脉冲序列发生器设计

  • 格式:docx
  • 大小:348.61 KB
  • 文档页数:13

下载文档原格式

  / 13
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脉冲序列发生器设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

摘要脉冲序列检测器广泛应用于现代数字通信系统中,随着通信技术的发展,对多路脉冲序列信号检测要求越来越高。现代通信系统的发展方向是功能更强、体积更小、速度更快、功耗更低,大规模可编程逻辑器件FPGA器件的集成度高、工作速度快、编程方便、价格较低,易于实现设备的可编程设计,这些优势正好满足通信系统的这些要求。随着器件复杂程度的提高,电路逻辑图变得过于复杂,不便于设计。VHDL(VHSIC Hardware Description Language)是随着可编程逻辑器件的发展而发展起来的一种硬件描述语言。VHDL具有极强的描述能力,能支持系统行为级、寄存器输级和门级三个不同层次的设计,实现了逻辑设计师多年来梦寐以求的“硬件设计软件化”的愿望,给当今电子通信系统设计带来了革命性的变化。

本文针对传统的脉冲序列检测器方案,提出了一种基于对脉冲序列检测器设计的新方案,该方案相对于传统的设计方法更适合于现代数字通信系统,不但大大减少了周边的设备,也使系统设计更加灵活,稳定性更好,性价比更高,可以满足多种环境下的检测系统的要求。

关键词:多路数据选择器、Multisim、计数器、序列检测器

目录

摘要 (1)

1目录 (1)

2. 设计内容及设计要求 (2)

实验目的 (3)

参考电路 (4)

实验内容及主电路图 (5)

多谐振荡器的介绍 (6)

计数器的介绍 (9)

数据分析 (12)

数据选择器的介绍 (14)

4实验结果 (16)

实验结果的分析 (17)

设计总结 (18)

致谢 (19)

参考文献 (20)

2设计内容及技术要求

1、设计并制作一个脉冲序列发生器,周期性的产生8位长度的任意脉冲序列,

脉冲序列可以通过设置电路自由设置。

2、能够检测出设置的脉冲序列,在每出现一次设置的脉冲序列时,点亮一次

LED;

3、时钟脉冲周期为1HZ;

4、对设置的脉冲序列值通过适当的方式进行指示;

5、电源:220V/50HZ的工频交流电供电;

6、(直流电源部分仅完成设计仅可,不需制作,用实验室提供的稳压电源调

试,但要求设计的直流电源能够满足电路要求)

7、按照以上要求设计电路,绘制电路图,对设计的的电路用Multisim或OrCAD/PspiceAD9进行仿真,用万用板焊接元器件,制作电路,完成调试、测试,撰写设计报告。

发挥部分:

1、其他恰当的功能。

2.实验目的

通过本次设计,进一步熟悉多谐振荡器、计数器、数据选择器的用法,掌握脉冲序列发生器的设计方法。

3.参考电路

(1)设计方案

周期性脉冲序列发生器的实现方法很多,可以由触发器构成,可以由计数器外加组合逻辑电路构成,可以有GAL构成,也可以由CPLD\FPGA构成等等。

本设计采用由计数器加多路数据选择器的设计法案,脉冲序列发生器原理框图如(1)图所示。

图(1)脉冲序列发生器原理框图

(2)参考设计

脉冲序列发生器需要一个时钟信号,可采用由TTL非门和石英晶体振荡器构成的串联式多谐振荡器产生时钟信号,如图(2)所示。

主电路部分如图(3)所示,图中74LS161和与非门构成十二进制计数器,为脉冲序列的宽度为12位。

4.实验内容

按照实验要求设计电路,确定元器件型号和参数;用Multisim进行仿真,列出实验数据,画出输出信号及其他关键信号的波形;对实验数据和电路的工作情况进行分析,得出实验结论;写出收获和体会。

图(2)时钟信号产生电路

图(2)主电路图

主电路图(2)

多谢振荡器介绍

多谐振荡器是一种自激振荡电路。因为没有稳定的工作状态,多谐振荡器也称为无稳态电路。具体地说,如果一开始多谐振荡器处于0状态,那么它在0状态停留一段时间后将自动转入1状态,在1状态停留一段时间后又将自动转入0状态,如此周而复始,输出矩形波。

图对称式多谐振荡器电路

对称式多谐振荡器是一个正反馈振荡电路[图,]。和是两个反相器,和是两个耦合电容,和是两个反馈电阻。只要恰当地选取反馈电阻的阻值,就可以使反相器的静态工作点位于电压传输特性的转折区。上电时,电容器两端的电压和均为0。假设某种扰动使有微小的正跳变,那么经过一个正反馈过程,迅速跳变为,迅速跳变为,迅速跳变为,迅速跳变为,电路进入第一个暂稳态。电容和开始充电。的充电电流方向与参考方向相同,正向增加;的充电电流方向与参考方向相反,负向增加。随着的正向增加,从逐渐上升;随着的负向增加,从逐渐下降。因为经和两条支路充电而经一条支路充电,所以充电速

度较快,上升到时还没有下降到。上升到使跳变为。理论上,向下跳变,也将向下跳变。考虑到输入端钳位二极管的影响,最多跳变到。下降到使跳变为,这又使从

向上跳变,即变成

,电路进入第二个暂稳态。经一条支路反向充电(实际上先放电再反向充电),逐渐下降。经和两条支路反向充电(实际上先放电再反向充电),逐渐上升。的上升速度大于的下降速度。当上升到时,电路又进入第一个暂稳态。此后,电路将在两个暂稳态之间循环。

和一个耦合电容。反馈电阻使的静态工作点位于电压传输特性的转折区,就是说,静态时,的输入电平约等于,的输出电平也约等于。因为的输出就是的输入,所以静态时也被迫工作在电压传输特性的转折区。

图非对称是多

的矩形波。根据傅里叶分析理论,频率为的矩形波可以分解成无穷多个正弦波分量,正弦波分量的频率为(),如果石英晶体的串联谐振频率为,那么只有频率为的正弦波分量可以通过石英晶体(第个正弦波分量,),形成正反馈,而其它正弦波分量无法通过石英晶体。频率为

的正弦波分量被反相器转换成频率为矩形波。因为石英晶体多谐振荡器的振荡频率仅仅取决于石英晶体本身的参数,所以对石英晶体以外的电路元件要求不高。