六一”来临人人喜,10个同学做彩旗,一共要做一百面,每人做的需带“7”。
试问各做几面旗?2、有48个学生参加三项体育比赛,但参加每项活动的人数都不一样,而人数都有一个数字“6”,参加三项体育比赛的学生各有多少人?【六】龙龙和亮亮去公园玩,想买门票,但钱都不够,龙龙缺4元8角,亮亮缺1分,两人的钱加起来仍不够,公园门票多少钱?练习1、小华和小李去书店,想买一本童话书,但钱都不够,小华缺6元4角,小李缺1分,两人合起来每一本仍不够,这本童话书多少钱?2、小红和小明想买一本书。
2019-2020年三年级数学奥数讲座数学趣题专题简析:在日常生活中,常有一些妙趣横生、带有智力测试性质的问题,如:3个小朋友同时唱一首歌要3分钟,100个小朋友同时唱这首歌要几分钟?类似这样的问题一般不需要较复杂的计算,也不能用常规方法来解决,而常常需要用小朋友的灵感、技巧和机智获得答案。
对于趣味问题,首先要读懂题意,然后要经过充分的分析和思考,运用基础知识以及自己的聪明才智巧妙地解决。
例题1如果每人步行的速度相同,2个人一起从学校到儿童乐园要3小时,那么6个人一起从学校到儿童乐园要多少小时?思路导航:2个人一起从学校到儿童乐园要3小时,也就是1个人从学校到儿童乐园要3小时;6个人一起从学校到儿童乐园所用的时间与一个人所用的时间相等,所以6个人一起从学校到儿童乐园还是用3小时。
练习一1.3个人同时唱3首歌用9分钟,9个人同时唱同样的3首歌用几分钟?2.5只猫5天能捉5只老鼠,照这样计算,要在100天里捉100只老鼠要多少只猫?3.6个人从甲地到乙地用4小时,如果每人的步行速度相同,那么3个人从甲地到乙地要用几小时?例题2一条毛毛早由幼虫长成成虫,每天长大一倍,30天能长到20厘米。
问长到5厘米时要用多少天?思路导航:毛毛虫每天长大一倍,说明第二天的身长是第一天身长的2倍。
这条毛毛虫在第30天时,身长为20厘米,那么在第29天时,这条毛毛虫的身长为20÷2=10厘米;在第28天时,这条虫的身长为10÷2=5厘米。
练习二1.有一个池塘中的睡莲,每天长大一倍,经过10天可以把整个池塘全部遮住。
问睡莲要遮住半个池塘需要多少天?2.一条小青虫由幼虫长成成虫,每天长大一倍,20天能长到36厘米。
问长到9厘米时要用几天?3.一条毛毛虫由幼虫长成成虫,每天长大一倍,15天能长到4厘米。
问要长到32厘米共要多少天?例题3 小猫要把15条鱼分成数量不相等的4堆,问最多的一堆中最多可放几条鱼?思路导航:小猫要把15条鱼分成数量各不相等的4堆,要让最多的一堆中小鱼条数尽量多,那么其余三堆小鱼的条数就要尽量少。
三年级奥数数字趣题数字趣题是三年级奥数中的一个重要内容,它旨在通过趣味性的数学问题培养学生的数学思维和逻辑推理能力。
在这篇文章中,我将为大家介绍几个有趣的数字趣题。
1. 奇数和偶数问题问题:从1到100的数字中,奇数和偶数的个数各是多少?解答:在1到100的数字中,共有50个偶数和50个奇数。
解析:奇数是指不能被2整除的数,偶数是指能被2整除的数。
在1到100的数字中,首先1是奇数,2是偶数,3是奇数,4是偶数,以此类推。
我们可以观察到,奇数和偶数是交替出现的,而且个数相同,所以在1到100的数字中,奇数和偶数的个数各是50个。
2. 数字组合问题问题:将数字1、2、3、4、5分别排列,可以得到多少个不重复的两位数?解答:可以得到10个不重复的两位数。
解析:将数字1、2、3、4、5分别排列,可以得到以下10个不重复的两位数:12、13、14、15、21、23、24、25、31、32、34、35、41、42、43、45、51、52、53、54。
其中,每个数字只能使用一次,所以得到10个不重复的两位数。
3. 数字之和问题问题:将数字1、2、3、4、5排列成一个五位数,使得这个五位数的个位数加上十位数等于百位数,十位数加上千位数等于个位数,千位数加上百位数等于十位数。
请问这个五位数是多少?解答:这个五位数是54231。
解析:根据题意,我们可以得到以下等式:个位数 + 十位数 = 百位数,十位数+ 千位数 = 个位数,千位数 + 百位数 = 十位数。
根据这些等式,我们可以逐位确定数字的排列。
首先,个位数加十位数等于百位数,所以个位数只能是1,十位数只能是3,百位数只能是4。
然后,十位数加千位数等于个位数,所以千位数只能是2。
最后,千位数加百位数等于十位数,所以百位数只能是3。
根据这些数字的排列,我们可以得到这个五位数是54231。
通过以上的数字趣题,我们可以看到数学问题也可以有趣和有挑战性。
这些问题培养了学生的逻辑思维能力和解决问题的能力,同时也提高了他们对数字的理解和运用能力。
第一讲 智巧趣题从三年级开始,我们就要系统地学习奥数知识,本讲主要是通过数学趣题的研究学习引发学生学习奥数的兴趣,激发学生学习奥数的灵感,充分调动学生学习奥数的积极性.Ⅰ、过河问题(★★★ 奥数网经典题)【例1】 38个同学要坐船过河,渡口处只有一只能载4人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河多少次?分析:根据前面的解答,实际上前面每次过河的人数只有3人,最后一次最多过4人,因为38=3×12+2,所以前面3人一次过了12次,来回一共划了12×2=24(次),最后一次是2人过河,还要用1次.所以最终需要渡河的次数是24+1=25(次).[拓展] 37个同学要坐船过河,渡口处只有一只能载5人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河多少次?分析:如果由37÷5=7……2,得出7+1=8次,那么就错了.因为忽视了至少要有1个人将小船划回来这个特定的要求.实际情况是:小船前面的每一个来回至多只能渡4个人过河去,只有最后一次小船不用返回才能渡5个人过河.因为除最后一次可以渡5个人外,前面若干个来回每个来回只能渡过4个人,每个来回是2次渡河,37=4×8+5,所以渡河次数是8×2+1=17(次). (注:由于数想 挑战 吗 ?一个人带着一只狐狸、一只鹅和一些玉米渡河,每次只能带一样,可是人不在时,狐狸要吃鹅,鹅要吃玉米.那么应该怎样渡河呢? 分析:先带鹅过河,自己划船回来,第二次带狐狸过去,再把鹅带回来,第三次带玉米过河,自己划船回来,第四次再把鹅带过去即可.【例2】(★★★★奥数网改编题)赵大爷和一个小八路带着一个负伤的红军战士因为叛徒出卖被日本鬼子追到一条小河边,河岸边只有一条能同时乘坐两人的小船,赵大爷划船需要2分钟,小八路划船需要3分钟,负伤的红军战士划船需要5分钟,现在在危机关头,需要尽快过河,采用怎样的过河方式,三个人全部过河用时最少?分析:赵大爷首先跟小八路或者红军战士一起过河,用时2分钟,再由赵大爷把船划过来,用时2分钟,最后把剩下的人一起载过去,再用时2分钟.一共用时6分钟.[拓展] 有四个人在晚上准备通过一座摇摇欲坠的小桥.此桥每次只能让2个人同时通过,否则桥会倒塌.过桥的人必须要用到手电筒,不然会一脚踏空.只有一个手电筒.4个人的行走速度不同:小强用1分种就可以过桥,中强要2分中,大强要5分中,最慢的太强需要10分中.17分钟后桥就要倒塌了.请问:4个人要用什么方法才能全部安全过桥?分析:小强和中强先过桥,用2分钟;再用小强把电筒送过去,用1分钟,现在由大强跟太强一起过桥,用10分钟,过去以后叫中强把电筒送给小强用2分钟,最后小强与中强一起过河再用2分钟,他们一起用时间:2+1+10+2+2=17(分钟),正好在桥倒塌的时候全部过河.(时间最短过河的原则是:时间长的一起过,时间短的来回过.这样保证总的时间是最短的).【例3】有一家五口人要在夜晚过一座独木桥.他们家里的老爷爷行动非常不便,过桥需要12分钟;孩子们的父亲贪吃且不爱运动,体重严重超标,过河需要时间也较长,8分钟;母亲则一直坚持劳作,动作还算敏捷,过桥要6分钟;两个孩子中姐姐需要3分钟,弟弟只要1分钟.当时正是初一夜晚又是阴天,不要说月亮,连一点星光都没有,真所谓伸手不见五指.所幸的是他们有一盏油灯,同时可以有两个人借助灯光过桥.但要命的灯油将尽,这盏灯只能再维持30分钟了!他们焦急万分,该怎样过桥呢?分析:首先姐姐跟弟弟一起过,用时3分钟,姐姐再回去送油灯,用时3分钟,老爷爷跟爸爸一起过河,用时12分钟,弟弟将灯送回去,用时1分钟,弟弟和母亲一起过,用时6分钟,弟弟送灯过河,用时1分钟,最后与姐姐一起过河,用时3分钟.一共用时:3+3+12+1+6+1+3=29分钟.最后能够安全全部过河.【例4】男女二个主人带着二个仆人和一条狗过河,但船每次只能载二个(包活狗),女主人和仆人在一边,女主人会打死仆人;让仆人和狗在一边,狗会咬死仆人:让仆人在一边,他们会逃走.怎么过河?分析:见下表(二)蜗牛与青蛙趣题【例5】(★★★奥数网原创题)蜗牛沿着9米高的柱子往上爬,白天它向上爬5米,而晚上又下降4米,问蜗牛爬到柱顶需要几天?分析:一昼夜可以爬1米,爬了4昼夜后再经过一个白天即可爬到柱顶,因此需要5个白天4昼夜.[巩固]一口井深10米,一只蜗牛从井底白天往上爬2米,晚上又往下滑1米,请问要多长时间,这只蜗牛能爬出这口井?分析:“白天往上爬2米,晚上又往下滑1米”其实一天只往上爬1米,如果这样理解,说这只蜗牛爬出这口井需要10天就错了.因为最后一次爬出井外不会往下滑,所以蜗牛只要往上爬9米,晚上下滑1米,这时距离井口只有2米了,这样只要一个白天再往上爬2米就到井口了.所以只需要8天再加一个白天.【例6】一只青蛙爬树,每次往上爬5厘米,又往下滑2厘米,这只青蛙这样上下了5次,实际往上爬了多少厘米?分析:实际上青蛙没爬行一次只前进了5-2=3(厘米),5次共前进了3×5=15(厘米).[拓展] 青蛙沿着10米高的井往上跳,每次它向上跳半米,然后又落下去,问青蛙爬需要跳几次就能跳出井外?分析:每次青蛙向上跳半米,然后又落下去,等于还在原地,所以永远也跳不出去.Ⅲ、火柴棍趣题【例7】桌子上放着55根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁获胜.如果双方采用最佳方法,甲先取,那么谁将获胜?分析:获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根……由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜.现在桌上有55根火柴,55÷4=13……3,所以只要甲第一次取走3根,剩下52根火柴是4的倍数,以后甲总留给乙4的倍数根火柴,甲必胜.[拓展]将“每次取走1~3根”改为“每次取走1~4根”,其余不变,情形会怎样?分析:由上面的分析,只要始终留给对方(1+4=)5的倍数根火柴,就一定获胜.因为55是5的倍数,甲先取,不可能留给乙5的倍数根,而甲每次取完后,乙再取都可能留给甲5的倍数根,所以在双方都采用最佳策略的情况下,乙必胜.[拓展]将“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?分析:因为最后留给对方1根火柴者必胜,按照逆推的方法分析,只要每次留给对方4的倍数加1根火柴必胜.甲先取,只要第一次取2根,剩下53根(53除以4余1),以后每次都将除以4余1的根数留给以,甲必胜.【例8】两个人从1开始按自然数顺序轮流依次报数,每人每次只能报1~5个数,谁先报到50谁获胜.你选择先报数还是后报数?怎样才能获胜?分析:因为50(1+5)=8……2,所以要想获胜,应选择先报,第一次报2个数,剩下48个数是(1+5=)6的倍数,以后总把6的倍数个数留给对方,必胜.[拓展] 1111个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7个格.规定将棋子移到最后一格者输.甲为了获胜,第一步必须向右移多少格?分析:一开始棋子已占一格,棋子的右面有空格1111-1=1110(个).只要甲始终留给乙(1+7=)8的倍数加1格,就可获胜.(1111-1)(1+7)=138……6,所以甲第一步必须移5格,还剩下1105格,1105是8的倍数加1.以后无论以移几格,甲下次移的格数与乙移的格数之和是8,甲就必胜.【例9】有两堆火柴,一堆35根,另一堆24根.两人轮流在其中一堆中拿取,取得根数不限,但不能不取.规定谁得最后一根火柴谁胜.先取者有何获胜的策略?分析:先取者在35根一堆的火柴中取11根火柴,使得取后剩下两堆的火柴数相同.以后无论对手在某一堆取几根火柴,你只需在另一堆取同样多根火柴.只要对手有火柴可取,你就有火柴可取,也就是说,最后一根火柴总会被你拿到.这样先取者总可获胜.[前铺] 有一堆火柴,甲先乙后轮流每次取走1~3根.取完全部火柴后,如果甲取得火柴总数是偶数,那么甲获胜,否则乙获胜.试分析这堆火柴的根数在1~11根时,谁将获.分析:显然,1根时乙胜,2根或3根时甲胜,4根时乙胜.5根时,甲先取1根,若乙取1根,则甲取3根,若乙取2根或3根,则甲取1根,甲胜.6根时,甲先取1根,若乙取1根或2根,则甲取3根;若乙取3根,则甲取1根,甲胜.7根或8根时,甲先取3根,以后同5根或6根的情况,甲胜.9根时,甲取1~3根,相当于8~6根时乙先取的情况,由上面的分析,最终乙可取得偶数根,则甲为奇数根,乙胜.10根时,甲先取1根,11根时,甲先取2根,转化为9根时乙先取的情况,甲胜.【例10】有3堆火柴,分别有1根,2根与3根火柴.甲先乙后轮流从任意一堆里取火柴,取得根数不限,规定谁能取到最后一根火柴谁获胜.如果采用最佳方法,那么谁将获胜?分析:谁在某次取过火柴之后,恰好留下两堆数目相等的火柴,谁就能获胜.甲先取,共有6种取法:从第1堆里取1根;从第2堆里取1根或2根;从第3堆里取1根、2根或3根.无论那种取法,乙采取正确的取法,都可以留下两堆数目相等的火柴,所以乙采用最佳方法一定获胜.Ⅳ、单循环类趣题【例11】 (★★★ 奥数网题库)学校组织一次乒乓球比赛,一共有10名选手,采用单循环制赛(每两位选手之间都进行一场比赛),那么一共要进行多少场比赛?分析:将十位选手编号,1号将与其他九位选手进行比赛,一共要赛9场,2号要与除了1号以外的所有选手比赛,一共进行8场,……,9号选手只要跟10号选手进行比赛,10号选手跟以前的选手都已经进行过比赛,所以不用再进行比赛.所以一共有比赛场次9+8+7+…+2+1=45(场).【例12】 纸上有5个点,任意3点都不在一条直线上,如果把每两个点都连接起来,最多能连成多少条线段?分析:取其中一个点跟其余的4个点相连,就可以得到4条线段;再取一个点跟其他的三个点相连,这样又有3条线段,剩下的点可以组成2条线段和1条线段.这样一共可以组成4+3+2+1=10条线段.[拓展1]在学校的一次小型会议中,每两个人见面都要握手,王校长一共跟别人握了10次手,请问这次会议一共有多少人参加?所有参加会议的人握手的总次数有多少?分析:我校长一共跟别人握手10次,说明除了王校长以外,还有10个人,所以参加这次会议的人一共有11人;11个人一共握手的次数是10+9+8+7+6+5+4+3+2+1=55(次).[拓展2] 10个老朋友通过写信联络感情,一年之中每个人都给其余的人写一封信,请问一年之中这10个老朋友一共要寄出多少封信?一共收到多少封信?分析:这道题个内前面的有点区别,就是每个收到别人的信以后还有写一封信出去,所以每个人都要写9封信,10个人一共写了10×9=90封信.寄出的每一封信都会有人收到,寄出的信和收到的信的数量应该是相等的,也应该是90封. 这一讲内容也许带给同学们无限的乐趣,也容同学们对数学产生了浓厚的兴趣,其实学习数学本身就是一中快乐.我们将在三升四的暑假班继续给大家介绍智巧趣题,更多、更有趣的题目等着大家,当然也会有更多的、更加新颖的解题思路和方法等着大家.1. (例1)42个同学要坐船过河,渡口处只有一只能载4人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河多少次?分析:如果由42÷4=10……2,得出10+1=11次,那么就错了.因为忽视了至少要有1个人将小船划回来这个特定的要求.实际情况是:小船前面的每一个来回至多只能渡3个人过河去,只有最后一次小船不用返回才能渡4个人过河.42=3×13+3,所以渡河次数是13×2+1=27(次).2.(例6)蜗牛沿着10米高的柱子往上爬,白天它向上爬5米,而晚上又下降3米,问蜗牛爬到柱顶需要几天?分析:一昼夜可以爬2米,爬了3昼夜后再经过一个白天即可爬到柱顶,因此需要3天1夜.3.(例3)一家人 6 口人,夜间要过一架独木桥,他们仅有一盏油灯照明,借助这盏灯,每次最多两人可以走过独木桥.而这 6 人过桥所需要的时间分别是 1 , 3 , 6 , 8 , 12 , 20 分钟,要命的是这盏灯只能点燃 47 分钟了,而没有灯照明,任何人企图过河那是必然跌落到深谷中.分析:有不同的解法,看其中一个.就用1,3,6,8,12,20表示这6人.共计用时45分钟.4. (例7)桌子上放着50根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁获胜.如果双方采用最佳方法,甲先取,那么谁将获胜?分析:获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根……由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜.现在桌上有55根火柴,50÷4=12……2,所以只要甲第一次取走2根,剩下48根火柴是4的倍数,以后甲总留给乙4的倍数根火柴,甲必胜.5. 学校组织一次乒乓球比赛,一共有9名选手,采用单循环制赛(每两位选手之间都进行一场比赛),那么一共要进行多少场比赛?分析:将十位选手编号,1号将与其他九位选手进行比赛,一共要赛8场,2号要与除了1号以外的所有选手比赛,一共进行7场,……,8号选手只要跟9号选手进行比赛,9号选手跟以前的选手都已经进 行过比赛,所以不用再进行比赛.所以一共有比赛场次8+7+…+2+1=36(场).各有所长一只蝙蝠由于懂得一些天文常识,就骄傲起来.它批评大象个头虽大,却大而不当,反而因此行动笨拙缓慢;看见活蹦乱跳的兔子,就说它虽然跳得快,却不懂声纳和气流的原理,光在那儿胡乱跳着;它更不能忍受鸡有翅膀,却不懂得怎么利用它飞行……蝙蝠一天到晚自以为是地说:“我实在无法忍受这些无知又一无是处的家伙!”有一天,蝙蝠不小心落到河里,因为不懂得游泳的技巧,结果被活活淹死了.虽然它懂得天文地理,这时却一点儿也派不上用场. 自信并不是自我夸大,唯我独尊.你懂的也许别人不懂,但是别人会的,你也不见得都会.千万不要用自己所具备的条件来衡量别人,这样只会注意到自己的优点,而抹杀了他人的长处.。
第一讲 智巧趣题从三年级开始,我们就要系统地学习奥数知识,本讲主要是通过数学趣题的研究学习引发学生学习奥数的兴趣,激发学生学习奥数的灵感,充分调动学生学习奥数的积极性.Ⅰ、过河问题(★★★ 奥数网经典题)【例1】 38个同学要坐船过河,渡口处只有一只能载4人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河多少次?分析:根据前面的解答,实际上前面每次过河的人数只有3人,最后一次最多过4人,因为38=3×12+2,所以前面3人一次过了12次,来回一共划了12×2=24(次),最后一次是2人过河,还要用1次.所以最终需要渡河的次数是24+1=25(次).[拓展] 37个同学要坐船过河,渡口处只有一只能载5人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河多少次?分析:如果由37÷5=7……2,得出7+1=8次,那么就错了.因为忽视了至少要有1个人将小船划回来这个特定的要求.实际情况是:小船前面的每一个来回至多只能渡4个人过河去,只有最后一次小船不用返回才能渡5个人过河.因为除最后一次可以渡5个人外,前面若干个来回每个来回只能渡过4个人,每个来回是2次渡河,37=4×8+5,所以渡河次数是8×2+1=17(次). (注:由于数据的特殊性,刚好最后一次5个人过河).教学目标专题精讲和想 挑战吗 ?一个人带着一只狐狸、一只鹅和一些玉米渡河,每次只能带一样,可是人不在时,狐狸要吃鹅,鹅要吃玉米.那么应该怎样渡河呢? 分析:先带鹅过河,自己划船回来,第二次带狐狸过去,再把鹅带回来,第三次带玉米过河,自己划船回来,第四次再把鹅带过去即可.【例2】(★★★★奥数网改编题)赵大爷和一个小八路带着一个负伤的红军战士因为叛徒出卖被日本鬼子追到一条小河边,河岸边只有一条能同时乘坐两人的小船,赵大爷划船需要2分钟,小八路划船需要3分钟,负伤的红军战士划船需要5分钟,现在在危机关头,需要尽快过河,采用怎样的过河方式,三个人全部过河用时最少?分析:赵大爷首先跟小八路或者红军战士一起过河,用时2分钟,再由赵大爷把船划过来,用时2分钟,最后把剩下的人一起载过去,再用时2分钟.一共用时6分钟.[拓展] 有四个人在晚上准备通过一座摇摇欲坠的小桥.此桥每次只能让2个人同时通过,否则桥会倒塌.过桥的人必须要用到手电筒,不然会一脚踏空.只有一个手电筒.4个人的行走速度不同:小强用1分种就可以过桥,中强要2分中,大强要5分中,最慢的太强需要10分中.17分钟后桥就要倒塌了.请问:4个人要用什么方法才能全部安全过桥?分析:小强和中强先过桥,用2分钟;再用小强把电筒送过去,用1分钟,现在由大强跟太强一起过桥,用10分钟,过去以后叫中强把电筒送给小强用2分钟,最后小强与中强一起过河再用2分钟,他们一起用时间:2+1+10+2+2=17(分钟),正好在桥倒塌的时候全部过河.(时间最短过河的原则是:时间长的一起过,时间短的来回过.这样保证总的时间是最短的).【例3】有一家五口人要在夜晚过一座独木桥.他们家里的老爷爷行动非常不便,过桥需要12分钟;孩子们的父亲贪吃且不爱运动,体重严重超标,过河需要时间也较长,8分钟;母亲则一直坚持劳作,动作还算敏捷,过桥要6分钟;两个孩子中姐姐需要3分钟,弟弟只要1分钟.当时正是初一夜晚又是阴天,不要说月亮,连一点星光都没有,真所谓伸手不见五指.所幸的是他们有一盏油灯,同时可以有两个人借助灯光过桥.但要命的灯油将尽,这盏灯只能再维持30分钟了!他们焦急万分,该怎样过桥呢?分析:首先姐姐跟弟弟一起过,用时3分钟,姐姐再回去送油灯,用时3分钟,老爷爷跟爸爸一起过河,用时12分钟,弟弟将灯送回去,用时1分钟,弟弟和母亲一起过,用时6分钟,弟弟送灯过河,用时1分钟,最后与姐姐一起过河,用时3分钟.一共用时:3+3+12+1+6+1+3=29分钟.最后能够安全全部过河.【例4】男女二个主人带着二个仆人和一条狗过河,但船每次只能载二个(包活狗),女主人和仆人在一边,女主人会打死仆人;让仆人和狗在一边,狗会咬死仆人:让仆人在一边,他们会逃走.怎么过河?分析:见下表(二)蜗牛与青蛙趣题【例5】(★★★奥数网原创题)蜗牛沿着9米高的柱子往上爬,白天它向上爬5米,而晚上又下降4米,问蜗牛爬到柱顶需要几天?分析:一昼夜可以爬1米,爬了4昼夜后再经过一个白天即可爬到柱顶,因此需要5个白天4昼夜.[巩固]一口井深10米,一只蜗牛从井底白天往上爬2米,晚上又往下滑1米,请问要多长时间,这只蜗牛能爬出这口井?分析:“白天往上爬2米,晚上又往下滑1米”其实一天只往上爬1米,如果这样理解,说这只蜗牛爬出这口井需要10天就错了.因为最后一次爬出井外不会往下滑,所以蜗牛只要往上爬9米,晚上下滑1米,这时距离井口只有2米了,这样只要一个白天再往上爬2米就到井口了.所以只需要8天再加一个白天.【例6】一只青蛙爬树,每次往上爬5厘米,又往下滑2厘米,这只青蛙这样上下了5次,实际往上爬了多少厘米?分析:实际上青蛙没爬行一次只前进了5-2=3(厘米),5次共前进了3×5=15(厘米).[拓展] 青蛙沿着10米高的井往上跳,每次它向上跳半米,然后又落下去,问青蛙爬需要跳几次就能跳出井外?分析:每次青蛙向上跳半米,然后又落下去,等于还在原地,所以永远也跳不出去.Ⅲ、火柴棍趣题【例7】桌子上放着55根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁获胜.如果双方采用最佳方法,甲先取,那么谁将获胜?分析:获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根……由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜.现在桌上有55根火柴,55÷4=13……3,所以只要甲第一次取走3根,剩下52根火柴是4的倍数,以后甲总留给乙4的倍数根火柴,甲必胜.[拓展]将“每次取走1~3根”改为“每次取走1~4根”,其余不变,情形会怎样?分析:由上面的分析,只要始终留给对方(1+4=)5的倍数根火柴,就一定获胜.因为55是5的倍数,甲先取,不可能留给乙5的倍数根,而甲每次取完后,乙再取都可能留给甲5的倍数根,所以在双方都采用最佳策略的情况下,乙必胜.[拓展]将“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?分析:因为最后留给对方1根火柴者必胜,按照逆推的方法分析,只要每次留给对方4的倍数加1根火柴必胜.甲先取,只要第一次取2根,剩下53根(53除以4余1),以后每次都将除以4余1的根数留给以,甲必胜.【例8】两个人从1开始按自然数顺序轮流依次报数,每人每次只能报1~5个数,谁先报到50谁获胜.你选择先报数还是后报数?怎样才能获胜?分析:因为50(1+5)=8……2,所以要想获胜,应选择先报,第一次报2个数,剩下48个数是(1+5=)6的倍数,以后总把6的倍数个数留给对方,必胜.[拓展] 1111个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7个格.规定将棋子移到最后一格者输.甲为了获胜,第一步必须向右移多少格?分析:一开始棋子已占一格,棋子的右面有空格1111-1=1110(个).只要甲始终留给乙(1+7=)8的倍数加1格,就可获胜.(1111-1)(1+7)=138……6,所以甲第一步必须移5格,还剩下1105格,1105是8的倍数加1.以后无论以移几格,甲下次移的格数与乙移的格数之和是8,甲就必胜.【例9】有两堆火柴,一堆35根,另一堆24根.两人轮流在其中一堆中拿取,取得根数不限,但不能不取.规定谁得最后一根火柴谁胜.先取者有何获胜的策略?分析:先取者在35根一堆的火柴中取11根火柴,使得取后剩下两堆的火柴数相同.以后无论对手在某一堆取几根火柴,你只需在另一堆取同样多根火柴.只要对手有火柴可取,你就有火柴可取,也就是说,最后一根火柴总会被你拿到.这样先取者总可获胜.[前铺] 有一堆火柴,甲先乙后轮流每次取走1~3根.取完全部火柴后,如果甲取得火柴总数是偶数,那么甲获胜,否则乙获胜.试分析这堆火柴的根数在1~11根时,谁将获.分析:显然,1根时乙胜,2根或3根时甲胜,4根时乙胜.5根时,甲先取1根,若乙取1根,则甲取3根,若乙取2根或3根,则甲取1根,甲胜.6根时,甲先取1根,若乙取1根或2根,则甲取3根;若乙取3根,则甲取1根,甲胜.7根或8根时,甲先取3根,以后同5根或6根的情况,甲胜.9根时,甲取1~3根,相当于8~6根时乙先取的情况,由上面的分析,最终乙可取得偶数根,则甲为奇数根,乙胜.10根时,甲先取1根,11根时,甲先取2根,转化为9根时乙先取的情况,甲胜.【例10】有3堆火柴,分别有1根,2根与3根火柴.甲先乙后轮流从任意一堆里取火柴,取得根数不限,规定谁能取到最后一根火柴谁获胜.如果采用最佳方法,那么谁将获胜?分析:谁在某次取过火柴之后,恰好留下两堆数目相等的火柴,谁就能获胜.甲先取,共有6种取法:从第1堆里取1根;从第2堆里取1根或2根;从第3堆里取1根、2根或3根.无论那种取法,乙采取正确的取法,都可以留下两堆数目相等的火柴,所以乙采用最佳方法一定获胜.Ⅳ、单循环类趣题【例11】(★★★奥数网题库)学校组织一次乒乓球比赛,一共有10名选手,采用单循环制赛(每两位选手之间都进行一场比赛),那么一共要进行多少场比赛?分析:将十位选手编号,1号将与其他九位选手进行比赛,一共要赛9场,2号要与除了1号以外的所有选手比赛,一共进行8场,……,9号选手只要跟10号选手进行比赛,10号选手跟以前的选手都已经进行过比赛,所以不用再进行比赛.所以一共有比赛场次9+8+7+…+2+1=45(场).【例12】纸上有5个点,任意3点都不在一条直线上,如果把每两个点都连接起来,最多能连成多少条线段?分析:取其中一个点跟其余的4个点相连,就可以得到4条线段;再取一个点跟其他的三个点相连,这样又有3条线段,剩下的点可以组成2条线段和1条线段.这样一共可以组成4+3+2+1=10条线段.[拓展1]在学校的一次小型会议中,每两个人见面都要握手,王校长一共跟别人握了10次手,请问这次会议一共有多少人参加?所有参加会议的人握手的总次数有多少?分析:我校长一共跟别人握手10次,说明除了王校长以外,还有10个人,所以参加这次会议的人一共有11人;11个人一共握手的次数是10+9+8+7+6+5+4+3+2+1=55(次).[拓展2] 10个老朋友通过写信联络感情,一年之中每个人都给其余的人写一封信,请问一年之中这10个老朋友一共要寄出多少封信?一共收到多少封信?分析:这道题个内前面的有点区别,就是每个收到别人的信以后还有写一封信出去,所以每个人都要写9封信,10个人一共写了10×9=90封信.寄出的每一封信都会有人收到,寄出的信和收到的信的数量应该是相等的,也应该是90封.专题展望这一讲内容也许带给同学们无限的乐趣,也容同学们对数学产生了浓厚的兴趣,其实学习数学本身就是一中快乐.我们将在三升四的暑假班继续给大家介绍智巧趣题,更多、更有趣的题目等着大家,当然也会有更多的、更加新颖的解题思路和方法等着大家.练习一1.(例1)42个同学要坐船过河,渡口处只有一只能载4人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河多少次?分析:如果由42÷4=10……2,得出10+1=11次,那么就错了.因为忽视了至少要有1个人将小船划回来这个特定的要求.实际情况是:小船前面的每一个来回至多只能渡3个人过河去,只有最后一次小船不用返回才能渡4个人过河.42=3×13+3,所以渡河次数是13×2+1=27(次).2.(例6)蜗牛沿着10米高的柱子往上爬,白天它向上爬5米,而晚上又下降3米,问蜗牛爬到柱顶需要几天?分析:一昼夜可以爬2米,爬了3昼夜后再经过一个白天即可爬到柱顶,因此需要3天1夜.3.(例3)一家人 6 口人,夜间要过一架独木桥,他们仅有一盏油灯照明,借助这盏灯,每次最多两人可以走过独木桥.而这 6 人过桥所需要的时间分别是 1 , 3 , 6 , 8 , 12 , 20 分钟,要命的是这盏灯只能点燃 47 分钟了,而没有灯照明,任何人企图过河那是必然跌落到深谷中.分析:有不同的解法,看其中一个.就用1,3,6,8,12,20表示这6人.共计用时45分钟.4.(例7)桌子上放着50根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁获胜.如果双方采用最佳方法,甲先取,那么谁将获胜?分析:获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根……由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜.现在桌上有55根火柴,50÷4=12……2,所以只要甲第一次取走2根,剩下48根火柴是4的倍数,以后甲总留给乙4的倍数根火柴,甲必胜.5.学校组织一次乒乓球比赛,一共有9名选手,采用单循环制赛(每两位选手之间都进行一场比赛),那么一共要进行多少场比赛?分析:将十位选手编号,1号将与其他九位选手进行比赛,一共要赛8场,2号要与除了1号以外的所有选手比赛,一共进行7场,……,8号选手只要跟9号选手进行比赛,9号选手跟以前的选手都已经进行过比赛,所以不用再进行比赛.所以一共有比赛场次8+7+…+2+1=36(场).成长故事各有所长一只蝙蝠由于懂得一些天文常识,就骄傲起来.它批评大象个头虽大,却大而不当,反而因此行动笨拙缓慢;看见活蹦乱跳的兔子,就说它虽然跳得快,却不懂声纳和气流的原理,光在那儿胡乱跳着;它更不能忍受鸡有翅膀,却不懂得怎么利用它飞行……蝙蝠一天到晚自以为是地说:“我实在无法忍受这些无知又一无是处的家伙!”有一天,蝙蝠不小心落到河里,因为不懂得游泳的技巧,结果被活活淹死了.虽然它懂得天文地理,这时却一点儿也派不上用场.自信并不是自我夸大,唯我独尊.你懂的也许别人不懂,但是别人会的,你也不见得都会.千万不要用自己所具备的条件来衡量别人,这样只会注意到自己的优点,而抹杀了他人的长处.。
三年级奥数第讲数学趣
题
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
数学趣题
在日常生活中,常有一些妙趣横生,开发智力的问题,如:3个小朋友唱一首歌要3分钟,100个小朋友同时唱一首歌要几分钟?类似这样的问题一般不需要进行较复杂的计算,也不能用常规方法来解决,而常常需要用小朋友的灵感、技巧和机智获得答案。
对于趣味问题,首先读懂题意,然后要经过充分地分析和思考,运用基础知识以及自己的聪明才智巧妙地解决。
例题1:一条毛毛虫由幼虫长成成虫,每天长大一倍,30天能长大到20厘米。
问长大到5厘米要用多少天?
☆同类练习:
1.如果每人步行的速度相同,2个人一起从学校到儿童乐园要3小时,那么6个人一起从学校到儿童乐园要多少小时?
2.一个池塘中的睡莲,每天长大一倍,经过10天可以把整个池塘遮完。
问睡莲要遮住半个池塘需要多少天?
3.一条小青虫由幼虫长成成虫,每天长大一倍,20天能长大到36厘米,问长大到9厘米要多少天?
例题2:小猫要把15条鱼分成数量不等的四堆,问最多的一堆最多可以放多少条鱼?
☆同类练习:
1.小明要把20颗珠子分成数量不等的五堆,问最多的一堆中可以放多少颗珠子?
2.兔妈妈拿来一盘萝卜共25个,分给4只小兔,要使每只小兔分得的个数不相同,问分得最多的一只小兔最多分得几个萝卜?
3.王老师为18人的舞蹈队设计队形,要求分成人数不等的五队,最多的一队最多可以分几人?
例题3:把100只桃子分装在7个篮子里,要求每个篮子里桃子的只数都带有6这个数字。
想想该怎么分?
☆同类练习:
1.把100个鸡蛋分装在6个盒子里,要求每个盒子里装的鸡蛋数目都带有6。
想想看,该怎么分配吧?
2.7只箱子分别放有1个、2个、4个、8个、16个、32个、64个苹果,现在要从这7只箱子里取出87个苹果,但每只箱子要么不取,要么全取,你觉得应该怎么取呢?
3.有人认为8是个吉祥数字,得到东西的数量都希望含有数字8.现有200块糖要分给5个小朋友,请你帮助设计一个符合要求的分糖方案。
例题4:舒舒和思思到书店买书,两个人都买动脑经这本书,但是钱都不够,舒舒缺2元8角,思思缺1分钱,用两个人合起来的钱买一本书还是不够。
这本书多少钱?
☆同类练习:
1.李华和张洁到书店买同一种练习本,但发现钱都没有带够,李华缺6角,张洁缺1分钱,但两人合起来买一本还是不够,这种本子多少钱一本?
2.小华和娟娟到商店买文具盒,两人看中了同一个文具盒,但钱都不够,小华缺9元4角,娟娟缺1分钱,两人的钱合起来买这个文具盒仍然不够。
这个文具盒多少钱?
3.张明和李亮到超市去买玩具,两人同时看一款玩具枪,但钱都不够,张明缺54元,李亮缺1分钱,两人的钱合起来买这把玩具枪仍然不够。
这个玩具枪多少钱?
例题5:王阿姨和李阿姨到商场买电视机,两人都看中了同一款电视机,但王阿姨缺600元,李阿姨缺900元,把两人的钱合起来正好可以买这样的一台电视机。
这台电视机多少钱?
☆同类练习:
1.小红和小丽去买彩笔,两人看中了同一款彩笔,但小红缺12元,小丽缺15元,把两人的钱合起来正好可以买这款彩笔。
这款彩笔多少钱?
2.张叔叔和李叔叔去买自行车,两人看上了同一个自行车,但张叔叔缺167元,李叔叔缺143元,把两人的钱合起来正好够买这辆自行车。
这辆自行车多少钱?
3.植树节到了,张俊和王明去植树,两人要植树的棵树是一样多的,张俊植的棵树笔要求少9棵,王明植的棵树笔要求少8棵,两人合起来植的棵树正好够一个人的要求。
要求两人共植树多少棵?
例题6:
大杯子能装50克水,小杯子能装30克水,你能用两个杯子量出70克水吗?
☆同类练习:
1.一休去海边打水,他有两个桶,大桶能装9升水,小桶能装4升水。
要想恰好从河中打6升水带回去,他应该怎么办?
2.有两个砝码,一个重5克,另一个重7克,你能用这两个砝码称出9克重的沙子吗如果能,怎样称
3.有大、中、小三个瓶子,分别能装水1000毫升、700毫升和300毫升。
现在大瓶中装满水,希望利用三个瓶子相互间倒水,使得在中瓶和小瓶上能够标出100毫升的刻度线,但是水不能洒地上。
可以怎么办?
课外练习
1、5只猫5天能捉5只老鼠,照这样计算,要在100天里捉100只老鼠要多少只猫?
2、一条小青虫由幼虫长成成虫,每天长大一倍,20天能长到36厘米。
问长到9厘米时要用几天?
3、老师为共有18人的舞蹈队设计队形,要求分成人数不等的5队,问最多的一队最多可排几人?
4、有人认为8是个吉祥数字,他们得到的东西的数量都要含有数字8。
现在有200块糖要分给一些人,请你帮助设计一个吉祥的分糖方案。
5、李华和张洁到商店买同一种练本,但发现钱都没带够,李华缺6角,张洁缺2分钱,但两人合起来买一本仍不够。
这种本子一本多少钱?。