二面角大小的几种求法(归类总结分析)
- 格式:doc
- 大小:467.50 KB
- 文档页数:7
求二面角的六种方法求解二面角是空间几何学中常见的问题,它在多个领域如物理学、化学和工程学中都有广泛的应用。
本文将介绍六种求解二面角的方法,包括向量法、坐标法、三角法、平面几何法、球面几何法和投影法。
一、向量法向量法是一种简便的求解二面角的方法。
它利用向量的夹角来表示二面角。
首先,我们需要确定两个平面的法向量,然后计算它们之间的夹角。
通过向量的点积和模长运算,可以得到二面角的大小。
二、坐标法坐标法是一种常用的求解二面角的方法。
它利用坐标系中的点来表示二面角。
我们可以通过给定的坐标点,计算两个平面的法向量,然后利用向量夹角的公式求解二面角。
三、三角法三角法是一种基于三角函数的求解二面角的方法。
它利用三角函数的性质来计算二面角的大小。
通过已知的边长和角度,可以利用正弦定理、余弦定理等公式求解二面角。
四、平面几何法平面几何法是一种利用平面几何关系求解二面角的方法。
它通过已知的平面形状和角度关系,利用平面几何的知识来求解二面角的大小。
例如,可以利用平行线的性质、垂直线的性质等来计算二面角。
五、球面几何法球面几何法是一种利用球面几何关系求解二面角的方法。
它通过已知的球面形状和角度关系,利用球面几何的知识来求解二面角的大小。
例如,可以利用球面上的弧长、球面上的角度等来计算二面角。
六、投影法投影法是一种利用投影关系求解二面角的方法。
它通过已知的投影长度和角度关系,利用投影几何的知识来求解二面角的大小。
例如,可以利用平面上的投影线段、平面上的角度等来计算二面角。
通过以上六种方法,我们可以灵活地求解二面角的大小。
不同的问题和场景可能适用不同的方法,我们可以根据具体情况选择合适的方法来解决问题。
这些方法在实际应用中具有重要的意义,能够帮助我们更好地理解和解决相关问题。
总结起来,求解二面角的六种方法分别是向量法、坐标法、三角法、平面几何法、球面几何法和投影法。
每种方法都有其特点和适用场景,我们可以根据具体问题选择合适的方法来求解二面角。
二面角大小的几种求法二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。
求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,作出二面角的平面角,有时亦可直接运用射影面积公式求出二面角的大小。
I. 寻找有棱二面角的平面角的方法 ( 定义法、三垂线法、垂面法、射影面积法 ) 一、定义法:利用二面角的平面角的定义,在二面角的棱上取一点(特殊点),过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。
要注意用二面角的平面角定义的三个“主要特征”来找出平面角。
例 空间三条射线CA 、CP 、CB ,∠PCA=∠PCB=60o ,∠ACB=90o ,求二面角B-PC-A 的大小。
解:过PC 上的点D 分别作DE ⊥AC 于E ,DF ⊥BC 于F ,连EF.∴∠EDF 为二面角B-PC-A 的平面角,设CD=a ,∵∠PCA=∠PCB=600, ∴CE=CF=2a ,DE=DF=a 3,又∵∠ACB=900,∴EF=,∴∠EDF=31328332222=⋅-+a a a a1. 在三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=600,求二面角A-PB-C 的余弦值。
PB α CA E FD2. 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β,求∠APB 的大小。
3. 在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。
二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角。
例 在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。
二面角求法总结一、定义法定义法是求二面角的基本方法,它通过定义二面角的平面角来求解。
具体来说,如果两个平面相交,那么它们会在交线上形成一个角,这个角就是二面角的平面角。
通过找到这个角的两边,我们可以使用三角函数来求解这个角的大小。
二、垂线法垂线法是一种常用的求二面角的方法,它通过找到一个垂直于两个平面的交线的直线,并将这个直线延长到一个已知点,然后使用三角函数来求解这个角的大小。
这个方法的关键在于找到正确的垂线,并且这个垂线应该是垂直于交线的。
三、射影面积法射影面积法是一种利用射影面积定理求解二面角的方法。
通过找到两个平面上的两条射线和它们之间的夹角,我们可以使用射影面积定理来求解这个角的大小。
这种方法需要先找到正确的射线和夹角,然后使用射影面积定理来计算结果。
四、三垂线定理法三垂线定理法是一种利用三垂线定理来求解二面角的方法。
如果一个平面内的直线与另一个平面垂直,那么这个直线与第一个平面的交点与第二个平面的交点的连线与原直线的夹角就是要求的二面角。
这种方法的关键在于找到正确的三垂线定理的应用条件,并且正确地应用三垂线定理来计算结果。
五、角平分线法角平分线法是一种利用角平分线定理来求解二面角的方法。
如果一个平面内的角平分线与另一个平面垂直,那么角平分线与原直线的夹角就是要求的二面角。
这种方法的关键在于找到正确的角平分线的应用条件,并且正确地应用角平分线定理来计算结果。
六、向量法向量法是一种利用向量的数量积和向量积来求解二面角的方法。
通过找到两个平面上的两个向量,我们可以使用向量的数量积和向量积来计算这两个向量的夹角,这个夹角就是要求的二面角。
这种方法的关键在于正确地找到两个向量,并且正确地应用向量的数量积和向量积来计算结果。
七、坐标法坐标法是一种利用坐标系来求解二面角的方法。
通过建立适当的坐标系,我们可以将二面角的问题转化为求解一个几何量的值的问题。
这种方法的关键在于建立正确的坐标系,并且正确地使用代数方法来计算结果。
四法求二面角二面角是高考的热点内容之一,求二面角的大小应先作出它的平面角,下面介绍作二面角的平面角四种方法:定义法、垂面法、三垂线定理法、射影面积法。
(1)定义法——在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
注:o 点在棱上,用定义法。
(2)垂线法(三垂线定理法)——利用三垂线定理作出平面角,通过解直角三角形求角的大小。
注:o 点在一个半平面上,用三垂线定理法。
(3)垂面法——通过做二面角的棱的垂面,两条交线所成的角即为平面角。
注:点O 在二面角内,用垂面法。
(4)射影面积法——若多边形的面积是S ,它在一个平面上的射影图形面积是S`,则二面角θ的大小为COS θ= S`÷ SA 图3αβO B lO图5β α l C B A例1 如图1-125,PC⊥平面ABC,AB=BC=CA=PC,求二面角B-PA-C的平面角的正切值。
(三垂线定理法)分析由PC⊥平面ABC,知平面ABC⊥平面PAC,从而B在平面PAC上的射影在AC 上,由此可用三垂线定理作出二面角的平面角。
解∵ PC⊥平面ABC∴平面PAC⊥平面ABC,交线为AC作BD⊥AC于D点,据面面垂直性质定理,BD⊥平面PAC,作DE⊥PA于E,连BE,据三垂线定理,则BE⊥PA,从而∠BED是二面角B-PA -C的平面角。
设PC=a,依题意知三角形ABC是边长为a的正三角形,∴ D是∵PC = CA=a,∠PCA=90°,∴∠PAC=45°∴在Rt△DEA评注本题解法使用了三垂线定理来作出二面角的平面角后,再用解三角形的方法来求解。
例2 在60°二面角M-a-N内有一点P,P到平面M、平面N的距离分别为1和2,求点P到直线a的距离。
(图1-126)(垂面法)分析设PA、PB分别为点P到平面M、N的距离,过PA、PB作平面α,分别交M、N于AQ、BQ.同理,有PB⊥a,∵ PA∩PB=P,∴ a⊥面PAQB于Q又 AQ、BQ平面PAQB∴ AQ⊥a,BQ⊥a.∴∠AQB是二面角M-a-N的平面角。
二面角求法正方体是研究立体几何概念的一个重要模型,中学立体几何教学中,求平面与平面所成的二面角是转化为平面角来度量的,也可采用一些特殊的方法求二面角,而正方体也是探讨求二面角大小方法的典型几何体。
笔者通过探求正方体中有关二面角,分析求二面角大小的八种方法:(1)平面角定义法;(2)三垂线定理法;(3)线面垂直法;(4)判定垂面法;(5)异面直线上两点间距离公式法;(6)平行移动法;(7)投影面积法;(8)棱锥体积法。
一、平面角定义法此法是根据二面角的平面角定义,直接寻求二面角的大小。
以所求二面角棱上任意一点为端点,在二面角两个平面内分别作垂直于棱的两条射线所成角就是二面角的平面角,如图二面角α-l-β中,在棱l上取一点O,分别在α、β两个平面内作AO⊥l,BO⊥l,∠AOB即是所求二面角的平面角。
例题1:已知正方体ABCD-A1B1C1D1中,O、O1是上下底面正方形的中心,求二面角O1-BC-O的大小。
例题2:已知正方体ABCD-A1B1C1D1中,E、F为A1D1、C1D1的中点,求平面EFCA与底面ABCD所成的二面角。
二、 利用三垂线定理法此方法是在二面角的一个平面内过一点作另一个面的垂线,再由垂足(或仍是该点)作棱的垂线,连接该点和棱上的垂足(或连两垂足)两点线,即可得二面角的平面角。
如图二面角α-l-β中,在平面α内取一点A ,过A 作AB ⊥平面β,B 是垂足, 由B (或A )作BO (或AO )⊥l ,连接AO (或BO )即得AO 是平面β的斜线, BO 是AO 在平面β中的射影,根据三垂线定理(或逆定理)即得AO ⊥l ,BO ⊥l , 即∠AOB 是α-l-β的平面角。
例题3:已知正方体ABCD-A 1B 1C 1D 1中,求二面角B-AC-B 1的大小。
例题4:已知正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1与平面BDC 1所成的二面角。
三、 线面垂直法此法利用直线垂直平面即该直线垂直平面内任何直线的性质来寻求二面角的平面角。
平面角定义法例题2:已知正方体 ABCD-ABCD 中,E 、 所成的二面角二面角求法正方体是研究立体几何概念的一个重要模型,中学立体几何教学中,求平面与平面所成的二 面角是转化为平面角来度量的,也可采用一些特殊的方法求二面角,而正方体也是探讨求二面角 大小方法的典型几何体。
笔者通过探求正方体中有关二面角, 分析求二面角大小的八种方法:(1) 平面角定义法;(2)三垂线定理法;(3)线面垂直法;(4)判定垂面法;(5)异面直线上两点间 距离公式法;(6)平行移动法;(7)投影面积法;(8)棱锥体积法。
此法是根据二面角的平面角定义,直接寻求二面角的大小。
以所求二面角棱上任意一点为端点,在二面角两个平面内 分别作垂直于棱的两条射线所成角就是二面角的平面角, 如图二面角a -l- B 中,在棱I 上取一点O,分别在a 、B 两个平面内作AC L I ,BOLI ,/ AOB 即是所求二面角的平面角例题1:已知正方体ABCD-AB i CD 中,C O 是上下底面正方形的中心,求二面角 O-BC-O 的大小。
C iC利用三垂线定理法此方法是如图二面角a -l- B 中,在平面a 内取一点A, 过A 作AB 丄平面B ,B 是垂足,由B (或A )作B0(或AO 丄l ,连接A0(或B0即得A0是平面B 的斜线,B0是 A0在平面B 中的射影,根据三垂线定理(或逆定理)即得 A0LI , B0LI , 即/ A0B 是 a -I- B 的平面角。
例题3 :已知正方体 ABCD-A i C l D 中,求二面角 B-AC-B 的大小。
线面垂直法例题4:已知正方体ABCD-ABiGD 中,求平面 ACD 与平面BDC 所成的二面角。
此法利用直线垂直平面即该直线垂直平面内任何直线的性质来寻求二面角的平面角。
方法是 过所求二面角的棱上一点,作棱的垂面,与两个平面相交所得两条交线的所成角即是二面角的平 面角。
如图在二面角a -I- B 的棱上任取一点0过0作平面丫丄I , a G 丫 =A0 B G Y =B0得/ A0B 是平面角, v I 丄丫,I 丄 A0I 丄 B0•••/ A0B是二面角的平面角。
二面角的求解策略如何求二面角的大小,历来是空间几何中的难点.本文重点介绍二面角的各种求解方法,并讨论和比较各种解法的优劣.我们希望即将应考的考生面对有关的考题,不仅能够正确地解出,而且能省时省力地用尽可能好的方法解出.一般地说,求二面角大小的方法主要有如下三种:(1)直接法.即通过求二面角的平面角,直接求这个二面角的大小.(2)投影法.即通过投影公式cos S S θ'=⋅求二面角的大小.其中S ′、S 分别表示投影图形和被投影图形的面积,而θ则是这两个图形所在平面的夹角.(3)向量法.即通过作二面角的两个面的法向量,将求二面角的大小转化为求这两个法向量夹角的大小.在特殊情况下,有时也可以采用其他方法.如利用公式cos cos cos θαβ=⋅去求二面角的大小.其中θ、α、β分别表示有关的线线角,线面角和二面角.在实战中,到底选用何种方法,应当因题因人而异.事先就规定或提倡一定用某一种方法是不好的.请看:(一)二面角各种求法优劣性的比较.【例1】 如图,在底面是直角梯形的四棱锥S-ABCD 中,∠ABC=90°SA ⊥平面ABCD ,SA=AB=BC=1,AD=21,求面SCD 与面SBA 所成二面角的正切值.【解析1】(向量法) 建立如图的空间直角坐标系.有:A (0,0,0),B (-1,0,0),C (-1,2,0),D (0,21,0).由于AD ⊥平面SAB ,∴平面SAB 的一个法向量为:n 1=(0,1,0);设平面SDC 的法向量为:n 2=(x ,y ,z ).由()()()⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧=--=⎪⎭⎫ ⎝⎛-⇒⊥⊥01,2,1,,01,21,0,,22z y x z y x SC n SD n⎪⎩⎪⎨⎧=-+-=-⇒02021z y x z y 令z=1,则y=2,x=1.于是n 2=(1,2,1).∴n 1·n 2=2,且∣n 1∣=1,∣n 2∣=6.设n 1,n 2夹角为θ,则33sin ,36612cos =∴=⋅==θθn n .于是22tan =θ,由于原二面角为锐二面角,故所求二面角的正切值亦为22.【评注】向量法的优点是,无须作出二面角的棱,也无须作其他的辅助线,仅凭向量的坐标运算即能A(0,0,0)S(0,0,1)C(-1,2,0)⎪⎭⎫ ⎝⎛0,21,0D X Y Z解决问题.但是本解也有明显的缺陷,一是计算繁杂,二是得准确处理原二面角与相应法向量夹角的关系.【解析2】(投影法)如图,延长BA 、CD 交于P ,连SP ,作AM ⊥PC 于M ,连SM ,则SM ⊥PC (三垂线定理).显然,△SPD 在平面SPD 上的射影是△SAP.∵AD ∥BC ,且AD=12BC ,∴AD 是△PBC 的中位线,AP=AB=1,∴12ASP S ∆=,而AM=AP AD SM PD ⋅∴,∴12SPD S PD SM ∆=⨯⨯=,于是1cos 33SAPSPDS S θθ∆∆====,∴tan 2θ=.即所求二面角的正切值为2. 【评注】从计算量看,投影法比之向量法要小,而且技巧性更高,还免除了原二面角与相应法向量夹角之间的转化工作,所以就本题而言,投影法比向量法更为优越.【解析3】(直接法)如图,延长BA 、CD 交于P ,连SP ,则AD 是△PBC 的中位线,且AP=AB=AS=1. ∠SAP=90°,∴SP =作AQ ⊥SP 于Q ,连DQ ,显然AD ⊥平面SBP ,∴DQ ⊥SP ,∠AQD 是二面角C-SP-B 的平面角,设为θ.则在直角三角形AQD中,tan AD AQ θ==即所求二面角的正切值为.【评注】本题中两平面的夹角是无棱二面角.由于作其平面角不易,所以不少人都放弃了直接法.其实就本题而言,直接法恰好是最简单最实惠的方法.所以我认为,只要是能够比较顺利地作出二面角的平面角的,还是以选用直接法为好.那么,作二面角的平面角又有哪些技巧呢?请看:(二)作二面角的平面角的两种基本手段.【例2】(2004高考·广东卷·18)如下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、SA BCDPM11112SAB CDPQ 111112F 分别是线段AB 、BC 上的点,且EB= FB=1. (1) 求二面角C —DE —C 1的正切值; (2) 求直线EC 1与FD 1所成的余弦值.【分析】本题的特点是:在二面角的两个面中,已有CC 1⊥平面ABCD ,故可考虑利用三垂线定理构造二面角的平面角.【解析】(1)延长DE 、CB 交于H ,连SH ,由△ADE ∽△BHE ,知BH=BE=1,∴CH=CD=4,△CDH 是等腰直角三角形,且,作CG ⊥DH 于G ,连C 1G ,∵CC 1⊥平面ABCD ,∴C 1G ⊥DH ,∠CGC 1是二面角C-DH-C 1D 的平面角.则在直角三角形CGC 1中,∵CC 1=2,CG ==∴tan ∠CGC 1=1CC CG=故所求二面角的大小为(2,解法略. 【例3】在正方体ABCD-A 1B 1C 1D 1中,过顶点B 、D 、C 1作截面,则二面角B-DC 1-C 的大小是【分析】本题的特点是:二面角的两个面是有公共底边的两个等腰三角形,因而由平面几何知识,只须作公底的两条中线,即得二面角的平面角,如图中的∠BMC 即是.本题答案是,解法略.(三)与二面角有关的考题举例.【例4】(2004高考·湖南卷·理19)如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (I )证明PA ⊥平面ABCD ;(II )求以AC 为棱,EAC 与DAC 为面的二面角θ的大小;(Ⅲ)在棱PC 上是否存在一点F ,使BF//平面AEC ?证明你的结论.【解析】(1)从图形特点看,只须证明PA ⊥AB 且PA ⊥AD ,即可证明PA ⊥平面ABCD .ABCDA 1B 1C 1D 1E GH234311341由条件知菱形ABCD 的边长为a ,于是△PAB 与△PAD 中,AP=AB=AD=a ,且,由勾股定理知PA ⊥AB 且PA ⊥AD ,∴PA ⊥平面ABCD.(2)根据图形的特点,我们拟创造条件用第一种方法作二面角的平面角.作DG ⊥AD ,交 AE 延长线于G ,那么DG ∥AP ,12DG DE a PAEP==,且DG ⊥平面ABCD.连BD 交AC 于O ,∵四边形ABCD 是菱形,∴BD ⊥AC.连OG ,则OG ⊥AC ,∠DOG 是二面角E-AC-D 的平面角,设为θ.直角三角形DOG 中,OD=12BD =,∴tan DG OD θ==.于是θ=30°,即所求二面角θ的大小为30°.(3)从图形特点看,这样的点应为平面BDG 与PC 的交点,也就是OC 的中点.我们试着从这个方向去验证答案.取PC 中点F ,连OF ,则OF 是△POC 的中位线,∴OF ∥PA ∥DG ,且OF=12PA=DG ,故四边形是矩形.∵OB=OD ,∴OB 与FG 平行且相等,即四边形OBFG 是平行四边形,从而BF ∥OG ,∴BF ∥平面ACG.于是存在棱PC 的中点F ,使BF//平面AEC.【例5】正三棱柱C B A ABC '''-中,D 是AC 的中点.(1)证明AB ∥平面DBC 1;(2)若 AB 1⊥BC 1,求二面角D-BC 1-C 的余弦值.P ABCDECDA 1B 1C 1【分析】第(1)问不难如图,连B 1C 交BC 1于O ,连DO ,则DO 是△ACB 1的中位线,∴AB 1∥DO ,故AB ∥平面DBC 1.为解决第(2)问,须先对图形进行数据分析.不妨设这个正三棱柱底面边长为2,容易算出.当AB 1⊥BC 1时,亦有DO ⊥BC 1,DO 是BC 1的垂直平分线,∴DC 1CC 1AB 1=BC 1.由此,我们可以利用三垂线定理作出这个二面角的平面角:作DE ⊥BC 于E ,且DE ⊥CC 1,∴DE ⊥平面BB 1C 1C ,故BC 1⊥OE ,∠DOE 是二面角D-BC 1-C 的平面角.注意到△DOE 中∠DEO=90°,以下只须求DO 及OE 之长即可.但是我们发现求这两条线段之长并非易事,而△BDC 1与△BEC 1的面积却相应好求,所以我们改变策略,用投影法求这个二面角D-BC 1-C 的余弦值.【解析】(1)略(2)由上可知:△BDC 1在平面BB 1C 1C 上的射影是△BEC 1,而111322BDC S BD DC ∆=⨯⨯=,11322BEC S ∆=⨯=cos ∠DOE=112BEC BDC S S ∆∆=.即所求二面角D-BC 1-C. 【例6】已知在正方体ABCD-A 1B 1C 1D 1的边长为2,O 为AC 与BD 的交点,M 为DD 1的中点.求二面角B 1-MA-C 的正切值.【分析】本题看似简单,但若处理不当,计算量将是大而繁杂的.以下提供三种途径请读者鉴别之.ABCDA 1B 1C 1D 1M(1)如果你难以作出这个二面角的平面角,那么比较简单的方法是投影法:连MA 1,注意到△AB 1M 与△ACM 在平面AA 1D 1D 的射影分别是△AA 1M 和△ADM ,若设二面角A 1-AM-B 1,C-AM-B 1,C-AM-D 的大小分别为α、θ、β,显然α+θ+β=π.为求θ,只须用投影法先求出α和β即可.(2)连OB 1,OM.显然AC ⊥OM ,如果你能用数据分析的方法发现△MOB 1中∠MOB 1=90°,那么OB 1⊥平面AMC.再作OE ⊥AM 于E ,连B 1E ,则B 1E ⊥AM ,∠OEB 1是二面角C-AM-B 1的平面角,以下即可用直接法求之.(3)由于是正方体,故若以D 为原点建立空间直角坐标系,并设正方体棱长为2,则各个已知点的坐标易设,以下用向量法也是可行的.本题答案:(四)难题研究.以下是05年江苏卷的19题.原题共3问,其中第3问只要求考生直接写出答案,而无须交代过程.可见命题人已经预见到题解的繁杂性.我们在有关的各种资料上也只看到了答案,没有过程.因而笔者将这一问题提出两种解法,望各位批评指正.如图,在五棱锥S-ABCDE 中,SA ⊥底面ABCDE ,SA=AB=AE=2,,∠BAE=∠BCD=∠CDE=120°. (1)求异面直线CD 与SB 的夹角; (2)证明BC ⊥平面SAB ;(3)用反三角函数值表示二面角B-SC-D 的大小 【分析】本题前两问不难,我们只研究第三问的解法.如果用直接法,难以作出二面角B-SC-D 的平面角;如果用投影法,又难以找到必要的线面夹角.在这种情况下,选用向量法应是明智之举.【解析】由已知条件容易求出∠ABC= ∠AED=90°,且.S AABCDA 1B 1C 1D 1M OE过E 作平面ABCDE 的垂线EZ ,分别以直线EA 、ED 、EZ 为x ,y ,z 轴建立如图的空间直角坐标系,则有E (0,0,0),A (2,0,0),S (2,0,2),D (00).设B (x ,y ,0),由∣BE ∣BA ∣=2,可得B (3,0);由DC =12EB ,可得C 302⎛⎫ ⎪ ⎪⎝⎭.于是SC=122⎛⎫-- ⎪⎝⎭,BC =(-32,2,0)DC=302⎛⎫ ⎪ ⎪⎝⎭.设平面SBC 与平面SCD 的 法向量分别为n 1=(x 1,1,z 1)n 2=(x 2,1,z 2). 由n 1⊥SC ⇒(x 1,1,z 1)122⎛⎫-- ⎪⎝⎭=0 n 1⊥BC ⇒(x 1,1,z 1)302⎛⎫- ⎪ ⎪⎝⎭=0 111111202302x z x x z ⎧⎧-+==⎪⎪⎪⎪∴⇒⎨⎨⎪⎪-+==⎪⎪⎩⎩. 由n 2⊥SC ⇒(x 2,1,z 2)122⎛⎫-- ⎪⎝⎭=0 N 2⊥DC ⇒(x 2,1,z 2)302⎛⎫ ⎪ ⎪⎝⎭=0 222221202302x z x x z ⎧⎧-+==⎪⎪⎪⎪∴⇒⎨⎨⎪⎪==⎪⎪⎩⎩于是n 1=⎝⎭,n 2=3⎛- ⎝. ∴n 1 ⋅n 2=1571343-++=,而 ∣n 1∣=3,32)(∣n 2∣6=. cos ∠(n 1 ,n 2)=由于原二面角是钝二面角,故其大小为:π-. 【评注】本题也可用直接法求解.但计算量却大得多.方法是:如图:作BF ⊥SC 于F ,FG ⊥SC ,交CD 延长线于G ,连BG ,容易求出∠SCD=α,则cos α可求.以下分别求出BF ,FG ,BG 之长,即可用余弦定理求出∠BFG 之值.【小结】以上介绍的求二面角大小的三种主要方法各有优长.一般地说,向量法比较容易操作,但有时计算繁杂,对于那些不能直接建立坐标系的习题尤其如此;直接法与投影法技巧性较高,平时学习备考多作训练以提高能力,临考时则有事半功倍之效.S A B CD EαF G。
二面角求值方法八种摘要】在奥妙无穷的空间形式里,二面角的平面角总是以量的大小决定着某些图形的空间形式,使得立体几何研究中,求二面角的大小成为了一个“角量计算”的重要内容。
那么怎样去求二面角的大小呢?笔者通过自身的实践,总结出常见的八种求法。
【关键词】二面角;二面角求值;八种1定义法11定义:二面角求值的“定义法”就是依二面角的平面角的定义,通过对线线垂直关系的研究,首先将空间角转化为平面角,然后依据解三角形的相关知识或某些公理体系的保证求出这个平面角,从而达到求二面角大小的数学方法。
它体现了“回到定义中去”是数学解题的根本方法。
12用“定义法”求二面角大小的解题思路是:求作二面角的平面角→证明这个平面角是所求→解出这个二面角。
13求作二面角的平面角应把握的原则:先找后作。
常见的作法有两种:其一,根据定义或图形的特征作。
其二,根据三垂线定理(或逆定理)作。
此法难点在于找到平面的垂线,解决的办法:先找面面垂直,利用面面垂直的性质定理找到面的垂线,作棱的垂线,连接垂足与面的垂线的端点,利用线线垂直得出所求角是二面角的平面角。
14常见的线线垂直的判断方法有:①三垂线定理及逆定理。
②等腰三角形“中线是高线”的性质。
③勾股定理的逆定理。
④菱形对角线互相垂直的性质。
⑤线面垂直则线线垂直的性质。
⑥同一法(有公共边的全等三角形中,公共边上的垂足相同)例1(2005年全国卷Ⅰ.18):已知四棱锥P-ABCD的底面是直角梯形,AB//DC,∠DAB=90°,PA⊥底面ABCD且PA=AD=DC=12AB=1,M是PB的中点,求平面AMC与平面BMC所成二面角的大小。
解:过点A作AN⊥CM,垂足为N,连BN,过点M作MQ⊥AB,垂足为Q,连QN,QC,由三垂线的逆定理知:MC⊥NQ,由三垂线定理知:BN⊥MC,故∠ANB为所求二面角的平面角。
由勾股定理的逆定理知:BC⊥AC,再由三垂线定理知:BC⊥PC,由直角三角形中线的性质有:MA=MC,由等面积求高法知:AN=NB=305,在△ANB中,由余弦定理有:cos∠ANB=AN2+BN2-AB22AN·BN=-23,从而所求二面角的大小是:π-arccos23题评:本例也可以先证△AMC≌△BMC,再利用“同一法”得出BN⊥MC。
好资料学习-----二面角大小的几种求法二面角的大小往往转化一般而言,二面角大小的求法中知识的综合性较强,方法的灵活性较大,主要是利用平面几何、立体在其求解过程中,为其平面角的大小,从而又化归为三角形的内角大小,根据不同问题给出的几何背景,恰在此时当选几何、三角函数等重要知识。
求二面角大小的关键是,择方法,作出二面角的平面角,有时亦可直接运用射影面积公式求出二面角的大小。
) 寻找有棱二面角的平面角的方法( 定义法、三垂线法、垂面法、射影面积法I.,过该点在两个半一、定义法:利用二面角的平面角的定义,在二面角的棱上取一点(特殊点)要注意用这是一种最基本的方法。
两射线所成的角就是二面角的平面角,平面内作垂直于棱的射线,来找出平面角。
二面角的平面角定义的三个“主要特征”oo ACB=90的大小。
,求二面角CB、CP、,∠PCA=∠PCB=60B-PC-A,∠例空间三条射线CA PD AE CαB FEF.上的点D分别作,连BCDF⊥于FDE⊥AC于E,PC解:过0 PCB=60,B-PC-AEDF为二面角的平面角,设CD=a,∵∠PCA=∠∴∠0DE=DF=,∴,,又∵∠ACB=90,∴CE=CF=2aEF=a22a32221a3a3?a8?EDF=∴∠?23a?320 A-PB-C,求二面角的余弦值。
CPA=60APB=1. 在三棱锥P-ABC中,BPC=P QMNA BC更多精品文档.-----好资料学习的大小。
β,求∠APBPB⊥β,B∈α-β等于120°,PA⊥,A∈α,а2. 如图,已知二面角α-PAOB的PA=AB=a,求二面角B-PC-DPA3. 在四棱锥P-ABCD中,ABCD是正方形,⊥平面ABCD,大小。
PHDAjBC用三垂线定理或逆定理作出二面已知二面角其中一个面内一点到一个面的垂线,二、三垂线法:角的平面角。
,,∠ABC=30°⊥平面ABCD,PA=AB=a 在四棱锥P-ABCD中,ABCD是平行四边形,PA 例P-BC-A的大小。
立体几何专题:二面角的四种求法一、二面角1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。
3、二面角的大小范围:[0°,180°] 二、求二面角大小的步骤是: (1)作:找出这个平面角;(2)证:证明这个角是二面角的平面角;(3)求:将作出的角放在三角形中,解这个三角形,计算出平面角的大小. 三、确定二面角的平面角的方法:1、定义法(棱上一点双垂线法):提供了添辅助线的一种规律(1)方法:在二面角的棱上找一个特殊点,在两个半平面内分别过该点作垂直于棱的射线.(2)具体演示:如图所示,以二面角的棱a 上的任意一点O 为端点, 在两个面内分别作垂直于a 的两条射线OA ,OB ,则∠AOB 为此二面角的平面角2、三垂线法(面上一点双垂线法)----最常用(1)方法:自二面角的一个面上一点向另外一个面作垂线,再由垂足向棱作垂线得到棱上的点(即斜足),斜足和面上一点的连线与斜足和垂足的连线所夹的角,即为二面角的平面角(2)具体演示:在平面α内选一点A 向另一个平面β作垂线AB ,垂足为B ,再αβaOAB过点B 向棱a 作垂线BO ,垂足为O ,连接AO ,则∠AOB 就是二面角的平面角。
3、垂面法(空间一点垂面法)(1)方法:过空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角。
(2)具体演示:过二面角内一点A 作AB ⊥α于B ,作AC ⊥β于C , 面ABC 交棱a 于点O ,则∠BOC 就是二面角的平面角。
4、射影面积法求二面角coss S射影(1)方法:已知平面β内一个多边形的面积为S ,它在平面α内的射影图形的面积为S射影,平面α和平面β所成的二面角的大小为θ,则COSθ=S射影S.这个方法对于无棱二面角的求解很简便。
a O课题3:二面角求法总结一、知识准备1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面.2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。
3、二面角的大小范围:[0°,180°]4、 二面角的求解方法对二面角的求解通常是先定位二面角的平面角,从而将三维空间中的求角问题转化为二维空间并可以通过三角形的边角问题加以解决.定位出二面角为解题的关键环节,下面就二面角求解的步骤做初步介绍:一、“找”:找出图形中二面角,若不能直接找到可以通过作辅助线补全图形定位二面角的平面角二、“证”:证明所找出的二面角就是该二面角的平面角 三、“算”:计算出该平面角由于定位二面角的难度较大,对于求解二面角还有一种思路就是绕开定位二面角这一环节,通过一些等价的结论或公式或用空间向量等方法来直接求出二面角的大小.本文将根据这两种解题思路对二面角的解题方法做一一介绍. 5、二面角做法:做二面角的平面角主要的方法有: 6、 (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; 7、 (2)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。
(3)射影法:凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜射S S =θ)求出二面角的大小。
(4)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角;(5)无交线的二面角处理方法(6)向量法二、二面角的基本求法及练习1、定义法(从两面内引两条射线与棱垂直,这两条射线可以相交也可异面,从而面面角就转化为线线角来求)从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
六种方法求二面角的大小河北省武邑县职教中心 053400 李凤迎 李洪涛求二面角的大小是高考立体几何题中的重要题型,它几乎涉及到了立体几何中的所有知识点,考查到了所有思想和方法,具有很强的综合性.我们要根据题目环境条件的不同灵活地采用适当的方法.下面总结一下二面角的常见求法,以供大家学习和参考.一、定义法例1. 在三棱锥A BCD -中,AB AC AD BC ===,CD BD =,90BAC ∠=,90BDC ∠=,求二面角A BC D --的大小.分析 因为ABC ∆和BCD ∆是有公共边的等腰三角形,此时宜采用“定义法”.解答 取BC 的中点O ,连接OA 、OD ,因为OA 、OD 分别为等腰ABC ∆和BCD ∆的中线,所以AO BC ⊥,DO BC ⊥,则AOD ∠即为所求二面角A BC D --的平面角.设AB a =,则AD a =,AO =,2OD a =,在AOD ∆中,因为2222a a ⎫⎛⎫+=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,即222AO OD AD +=,所以90AOB ∠=,所以二面角A BC D --大小为90.说明 当二面角的两个面是有公共边的等腰三角形和矩形的组合时,可采用“定义法”;当二面角的两个面是关于公共边对称的两个全等三角形时,同时取公共边上的高,由定义可作出二面角的平面角.变式训练1 (2008年高考题)在四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =, CD =,AB AC =.设侧面ABC 为等边三角形,求二面角C AD E --的大小. 二、三垂线定理法例2. 在三棱锥P ABC -中,AP BP BC==,90APB ABC ∠=∠=,面APB ⊥面PBC .(1)求证:APB ABC ⊥面面;(2)求二面角P AC B --的大小.分析 由(1)中APB ABC ⊥面面可知,此时宜采用“三垂线定理法”作出二面角P AC B --的平面角.只需过P 作PO AB ⊥于O ,过O 作OH AC ⊥于H ,连接PH ,则PHO∠即为所求. 解答 (1)略.(2)过P 作PO AB ⊥于O ,过O 作OH AC ⊥于H ,连接PH .因为APB ABC ⊥面面,=APB ABC AB 面面,PO APB ⊂面,PO AB ⊥,所以DCO ABO HCA B PEGOB DCAPO ABC ⊥面,则OH 为斜线PH 在面ABC 内的射影.又因为AC OH ⊥,所以AC PH ⊥(三垂线定理),则PHO ∠即为所求.设AP a =,则PB BC a ==.在Rt APB ∆中2PO AO a ==,在Rt ABC ∆中AC =,由Rt AOH ∆∽Rt ABC ∆得OH BC AO AC=,所以BC OH AO AC =⋅2a ==,又因为PO ABC ⊥面,OH ABC ⊂面,所以PO OH ⊥,则在Rt ABC ∆中,tan PO PHO HO ∠===60PHO ∠=,即二面角P AC B --的大小为60.说明 当题目中有一条从一个半平面内的一点到另一个半平面的垂线段时,可采用“三垂线定理法”.垂线段可由题目中的线面垂直、面面垂直等条件作出.变式训练2 如图,三棱柱111ABC A B C -,底面是边长为的正三角形,点1A 在底面ABC 上的射影O 恰是BC 的中点.若侧棱1AA 和底面ABC 所成的角为45时,求二面角1A AC B --的正切值.三、垂面法例3. 已知P 为二面角l αβ--内一点,PA α⊥于A ,PB β⊥于B ,且3PA =,4PB =若ABC S ∆=l αβ--的度数为______.分析 由已知得l PAB ⊥面.设PAB l O =面,连接,OA OB ,则l OA ⊥,l OB ⊥,则AOB ∠即为二面角l αβ--的平面角,且180AOB P ∠+∠=.要想求AOB ∠,只需由ABC ∆的面积公式求出P ∠即可.解答 因为1sin 2ABC S PA PB P ∆=⋅⋅⋅∠134sin 2P =⋅⋅⋅∠=所以sin 2P ∠=,所以60P ∠=或120,又因为180AOB P ∠+∠=,从而=120AOB ∠或60.说明 180AOB P ∠+∠=可作为结论使用.若给出ABP ∆的三边,则可通过余弦定理l OA BPβαHC 1B 1A 1OC B A求出P ∠的度数.变式训练 3 已知P 为二面角l αβ--内一点,PA α⊥于A ,PB β⊥于B ,且7PA =,8PB =,13AB =,则二面角l αβ--的度数为______.四、面积射影法例4. 在三棱锥中P ABC -,,D E 分别为PBC ∆、ABC ∆的重心,若DE ABC ⊥∆面,PBC ABC ∆∆=S ,则二面角P BC A --的大小为______.分析 易证DE ∥PA ,则PA ABC ⊥面,则PBC ∆的射影为ABC ∆,此时宜采用“面积射影法”.解答 设二面角为θ,因为,D E 分别为PBC ∆、ABC ∆的重心,则可得=MD MEDP EA,所以DE ∥PA .又因为DE ABC ⊥面,所以PA ABC ⊥面.因为cos ABC PBC S θ∆∆=S ==45θ=. 说明 当题目中涉及斜面三角形面积和相应射影三角形面积时,可采用“面积射影法”求二面角的大小.变式训练4 若一正四棱锥的表面积与其底面积满足关系式21=x x S S x++表底,则其侧面与底面所成的二面角的范围是______.五、三正弦定理法例5. (2012年全国新课标卷)在直三棱柱ABC A B C '''-中,12AC BC AA '==,D 是棱AA '的中点,DC BD '⊥.(1)证明:DC BC '⊥;(2)求二面角A BD C ''--的大小.分析 考察面BDC '内的直线DC ',易求90BDC '∠=,即2sin 1θ=;取A B ''的中点N ,则C N ABB A '''⊥面,则C DN '∠即为直线DC '与ABB A ''面所成的角,且1sin 2C DN '∠=,即11sin 2θ=,最后代入公式即可求出二面角的大小.解答 因为DA C ''∆和DAC ∆均为等腰直角三角形,所以DC DC '⊥.又因为DC BC '⊥,所以DC DBC '⊥面,从而DC DB '⊥,即2sin sin 901θ==;取A B ''的中点N ,连接DN ,则C N A B '''⊥.又因为AA C N ''⊥,所以C N ABB A '''⊥面,则C DN'∠M EDC BAPB B'A'C'AD N即为直线DC '与ABB A ''面所成的角.设2AA a '=,则AC BC a ==,因为2C N a '=,D C '=,即11sin sin 2C N C DN CD θ''=∠==.由12sin sin sin θθθ=得1sin 2θ=,又据题意知所求二面角为锐二面角,所以30θ=.说明 当其中一个半平面内的一条直线与另一个半平面、二面角的棱所成的角的正弦值容易求出时,可采用“三正弦定理法”.变式训练 5 如图,平面角为锐角的二面角EF αβ--,若A EF ∈,AG α⊂,45GAE ∠=,若AG 与β所成的角为30,则该二面角的大小为______.六、向量法例6. 题目同例5.分析 由(1)可证BC CC A A ''⊥面,则BC CA ⊥,所以,,CA CB CC '两两互相垂直,此时可以采用“向量法”求二面角的大小.解答 (1) 略.(2)建立如图所示的空间直角坐标系.设所求二面角为θ,平面BDC '的法向量为()1,,n x y z =,又因为()101DC '=-,,,()012BC '=-,,,则1100DC n BC n ⎧'⋅=⎪⎨'⋅=⎪⎩,即020x z y z -+=⎧⎨-+=⎩,取1x =,则2y =,1z =,所以()11,2,1n =;同理设平面ABB A ''的法向量为2n ,取AB 的中点M ,则可知CM ABB A ''⊥面,所以取211==,022n CM ⎛⎫⎪⎝⎭,,又因为121212cos ,n n n n nn ⋅=32==,由题意知所求二面角为锐二面角,所以30θ=. 说明 向量法又俗称“万能法”.当题目中出现三条线段具有或可以证明存在两两互相垂直的位置关系时,可采用“向量法”.但计算时一定要认真,并且要根据所求二面角是锐二面角还是钝二面角合理取舍.变式训练 6 如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.求平面1ADC 与平面1ABA 所成二面角的正弦值.βαGE FA(参考答案:1.π- 2. 2;3.60;4.6090θ≤<;5.45;6.sinθ=.)。
解题宝典空间角主要包括异面直线所成的角、直线与平面所成的角、二面角.二面角是指从一条直线出发的两个半平面所组成的图形.求二面角的大小是一类常见的问题.本文重点介绍求二面角大小的四种方法:定义法、向量法、面积投影法、三垂线定理法.一、定义法过二面角棱上的任一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.一般地,要求得二面角的大小只需要求出二面角的平面角的大小即可.在求二面角的大小时,我们可以根据二面角的平面角的定义来求解.首先在二面角的棱上选取一点,在两个面内作棱的垂线,则两条垂线的夹角,即为二面角的平面角,求得平面角的大小即可得到二面角的大小.例题:如图1,在长方体ABCD-A1B1C1D1中,底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥EB1C1;(2)若AE=A1E,求二面角B-EC-C1正弦值.图1图2解:(1)略;(2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=45°,故AE=AB,AA1=2AB.如图2所示,在平面BCE内过B点作BM⊥CE于点M,取棱CC1的中点N,连结MN,EN.因为EC1=EC,所以EN⊥CC1,所以ΔCEN为直角三角形.因为BC⊥BE,所以ΔCEB为直角三角形.令AB=1,则BC=NC=1,BE=EN=2,CE=3,所以RtΔBEC≌RtΔNEC,所以MN⊥EC,则∠BMN即为二面角B-EC-C1的平面角.在RtΔBEC中,sin∠BCE=BE CE=BM BC,所以BM=,MN.在ΔBMN中,cos∠BMN=BM2+MN2-BN22BM∙MN=-12,则sin∠BMN=,故二面角B-EC-C1正弦值.利用定义法求二面角的大小的关键是作出二面角的平面角.在作图的过程中要充分利用题目条件中隐含的垂直关系,如等腰三角形三线合一的性质、菱形或正方形的对角线相互垂直、直角三角形中勾股定理及其逆定理等.另外在构造二面角的平面角时,常用的方法还有垂面法,即经过两个面的垂线的平面与两个平面的交线所夹的角即为二面角的平面角.二、三垂线法三垂线法是指利用三垂线定理求作二面角的平面角,求得二面角大小的方法.在求作二面角的平面角时,需过其中一个面内的一点作另一个面的垂线,再经过垂足作棱的垂线,连接该点与棱上的垂足,进而构造出与二面角的平面角相关的角,再结合图形中的垂直关系求得二面角的大小.以上述例题为例.解:如图3,连接BD,AC,交点为O,过点O作CE的垂线,垂足为P,连接BP.由三垂线定理可知BP垂直于CE,所以∠BPO即为所求二面角平面角的补角.设AB=1,由(1)可知AE=1,所以BE=2,CE=3.因为BC⊥BE,所以ΔBCE为直角三角形,所以RtΔBCP∽RtΔBCE.陈秀林图342解题宝典所以BP.在Rt△BOP 中,sin ∠BPO =BC BP=,即所求二面角正弦值为.此法与定义法的不同之处是将所求二面角的相关角置于直角三角形中,从而使解题的过程更加简洁.三、向量法向量法是通过空间向量的坐标运算,将所求的二面角转化为两个平面的法向量的夹角的方法.解题的思路是通过建立空间直角坐标系,求出两个平面的法向量,根据向量的数量积公式求出夹角,再利用法向量的夹角与二面角的关系来确定二面角的大小.值得说明的是,二面角的平面角与法向量的夹角的关系是相等或互补.以上述例题为例.解:(2)由(1)知∠BEB 1=90°.由题设知Rt△ABE ≌Rt△A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,建立如图4所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),所以 CB =(1,0,0),CE =(1,-1,1),CC 1=(0,0,2).设平面BCE 的法向量为n =(x ,y ,z ),则ìíî CB ∙n =0,CE ∙n =0,即{x =0,x -y +z =0,令y =-1,得n =(0,-1,-1).设平面ECC 1的法向量为m =(x ,y ,z ),则ìíî CC 1∙m =0,CE ∙m =0,即{2z =0,x -y +z =0,令x =1得m=(1,1,0).于是cos m,n =m ∙n |m |∙|n |=-12.所以二面角B -EC-C 1平面角正弦值为.向量的引入降低了立体几何问题的难度,但对同学们的运算能力提出了更高的要求.求法向量的原则是先找后求,即如果存在一条已知的直线与二面角的某一个平面垂直,则该直线的方向向量即可视为此平面的法向量.四、投影法投影法,即为构造出二面角的两个平面中的一个平面在另外一个平面内的投影,从而利用此平面与其投影的夹角θ来判断所求二面角的大小的方法.若该平面与其投影的面积分别为S 1,S 2,则cos θ=S 1S 2.θ与所求二面角的关系有两种,即相等或互补.以上述例题为例.解:如图5,连接BD 交AC 于点O ,连接EO .因为四边形ABCD 为正方形,所以BD ⊥AC ,所以点B 在面C 1CE 内的投影,三角形EOC 为ECB 的投影.设棱AB =1,由(1)可知AE =1,则AC =BE =2,EC =3,所以三角形OCE 的面积为S 1=12∙OC ∙AE =12,三角形BCE 的面积为S 2=12BC ∙BE =12×1×2.所以S 2S 1=42=12.所以面BCE 与面ECC 1所成锐二面角的余弦值为12,故二面角的正弦值为.在本题中,三角形ECB 与其在面ECC 1上的投影EOC 的夹角即为所求二面角的补角,而两角互补,则其正弦值相等,所以可直接利用投影法来求解.一般地,求二面角的问题主要有两类,即求有棱二面角的大小和无棱二面角的大小,虽然图形有所不同,但解题的方法基本上一致.同学们在解题的过程中要注意仔细审题,择优而用.(作者单位:江苏省大丰高级中学)图5图443。
二面角大小的求法:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;例1 在四棱锥P-ABCD中,ABCD是正方形,PA⊥平面ABCD,PA=AB=a,求二面角B-PC—-D的大小。
二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例2 在四棱锥P-ABCD中,ABCD是平行四边形,PA⊥平面ABCD,PA=AB=a,∠ABC=30°,求二面角P-BC-A的大小。
[基础练习]1.二面角是指()A 两个平面相交所组成的图形B 一个平面绕这个平面内一条直线旋转所组成的图形C 从一个平面内的一条直线出发的一个半平面与这个平面所组成的图形D 从一条直线出发的两个半平面所组成的图形2.平面α与平面β、γ都相交,则这三个平面可能有()A 1条或2条交线B 2条或3条交线C 仅2条交线D 1条或2条或3条交线3.在300的二面角的一个面内有一个点,若它到另一个面的距离是10,则它到棱的距离是( )A 5B 20C 210 D225 4.在直二面角α-l-β中,Rt ΔABC 在平面α内,斜边BC 在棱l 上,若AB 与面β所成的角为600,则AC 与平面β所成的角为 ( ) A 300 B 450 C 600 D 1200 5.如图,射线BD 、BA 、BC 两两互相垂直,AB=BC=1,BD=26, 则弧度数为3π的二面角是( ) A D-AC-B B A-CD-B C A-BC-D D A-BD-C6.△ABC 在平面α的射影是△A 1B 1C 1,如果△ABC 所在平面和平面α成θ角,有 A S △A1B1C1=S △ABC ·sinθ B S △A1B1C1= S △ABC ·cosθ C S △ABC =S △A1B1C1·sinθ D S △ABC =S △A1B1C1·cosθ 7.如图,若P 为二面角M-l-N 的面N 内一点,PB ⊥l ,B 为垂足,A 为l 上一点,且∠PAB=α,PA 与平面M 所成角为β,二面角M-l-N 的大小为γ,则有 ( )A sin α=sin βsin γB sin β=sin αsin γC sin γ=sin αsin βD 以上都不对8.在600的二面角的棱上有两点A 、B ,AC 、BD 分别是在这个二面角的两个面内垂直于AB 的线段,已知:AB=6,AC=3,BD=4,则CD= 。
高考中二面角大小的求法二面角的大小,是高中数学的重点与难点,同时也是高考的热点,常考常新,其求法各式各样,尤其是向量法出现之前的高考,得凭借某些技巧,根据定义构造平面角,有时难度还是很大的,但通过现象看本质,我们也可以引申出一些求二面角大小的模式——定义法、三垂线法、垂面法等,另外还有求二面角大小的通法——向量法。
本文结合高考题,来谈谈这几种方法的应用,希望大家在考试过程中迅速识别模式,快速求出二面角的大小。
一、定义法二面角平面角的定义有三个条件:1、顶点在棱上;2、边分别在两个半平面内。
3、边与棱垂直。
因为空间的两条垂直不直观,难以识别,且顶点在棱上没有固定位置,具有开放性,这就造成了平面角位置的变化多端,不易作出,但高考中的易作出的平面角顶点往往在特殊的位置,比如等腰三角形底边的中点;以棱为全等三角形公共边的垂足等。
只举两例说明:例1(2004年全国理)如右图,已知四棱锥P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°。
(1)求点P到平面ABCD的距离。
(2)求面APB与面CPB所成二面角的大小解:我们只求二面角的大小(以下例题同),即第2问。
取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG∥BC,FG= BC,∵AD⊥⊥PB,∴BC⊥PB,FG⊥PB,∴∠AGF是所求二面角的平面角。
∵AD⊥面POB,∴AD⊥EG,又PE=BE= ,∴EG⊥PB,且PEG=60°。
在Rt△PEG中,EG=PE?cos60°= ,在Rt△GAE中,AE= AD=1,于是tan∠GAE= = ,又∠AGF=π—∠GAE,所以所求二面角的大小为π—arctan= .本题就是利用等腰三角形底边上的中点与顶点的连线垂直于底边,以及平移垂直于棱的射线到中点构造二面角的平面角,利用平面角的定义使问题得以解决的。
二面角大小的几种求法二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。
求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,作出二面角的平面角,有时亦可直接运用射影面积公式求出二面角的大小。
I. 寻找有棱二面角的平面角的方法 ( 定义法、三垂线法、垂面法、射影面积法 )一、定义法:利用二面角的平面角的定义,在二面角的棱上取一点(特殊点),过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。
要注意用二面角的平面角定义的三个“主要特征”来找出平面角。
1. 在三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=600,求二面角A-PB-C 的余弦值。
2.如图5.在锥体P-ABCD 中,ABCD 是边长为1的菱形,且∠DAB=60︒,2PA PD ==,PB=2, E,F 分别是BC,PC 的中点.2 三垂线法这是最典型也是最常用的方法,当然此法仍扎“根”于二面角平面角的定义. 此法最基本的一个模型为:如图3,设锐二面角βα--l ,过面α 内一点P 作PA ⊥α于A ,作AB ⊥l 于B ,连接PB ,由三垂线定理得PB⊥l ,则∠PBA 为二面角βα--l 的平面角,故称此法为三垂线法.A BCNMP QAαβPBl最重要的是在“变形(形状改变)”和“变位(位置变化)”中能迅速作出所求二面角的平面角,再在该角所在的三角形(最好是直角三角形,如图3中的Rt △PAB)中求解.对于钝二面角也完全可以用这种方法,锐角的补角不就是钝角吗? 点金P43例23如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:二面角A 1-AB -B 1的正弦值.分析与略解:所求二面角的棱为AB ,不像图3的那样一看就明白 的状态,但本质却是一样的,对本质的观察能力反映的是思维的深刻性.作A 1E ⊥AB 1于AB 1于E ,则可证A 1E ⊥平面AB 1B.过E 作EF ⊥A B 交AB 于F ,连接A 1F ,则得A 1F ⊥AB ,∴∠A 1FE 就是所求二面角的 平面角.依次可求得AB 1=B 1B=2,A 1B=3,A 1E=22,A 1F=23,则在Rt △A 1EF 中,sin ∠A 1FE=A 1E A 1F =63 .与图3中的Rt △PAB 比较,这里的Rt △A 1EF 就发生了“变形”和“变位”,所以要有应对各种变化,乃至更复杂变化的思想准备.4.如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C . (1)证明:1B C AB ⊥; (2)若1AC AB ⊥,o160CBB ∠=,1BC =,试画出二面角1A BC B --的平面角,并求它的余弦值.3 垂面法事实上,图1中的平面COC 1、图2(2)中的平面QMF 、图3中的平面PAB 、图4中的平面A 1FE 都是相关二面角棱的垂面,这种通过作二面角棱的垂面得平面角的方法就叫做垂面法.在某些情况下用这种方法可取得良好的效果.图4 B 1AαβA 1BlE5空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.寻找无棱二面角的平面角的方法 ( 射影面积法、平移或延长(展)线(面)法 )四、射影面积法:利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角。
6 在四棱锥P-ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。
7. 如图,设M 为正方体ABCD-A 1B 1C 1D 1的棱CC 1的中点,求平面BMD 1与底面ABCD 所成的二面角的大小。
P图5βαlCBA二面角作业1. 二面角是指( ) A 两个平面相交所组成的图形B 一个平面绕这个平面内一条直线旋转所组成的图形C 从一个平面内的一条直线出发的一个半平面与这个平面所组成的图形D 从一条直线出发的两个半平面所组成的图形2.平面α与平面β、γ都相交,则这三个平面可能有( ) A 1条或2条交线 B 2条或3条交线 C 仅2条交线 D 1条或2条或3条交线3.在300的二面角的一个面内有一个点,若它到另一个面的距离是10,则它到棱的距离是( ) A 5 B 20 C 210 D225 4.在直二面角α-l-β中,RtΔABC 在平面α内,斜边BC 在棱l 上,若AB 与面β所成的角为600,则AC 与平面β所成的角为( )A 300B 450C 600D 1200 5.如图,射线BD 、BA 、BC 两两互相垂直,AB=BC=1,BD=26, 则弧度数为3π的二面角是( )A. D-AC-BB. A-CD-BC. A-BC-DD. A-BD-C6.△ABC 在平面α的射影是△A 1B 1C 1,如果△ABC 所在平面和平面α成θ角,有( ) A. S △A1B1C1=S △ABC ·sinθ B . S △A1B1C1= S △ABC ·cosθ C. S △ABC =S △A1B1C1·sinθ D . S △ABC =S △A1B1C1·cosθ7.如图,若P 为二面角M-l-N 的面N 内一点,PB ⊥l ,B 为垂足,A 为l 上一点,且∠PAB=α,PA 与平面M 所成角为β,二面角M-l-N 的大小为γ,则有( )A sinα=sinβsinγB sinβ=sinαsinγC sinγ=sinαsinβD 以上都不对8.在600的二面角的棱上有两点A 、B ,AC 、BD 分别是在这个二面角的两个面内垂直于AB 的线段,已知:AB=6,AC=3,BD=4,则CD= 。
9.已知△ABC 和平面α,∠A=300,∠B=600,AB=2,AB ⊂α,且平面ABC 与α所成角为300,则点C 到平面α的距离为 。
10.正方体ABCD —A 1B 1C 1D 1中,平面AA 1C 1C 和平面A 1BCD 1所成的二面角(锐角)为 。
AB CDA B MNPl11.已知菱形的一个内角是600,边长为a ,沿菱形较短的对角线折成大小为600的二面角,则菱形中含600角的两个顶点间的距离为 。
12.如图,△ABC 在平面α内的射影为△ABC 1,若∠ABC 1=θ,BC 1=a ,且平面ABC 与平面α所成的角为ψ,求点C 到平面α的距离13.在二面角α-AB-β的一个平面α内,有一直线AC ,它与棱AB 成450角,AC 与平面β成300角,求二面角α-AB-β的度数。
14.若二面角内一点到二面角的两个面的距离分别为a 和a 2,到棱的距离为2a ,则此二面角的度数是 。
15.把等腰直角三角形ABC 沿斜边BC 上的高AD 折成一个二面角,若∠BAC=600,则此二面角的度数是 。
16.如图,已知正方形ABCD 和正方形ABEF 所在平面成600的二面角,求直线BD 与平面ABEF 所成角的正弦值。
17.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求:(1)面A 1ABB 1与面ABCD 所成角的大小;(2)二面角C 1—BD —C 的正切值。
18. 如图,在三棱锥P-ABC 中,PA ⊥平面ABC ,PA=AB ,AC=BC=1,∠ACB=900,M 是PB 的中点。
(1)求证:BC ⊥PC ,(2)平面MAC 与平面ABC 所成的二面角的正切。
ABC D ADCB19. ΔABC 中,∠A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC 内的射影是AB 中点M ,二面角P —AC —B 的大小为45°。
求(1)二面角P —BC —A 的大小;(2)二面角C —PB —A 的大小。
20. 第8题的变式:如上图,已知△ABC 中,AB ⊥BC ,S 为平面ABC 外的一点,SA ⊥平面ABC ,∠ACB =600,SA =AC =a ,(1)求证平面SAB ⊥平面SBC (2)求二面角A -SC -BC 的正弦值.21. 如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值。
22. 如图,βα⊂⊂BD AC ,,α与β所成的角为600,l AC ⊥于C ,l BD ⊥于B ,AC =3,BD =4,CD =2,求A 、B 两点间的距离。
AlDCαβB23.四川19.(本小题满分12分) 如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ; (Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦24.全国19.(本小题满分12分)如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中,,与都是等边三角形. (I )证明:;PB CD ⊥(II )求二面角.A PD C --的大小D 1DCB A 1B 1C 1AP。