线性规划标准型以及定义
- 格式:ppt
- 大小:947.50 KB
- 文档页数:46
线性规划的标准形式线性规划是运筹学中的一种重要方法,用于求解最优化问题。
在实际应用中,线性规划的标准形式是一种常见的数学表达方式,能够简化问题的求解过程,提高计算效率。
本文将对线性规划的标准形式进行详细介绍,包括定义、特点、转换方法等内容,希望能够帮助读者更好地理解和运用线性规划方法。
一、定义。
线性规划的标准形式是指将线性规划问题转化为一种特定的数学表达形式,以便于利用现有的数学工具进行求解。
一般来说,线性规划的标准形式可以表示为:Max z = c1x1 + c2x2 + ... + cnxn。
Subject to:a11x1 + a12x2 + ... + a1nxn ≤ b1。
a21x1 + a22x2 + ... + a2nxn ≤ b2。
...am1x1 + am2x2 + ... + amnxn ≤ bm。
xi ≥ 0, i = 1, 2, ..., n。
其中,c1, c2, ..., cn为目标函数的系数,x1, x2, ..., xn为决策变量,a11, a12, ..., amn为约束条件的系数,b1,b2, ..., bm为约束条件的常数,m和n分别为约束条件和决策变量的个数。
通过这种形式的表示,线性规划问题可以被更方便地求解。
二、特点。
线性规划的标准形式具有以下几个特点:1. 目标函数为线性函数,约束条件为线性不等式。
这种形式的表示使得问题具有了良好的数学性质,可以利用线性代数和凸优化等数学工具进行求解。
2. 决策变量为非负数。
这一特点使得问题的解空间被限制在第一象限,简化了问题的求解过程。
3. 约束条件为≤型不等式。
这种形式的约束条件使得问题的可行域为一个凸集,便于进行几何和数学分析。
三、转换方法。
对于一般的线性规划问题,可能并不总是处于标准形式。
因此,需要将问题转化为标准形式,以便于求解。
常见的转换方法包括:1. 将最小化问题转化为最大化问题。
这可以通过将目标函数的系数取相反数来实现。
第三部分运筹学第四章运筹学建模4.1 运筹学概述运筹学是用数学方法研究各种系统最优化问题的学科。
其研究方法是应用数学语言来描述实际系统,建立相应的数学模型,并对模型进行研究和分析,据此求得模型的最优解;其目的是制定合理运用人力、物力和财力的最优方案;为决策者提供科学决策的依据;其研究对象是各种社会系统,可以是对新的系统进行优化设计,也可以是研究已有系统的最佳运营问题。
因此,运筹学既是应用数学,也是管理科学,同时也是系统工程的基础之一。
运筹学一词最早出现于第二次世界大战期间,当时为了急待解决作战中所遇到的许多错综复杂的战略战术问题,英美一些具有不同学科和背景的科学家,组成了许多研究小组,专门从事军事行动的优化研究。
研究的典型课题有:高射炮阵地火力的最佳配置、护航舰队规模的大小以及开展反潜艇作战的侦察等方面。
由于受到战时压力的推动,加上不同学科互相渗透而产生的协同作用,在上述几个方面的研究都卓有成效,为第二次世界大战盟军的胜利起到积极作用,也为运筹学各个分支的进一步研究打下了基础。
战后,这些科学家们转向研究在民用部门应用类似方法的可能性。
因而,促进了在民用部门中应用运筹学有关方法的研究和实践。
1947年,美国数学家G.B.Dantzig提出了求解线性规划的有效方法——单纯形法。
50年代初,应用电子计算机求解线性规划问题获得了成功。
50年代末,工业先进国家的一些大型企业也陆续应用了运筹学的方法以解决企业在生产经营活动中所出现的许多问题,取得了良好效果。
60年代中期,一些银行、医院、图书馆等都已陆续认识到运筹学对帮助改进服务功能、提高服务效率所起的作用,由此带来了运筹学在服务性行业和公用事业中的广泛应用。
电子计算机技术的迅速发展,为广泛应用运筹学方法提供了有力工具,运筹学的应用又开创了新的局面。
当前,运筹学在经济管理、生产管理、工程建设、军事作战、科学试验以及社会系统等各个领域中都得到了极为广泛的应用。
第3章02线性规划模型的标准形式同学们大家好,上次我们讲了线性规划模型的结构和特征,然后在后面没给出了要定义线性规划的标准型的原因,今天我们就来介绍一下线性规划的标准型。
首先我们要说标准形式定义出来的,在不同的教材里面的定义并不相同。
在我们教材里面我们是这么定义的:我们先看目标函数,一般形式中可能是关于目标函数的最大化问题,有可能最小化问题,但在标准型里面我们定义目标函数必须是求最大化问题。
1111max(min c max c n n n nz x c x z x c x =++⇒=++ 或)我们再来看一下常约束条件。
在一般形式里面,常约束可能是等式,也可能是不等式,但在标准形式中,定义每个常约束都必须取等号。
112211221,2,,i i i i in in i i i i i in in i a x a x a x b a x a x a x b i m+++≤=≥⇒+++== (或,),再来看非负约束。
在一般形式里面,并不要求每个变量都有非负约束,但是在标准形式里面,要求每一个变量都是非负的。
1212,,0,,,,0k j j j n x x x k n x x x ≥≤⇒≥ 另外,标准形式还要求每一个右端常数项都是大于等于0的,当然这个不是很重要,因为如果右端常数项是负数,可以给这个方程左右两边乘以-1,就把它变成了整数。
最后,我们总结一下,在我们的教材里,标准形式有四个要求:目标函数是求最大化问题,所有常约束为等式,所有变量都有大于等于0,右端常数项都大于等于0。
所以,我们的标准形式可以规范地写成下面的形式。
11112212max , 1,2,,st.,,0n ni i i i in in i n z c x c x a x a x a x b i m x x x =+++++==⎧⎨≥⎩ 关于标准形式,它还有几种等价的形式需要大家熟悉。
第一种是简写形式。
也就是用和式号对标准形式进行简写,形式如下:⎪⎩⎪⎨⎧=≥===∑∑==n j x m i b x a x c z jnj i j ij nj j j ,,2,1,0 ,2,1st.max 11 ,第二种是矩阵形式。
线性规划标准形式线性规划是一种数学优化方法,用于解决一系列线性约束条件下的最优化问题。
在实际应用中,线性规划被广泛应用于生产计划、资源分配、运输优化等领域。
线性规划问题可以用标准形式来表示,这有助于我们更好地理解和解决问题。
线性规划的标准形式可以表示为:Maximize (or Minimize) Z = c1x1 + c2x2 + ... + cnxn。
Subject to:a11x1 + a12x2 + ... + a1nxn ≤ b1。
a21x1 + a22x2 + ... + a2nxn ≤ b2。
...am1x1 + am2x2 + ... + amnxn ≤ bm。
xi ≥ 0, i = 1, 2, ..., n。
其中,Z表示需要最大化或最小化的目标函数,c1, c2, ..., cn为目标函数的系数,x1, x2, ..., xn为决策变量。
约束条件由不等式表示,a11, a12, ..., amn为系数,b1,b2, ..., bm为常数,xi ≥ 0表示决策变量的非负约束。
在标准形式中,我们需要将所有的约束条件都转化为“≤”的形式,并且将所有的决策变量都限制为非负数。
这样做的目的是为了方便我们进行线性规划问题的求解,使得问题更加规范化和统一化。
线性规划的标准形式可以帮助我们更好地理解问题的本质,从而更加清晰地建立数学模型,并且更加方便地应用各种优化算法进行求解。
通过将问题转化为标准形式,我们可以更加直观地分析问题的特点,找到最优解的方法。
在实际应用中,线性规划的标准形式可以帮助我们更好地描述生产过程中的资源约束、运输过程中的成本约束、市场营销中的销售约束等各种问题。
通过将问题转化为标准形式,我们可以更加方便地利用线性规划的理论和方法来解决实际问题,从而实现资源的最优配置和成本的最小化。
总之,线性规划的标准形式是线性规划问题的一种统一表示方法,它可以帮助我们更好地理解和解决问题,为实际应用提供了重要的理论基础和方法支持。
线性规划知识点引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在工程、经济学、管理学等领域有着广泛的应用。
本文将详细介绍线性规划的相关知识点。
一、线性规划的定义与基本概念1.1 目标函数:线性规划的目标是通过最大化或最小化目标函数来达到最优解。
目标函数是一条线性方程,表示需要优化的目标。
1.2 约束条件:线性规划问题还需要满足一组线性约束条件,这些条件对决策变量的取值范围进行了限制。
1.3 决策变量:决策变量是指在线性规划问题中需要进行决策的变量,其取值将影响目标函数的值。
二、线性规划的基本模型2.1 标准型线性规划:标准型线性规划是指目标函数为最小化问题,约束条件为等式形式的线性规划问题。
2.2 松弛变量与人工变量:为了将约束条件转化为等式形式,我们引入松弛变量和人工变量。
2.3 基变量与非基变量:在标准型线性规划中,基变量和非基变量是用来描述决策变量的状态的。
三、线性规划的解法3.1 单纯形法:单纯形法是一种常用的线性规划解法,通过迭代计算基变量和非基变量的取值,直到找到最优解。
3.2 对偶性理论:线性规划问题与其对偶问题之间存在着对偶关系。
对偶性理论可以帮助我们求解原始问题的最优解。
3.3 整数线性规划:当决策变量需要取整数值时,我们可以使用整数线性规划方法来求解。
整数线性规划问题更加复杂,通常需要使用分支定界等方法求解。
四、线性规划的应用领域4.1 生产计划:线性规划可以用于优化生产计划,通过合理安排生产资源和生产量,实现最大化利润或最小化成本。
4.2 运输问题:线性规划可以用于解决运输问题,通过合理分配运输量和运输路径,实现最优的物流方案。
4.3 资源分配:线性规划可以用于资源分配问题,如人力资源、资金分配等,通过最优化决策,实现资源的合理利用。
五、线性规划的局限性与拓展5.1 非线性规划:线性规划只适用于目标函数和约束条件为线性关系的问题。
对于非线性问题,我们需要使用非线性规划方法进行求解。
线性规划问题的标准型线性规划是运筹学中的一种数学优化方法,用于在给定约束条件下寻找一个线性目标函数的最大值或最小值。
线性规划问题通常可以表示为标准型,即包含一组线性不等式约束条件和一个线性目标函数的数学模型。
首先,我们来定义线性规划问题的标准型。
一个线性规划问题的标准型可以表示为:\[\max_{x} c^Tx\]\[s.t. Ax \leq b\]\[x \geq 0\]其中,\(x\) 是一个 \(n\) 维向量,表示问题的决策变量;\(c\) 是一个 \(n\) 维向量,表示目标函数的系数;\(A\) 是一个 \(m \times n\) 的矩阵,表示约束条件的系数;\(b\) 是一个 \(m\) 维向量,表示约束条件的右端常数。
在这个模型中,我们的目标是找到一个 \(x\) 的取值,使得目标函数 \(c^Tx\) 的值最大,同时满足约束条件 \(Ax \leq b\) 和 \(x \geq 0\)。
接下来,我们来详细讨论线性规划问题的标准型中的各个要素。
首先是目标函数 \(c^Tx\)。
目标函数通常表示了我们希望最大化或最小化的目标。
在线性规划中,目标函数是一个线性函数,由决策变量\(x\) 的线性组合构成。
我们希望通过调整 \(x\) 的取值,使得目标函数的值达到最大或最小。
其次是约束条件 \(Ax \leq b\)。
约束条件表示了问题的限制条件,限制了决策变量 \(x\) 的取值范围。
在标准型中,约束条件通常表示为一组线性不等式。
这些不等式可以用矩阵 \(A\) 和向量 \(b\) 来表示,它们限制了决策变量 \(x\) 的取值范围。
最后是非负约束 \(x \geq 0\)。
非负约束表示了决策变量 \(x\) 的取值必须大于等于零。
这个约束条件在很多实际问题中是合理的,因为很多决策变量都有非负的物理意义。
总结一下,线性规划问题的标准型包括一个线性目标函数和一组线性不等式约束条件,以及决策变量的非负约束条件。