高一下学期期末数学(文)试题及答案
- 格式:doc
- 大小:399.55 KB
- 文档页数:6
2023-2024学年四川省自贡市高一下学期期末考试数学试题一、选择题:本题共11小题,每小题5分,共55分。
1.在▵OMN 中,ON−MN +MO =( )A. 0B. 2MOC. 2OMD. 02.复数2+3i 1+i 对应的点( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.为了了解学生们的身体状况,某学校决定采用按比例分层抽样的方法,从高一、高二、高三三个年级共抽取100人进行各项指标测试.已知高三年级有500人,高二年级有700人,高一年级有800人,则高二年级抽取的人数为( )A. 40B. 35C. 30D. 254.水平放置的▵ABC 的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则▵ABC 的面积是( )A. 4B. 5C. 6D. 75.若连续抛两次骰子得到的点数分别是m ,n ,则点P (m,n )在直线x +y =8上的概率是( )A. 112B. 19C. 536D. 166.在▵ABC 中,B =30∘,b =2,c =2 2,则▵ABC 的面积为( )A. 3+ 3B. 3+1C. 3± 3D. 3±17.已知▵ABC 中,AC ⋅AB =0,2AD−AC−AB =0,|AD |=|AB |,则CA 在CB 上的投影向量为( )A. 14CBB. 34CB D. −34CB 8.图1是唐朝著名的风鸟花卉纹浮雕银杯,它的盛酒部分可以近似地看作半球与圆柱的组合体(如图2).设这种酒杯内壁的表面积为Scm 2,半球的半径为3cm ,若半球的体积不小于圆柱体积,则S 的取值范围是( )A. [24π,+∞)B. (18π,24π]C. [30π,+∞)D. (18π,30π]9.设向量a,b满足|a|=|b|=1,且|3b−a|=10,则以下结论正确的是( )A. a⊥bB. |a−b|=2C. |b−3a|=10D. 向量a+b与a−b夹角为60∘10.下列命题中真命题是( )A. 如果不同直线m、n都平行于平面α,则m,n一定不相交B. 如果不同直线m,n都垂直于平面α,则m,n一定平行C. 如果平面α、β互相平行,若直线m⊂α,直线n⊂β,则m//nD. 如果平面α、β互相垂直,且直线m,n也互相垂直,若m⊥α,则n⊥β11.一家公司为了解客户对公司新产品的满意度,随机选取了m名客户进行评分调查,根据评分数进行适当分组后(每组为左闭右开的区间),画出的频率分布直方图如图所示,其中有8名客户的评分数落在[40,50)内,则( )A. 图中的a=0.005B. m=200C. 同组数据用该组区间的中点值作代表,则评分数的平均数为76.2D. 该公司计划邀请评分数低于第25百分位数的客户参与产品改进会议,若客户甲的评分数为66,则甲将会被邀请参与产品改进会议二、填空题:本题共3小题,每小题5分,共15分。
四川省成都市温江第二中学2020-2021学年高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知平面向量=(3,1),=(x,-3),且⊥,则x等于()A.3 B.1 C.-1 D.-3参考答案:B2. 若偶函数f(x)在(﹣∞,﹣1]上是增函数,则下列关系式中成立的是( )A.f(﹣)<f(﹣1)<f(2)B.f(﹣1)<f(﹣)<f(2)C.f(2)<f(﹣1)<f(﹣)D.f(2)<f(﹣)<f(﹣1)参考答案:D【考点】奇偶性与单调性的综合.【专题】常规题型.【分析】题目中条件:“f(x)为偶函数,”说明:“f(﹣x)=f(x)”,将不在(﹣∞,﹣1]上的数值转化成区间(﹣∞,﹣1]上,再结合f(x)在(﹣∞,﹣1]上是增函数,即可进行判断.【解答】解:∵f(x)是偶函数,∴f(﹣)=f(),f(﹣1)=f(1),f(﹣2)=f(2),又f(x)在(﹣∞,﹣1]上是增函数,∴f(﹣2)<f(﹣)<f(﹣1)即f(2)<f(﹣)<f(﹣1)故选D.【点评】本小题主要考查函数单调性的应用、函数奇偶性的应用、奇偶性与单调性的综合等基础知识,考查运算求解能力、化归与转化思想.属于基础题.3. 设△ABC中,,且,则此三角形为( )A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等边三角形参考答案:D【分析】由结合两角和的正切函数公式化简可得的值,由与为三角形内角,利用特殊角三角函数值求出的度数,进而确定角的度数,再由,利用同角三角函数基本关系化简,可得的值,利用特殊角的三角函数值即可求出角的度数,从而确定的形状。
【详解】,即,,又与为三角形内角,,即,,解得:,,为等边三角形,故答案选D.【点睛】本题考查三角形形状的判定,利用两角和与差的正切函数公式,同角三角函数间的基本关系,以及特殊角三角函数值,熟练掌握公式及基本关系是解决本题关键。
唐山市2023-2024学年度高一年级第二学期期末考试数学参考答案及评分一.选择题:1~4.ACCB5~8.DBDC二.选择题:9.BCD 10.AD 11.ACD 三.填空题:12.713.2712514.77四.解答题:(若有其他解法......,请参照给分.....) 15.解:(1)若a ∥b ,则3sin α-cos α=0, …3分解得tan α=33, …5分因为α∈[0,π],所以α= π6. …7分(2)若a ⊥b ,则sin α+3cos α=0, …10分解得tan α=-3, …12分 因为α∈[0,π],所以α=2π3. …13分16.解:(1)记“甲独立解答正确”为事件A ,“乙独立解答正确”为事件B ,且事件A ,B 相互独立.所以两人解答都正确的概率为…5分(2)“至多一人解答正确”的对立事件为“两人都解答正确”,所以至多一人解答正确的概率为1-P (AB )=1-P (A )P (B )=1…10分(3)“至少一人解答正确”的对立事件为“两人都未解答正确”,所以至少一人解答正确的概率为1-P (A-B -)=1-P (A -)P (B -)=1- 1 2× …15分17.解:(1)在△ABC…2分…3分解得sin ∠…5分因为C =2π3,所以∠BAC ∈(0, π3),所以∠…7分所以又AB =3,BC =3,所以△ABC 的面积×BC ×sin…8分(2)解法一:在△ADC 中,AC =BC =3,C =2π3,因为D 是BC 中点,所以CD = 1 2BC =32,由余弦定理,得AD 2 =AC 2+CD 2-2AC ·CD ·cos C…11分 =3+34-2×3×32×(- 1 2)=214.…14分 所以AD =212.…15分解法二:由AD →= 12(AB →+AC →)两边平方可得|AD →|2= 14(|AB →|2+|AC →|2+2|AB →||AC →|cos ∠BAC )…11分由(1)可知AC =BC =3,AB =3,cos ∠BAC =32,所以|AD →|2= 14(9+3+2×3×3×32)=214.…14分 所以AD =212.…15分18.解:(1)这些人的平均年龄为x-=15×0.05+25×0.35+35×0.3+45×0.2+55×0.1 …2分=34.5(岁). …3分 由频率分布直方图可知,年龄在[10,40)的频率为0.05+0.35+0.3=0.7, 在[10,50)的频率为0.05+0.35+0.3+0.2=0.9, 则第80百分位数为x 0∈[40,50),由0.7+(x 0-40)×0.02=0.8,解得x 0=45. …5分所以估计这些人的平均年龄为34.5岁,第80百分位数为45.(2)第三组,第四组,第五组的频率分别为0.3,0.2,0.1.…6分若从这三组中分层抽取6人,则从第三组抽取3人,记为a1,a2,a3;第四组抽取2人,记为b1,b2;第五组抽取1人,记为c;对应的样本空间Ω={(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a1,c),(a2,a3),(a2,b1),(a2,b2),(a2,c),(a3,b1),(a3,b2),(a3,c),(b1,b2),(b1,c),(b2,c)},所以n(Ω)=15;…8分设事件A为“从6人中随机抽取两人,所抽取的2人年龄在不同组”,则A={(a1,b1),(a1,b2),(a1,c),(a2,b1),(a2,b2),(a2,c),(a3,b1),(a3,b2),,所以n(A)=11. …10分…12分(3)设第三组、第四组的年龄的平均数分别为x1-,x2-,方差分别为s21,s22.则x1-=36,x2-=46,s21=2,s22=4.由第三组有30人,第四组有20人,-2s,…14分s…16分26.8.…17分19.解:(1)由已知AC∥A1C1,AC⊄平面A1BC1,A1C1⊂平面A1BC1,所以AC∥平面A1BC1.…2分又AC⊂平面ABC,平面A1BC1∩平面ABC=l,所以AC∥l.…5分(2)取BC中点为O,连接AO,A1O.因为侧面BB1C1C为矩形,所以BB1⊥BC,又AA1//BB1,则AA1⊥BC.由A1C=A1B,所以A1O⊥BC.…6分又A1O∩AA1=A1,A1O,AA1⊂平面AA1O,故BC⊥平面AA1O.…8分由于AO⊂平面AA1O,故BC ⊥AO . …10分又BO =CO ,故AB =AC , 又AC =BC ,所以△ABC 为等边三角形.…12分(3)记ON 与BC 1交于点H ,连接A 1H ,过O 作OE ⊥A 1H 于点E ,连接BE .因为O ,N 分别为BC ,B 1C 1中点, 所以ON ∥AA 1,ON =AA 1,所以四边形A 1AON 为平行四边形. …13分 所以平面A 1AON ∩平面A 1BC 1=A 1H .由(2)可知BO ⊥平面A 1AON ,OE ,A 1H ⊂平面A 1AON , 所以BO ⊥OE ,BO ⊥A 1H , 又OE ⊥A 1H ,BO ∩OE =O ,所以A 1H ⊥平面BOE ,又BE ⊂平面BOE , 所以A 1H ⊥BE ,即∠OEB 为平面A 1AN 与平面A 1BC 1所成的锐二面角. …14分 在△A 1BC 中,A 1C =A 1B =22,BC =AB =4, 所以△A 1BC 为等腰直角三角形, 所以A 1O =2.因为A 1A =AB =4,△ABC 为等边三角形, 所以AO =23, 所以A 1O 2+AO 2=AA 21, 则A 1O ⊥OA . …15分 同理可证A 1O ⊥A 1N ,又知H 为ON 中点,所以A 1H = 12ON =2.所以△A 1OH 为边长为2的等边三角形,且OE =3, …16分 在△OEB 中,BO ⊥OE , 因为BE =OB 2+OE 2=7,所以sin ∠OEB =OB BE =27=277. …17分故平面A 1AN 与平面A 1BC 1所成二面角的正弦值是277.…17分(同上)A 1B 1C 1CABNOHE。
武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。
广西壮族自治区桂林市恭城中学2021-2022学年高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,则的取值范围是()A. B. C. D.参考答案:C【分析】由利用余弦定理,可得,利用正弦定理边化角,消去C,可得,利用三角形是锐角三角形,结合三角函数的有界性,可得【详解】因为,所以,由余弦定理得:,所以,所以,由正弦定理得,因为,所以,即,因为三角形是锐角三角形,所以,所以,所以或,所以或(不合题意),因为三角形是锐角三角形,所以,所以,则,故选C.【点睛】这是一道解三角形的有关问题,在解题的过程中,涉及到的知识点有余弦定理,正弦定理,诱导公式,正弦函数在某个区间上的值域问题,根据题中的条件,求角A的范围是解题的关键.2. 设的内角所对的边分别为,若三边的长为连续的三个正整数,且,则为( )A.4∶3∶2B.5∶6∶7C.5∶4∶3D.6∶5∶4参考答案:D略3. 数列的通项公式是,若前n项的和为,则项数n为,()A.4 B.5C.6 D.7参考答案:C略4. 设s是等差数列{a}的前n项和,已知s=36, s=324, s=144 (n>6),则n=( )A 15B 16C 17D 18参考答案:D5. 一个几何体的三视图如图所示,则该几何体的体积为A、 B、 C、 D、参考答案:C6. 下列各组函数中表示同一函数的是:A、f(x)=x与g(x)=()2B、f(x)=lne x与g(x)=e lnxC、f(x)=,与g(x)=D、f(x)=与g(t)=t+1(t≠1)参考答案:D7. (4分)将进货单价为80元的商品按90元出售时,能卖出400个.若该商品每个涨价1元,其销售量就减少20个,为了赚取最大的利润,售价应定为每个()A.115元 B.105元 C.95元D.85元参考答案:C考点:函数模型的选择与应用.专题:应用题.分析:根据题意,设售价定为(90+x)元,由利润函数=(售价﹣进价)×销售量可得关于x的函数方程,由二次函数的性质可得答案.解答:解:设售价定为(90+x)元,卖出商品后获得利润为:y=(90+x﹣80)(400﹣20x)=20(10+x)=20(﹣x2+10x+200);∴当x=5时,y取得最大值;即售价应定为:90+5=95(元);故应选:C.点评:本题考查了商品销售中的利润关系,是二次函数模型,属于基础题.8. 如图是挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为A.84,4.84 B.84,1.6C.85,1.6 D.85,4参考答案:C略9. 若函数的定义域为R,则实数a的取值范围是()A.(-∞,1)∪(9,+∞) B.(1,9) C.(-∞,-2] D.(-∞,-2)参考答案:B10. 式子的值为()A. B. C.D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 用列举法表示集合__________. 参考答案:集合,当时,,当时, ,当时, , 当时,,当时,显然,∴列举法表示集合, 综上所述,答案:.12. 已知集合,且M 中含有两个元素,则符合条件的集合M有 ▲ 个.参考答案:313. 设三元集合=,则 . 参考答案:1试题分析:集合,且,,则必有,即,此时两集合为,集合,,,当时,集合为,集合,不满足集合元素的互异性.当时,,集合,满足条件,故,因此,本题正确答案是:.考点:集合相等的定义.14. 函数的最小值是参考答案:-1 略15. (5分)若l 为一条直线,α,β,γ为三个互不重合的平面,给出下面四个命题:①α⊥γ,β⊥γ,则α⊥β;②α⊥γ,β∥γ,则α⊥β;③l∥α,l⊥β,则α⊥β.④若l∥α,则l 平行于α内的所有直线.其中正确命题的序号是.(把你认为正确命题的序号都填上)参考答案:②③考点: 四种命题的真假关系;空间中直线与平面之间的位置关系;平面与平面之间的位置关系.专题: 分析法.分析: 若α⊥γ,β⊥γ,则α与β可能平行与可能相交,可判断①的正误; 由两个平行的平面与第三个平面的夹角相同,可判断②的正误; 根据面面垂直的判断定理,我们判断③的正误;若l∥α,则l 与α内的直线平行或异面,可判断④的正误;逐一分析后,即可得到正确的答案.解答: ①中,若α⊥γ,β⊥γ,则α与β可能平行与可能相交,故①错误; ②中,若α⊥γ,β∥γ,则α⊥β,故②正确;③中,若l∥α,l⊥β,则α中存在直线a 平行l ,即 a⊥β,由线面垂直的判定定理,得则α⊥β,故③正确;④中,若l∥α,则l 与α内的直线平行或异面,故④的错误; 故答案:②③点评: 本题考查的知识点是利用空间直线与平面之间的位置关系及平面与平面之间的位置关系判断命题的真假,处理此类问题的关键是熟练掌握线面平行或垂直的判定方法和性质. 16. 如图程序框的运行结果是 .参考答案:120【考点】程序框图.【分析】由图知,循环体执行一次,a 的值减少一次,其初值为6,当a <4时,循环体不再执行,故此循环体可执行三次,又S 的初值为1,每执行一次循环体,其值变成原来的a 倍,由此规律计算出S 的值即可得到答案【解答】解:由图,循环体共执行三次,由S 的初值为1,每执行一次循环体,其值变成原来的a 倍,故S=1×6×5×4=120 故答案为120.17. 正项数列{a n }的前n 项和为S n ,满足a n =2﹣1.若对任意的正整数p 、q (p≠q),不等式S P +S q>kS p+q 恒成立,则实数k的取值范围为.参考答案:【考点】8H :数列递推式.【分析】a n =2﹣1,可得S n =,n≥2时,a n =S n ﹣S n ﹣1,利用已知可得:a n ﹣a n ﹣1=2.利用等差数列的求和公式可得S n ,再利用基本不等式的性质即可得出.【解答】解:∵a n =2﹣1,∴S n =,∴n≥2时,a n =S n ﹣S n ﹣1=﹣,化为:(a n +a n ﹣1)(a n ﹣a n ﹣1﹣2)=0, ∵?n∈N *,a n >0, ∴a n ﹣a n ﹣1=2. n=1时,a 1=S 1=,解得a 1=1.∴数列{a n }是等差数列,首项为1,公差为2.∴S n =n+=n 2.∴不等式S P +S q >kS p+q 化为:k <,∵>,对任意的正整数p 、q (p≠q),不等式S P +S q >kS p+q 恒成立,∴.则实数k 的取值范围为.故答案为:.三、 解答题:本大题共5小题,共72分。
2021-2022学年河南省开封市大营乡第二中学高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列四组函数中,表示同一函数的是()A.与B.与C.与D.与参考答案:D在选项中,前者的属于非负数,后者的,两个函数的值域不同;在选项中,前者的定义域为,后者为或,定义域不同;在选项中,两函数定义域不相同;在选项中,定义域是的定义域为,定义域不相同,值域、对应法则都相同,所以是同一函数,故选D.2. 某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y轴表示离学校的距离。
X轴表示出发后的时间,则适合题意的图形是()参考答案:D3. 设集合,则满足A∪B=的集合B的个数是A.1 B.3 C.4 D.8参考答案:C4. 函数的定义域为()A.B.C.D.参考答案:D【考点】函数的定义域及其求法.【分析】根据函数成立的条件即可求函数的定义域.【解答】解:要使函数有意义,则2sin(π﹣2x)﹣1≥0,即sin2x≥,则2kπ+≤2x≤2kπ+,k∈Z,则kπ+≤x≤kπ+,k∈Z,即函数的定义域为,故选:D5. 若,则下列不等式成立的是()A.B.C.D.参考答案:C略6. 若不等式对任意的恒成立,则a的取值范围是()A.(-∞,0] B.C.[0,+∞) D.(-∞,2]参考答案:A由题意可得对任意的恒成立,∴对任意的恒成立,即对任意的恒成立,∴对任意的恒成立。
令,则,当且仅当时等号成立。
选A。
7. 集合P=,M=,则A.{1,2} B.{0,1,2}C.{︱0} D.{︱}参考答案:B8. “x=2kπ+(k∈Z)”是“|sinx|=1”的()A9. 函数的反函数为()A.y= B.y=C.y=D.y=参考答案:C10. 下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是()A.f(x)=x﹣1,g(x)=B.f(x)=2x﹣1,g(x)=2x+1C.f(x)=x2,g(x)=D.f(x)=1,g(x)=x0参考答案:C考点:判断两个函数是否为同一函数.专题:函数的性质及应用.分析:分别判断两个函数的定义域和对应法则是否完全相同即可.解答:解:A.函数g(x)的定义域为{x|x≠0},两个函数的定义域不相同,不是同一函数.B.函数f(x)和g(x)的定义域为R,两个函数的定义域相同,但对应法则不相同,不是同一函数.C.函数g(x)=x2,两个函数的定义域相同,对应法则相同,是同一函数.D.函数g(x)的定义域为{x|x≠0},两个函数的定义域不相同,不是同一函数.故选C.点评:本题主要考查判断两个函数是否为同一函数,判断的依据是判断两个函数的定义域和对应法则是否完全相同.二、填空题:本大题共7小题,每小题4分,共28分11. 若=,=,则=_________.参考答案:略12. 如图,点O为△ABC的重心,且OA⊥OB,AB=4,则的值为.参考答案:3213. 已知全集中有m个元素,中有n个元素.若非空,则的元素个数为________________参考答案:略14. 甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.7,现两人各自独立射击一次,均中靶的概率为______.参考答案:0.56【分析】根据在一次射击中,甲、乙同时射中目标是相互独立的,利用相互独立事件的概率乘法公式,即可求解.【详解】由题意,甲的中靶概率为0.8,乙的中靶概率为0.7,所以两人均中靶的概率为,故答案为:0.56【点睛】本题主要考查了相互独立事件的概率乘法公式的应用,其中解答中合理利用相互独立的概率乘法公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.15. 已知函数f(x)=Asin 2x,g(x)=,直线x=m与f(x),g(x)的图象分别交M、N两点,且|MN|(M、N两点间的距离)的最大值为10,则常数A的值为Δ .参考答案:5略16. 已知圆和直线,是直线上一点,若圆O上存在A,B 两点,满足,则实数的取值范围是________.参考答案:【分析】由向量相等可知三点共线且为线段中点,则;利用勾股定理和弦长为分别表示出和,从而可建立等式,根据的范围构造不等式可求得结果.【详解】由得:三点共线且为线段中点则:设圆心到直线的距离为则,为圆的弦本题正确结果:【点睛】本题考查直线与圆的相关知识的应用,涉及到直线被圆截得的弦长、勾股定理、两点间距离公式、直线与圆位置关系的应用,关键是能够利用向量相等得到三点共线和线段长度关系,从而构造方程来建立等量关系.17. 对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)f(x2) ,② f(x1x2)=f(x1)+f(x2) ,③ < 0,④,当f(x)=lnx时,上述结论中正确结论的序号是_____________.参考答案:略三、解答题:本大题共5小题,共72分。
2023-2024学年北京市海淀区高一下学期7月期末考试数学试题一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若复数z满足,则z的虚部为()A. B.2 C. D.i2.已知向量,则()A.0B.C.D.3.函数的部分图象如图所示,则其解析式为()A. B.C. D.4.若,且,则()A. B. C. D.75.在中,点D满足,若,则()A. B. C.3 D.6.已知,则下列直线中,是函数对称轴的为()A. B. C. D.7.在平面直角坐标系xOy中,点,点,其中若,则()A. B. C. D.8.在中,已知则下列说法正确的是()A.当时,是锐角三角形B.当时,是直角三角形C.当时,是钝角三角形D.当时,是等腰三角形9.已知是非零向量,则“”是“对于任意的,都有成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.定义域为、的函数的图象的两个端点分别为点是的图象上的任意一点,其中,点N满足向量,点O为坐标原点.若不等式恒成立,则称函数在上为k函数.已知函数在上为k函数,则实数k的取值范围是()A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。
11.知复数z满足,则__________,__________.12.在中,,P满足,则__________.13.在中,若,则k的一个取值为__________;当时,__________.14.一名学生想测算某风景区山顶上古塔的塔尖距离地面的高度,由于山崖下河流的阻碍,他只能在河岸边制定如下测算方案:他在河岸边设置了共线的三个观测点A,B,如图,相邻两观测点之间的距离为200m,并用测角仪器测得各观测点与塔尖的仰角分别为,,,根据以上数据,该学生得到塔尖距离地面的高度为___________________15.已知函数,给出下列四个结论:①对任意的,函数是周期函数;②存在,使得函数在上单调递减;③存在,使得函数的图象既是轴对称图形,又是中心对称图形;④对任意的,记函数的最大值为,则其中所有正确结论的序号是__________.三、解答题:本题共4小题,共48分。
四川省巴中市2021-2022学年高一下学期期末考试数学试题(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{|23}A x x =-<<,{|1}B x x =,则(A B = )A .(1,3)B .(2,3)-C .[1,3)D .[1,3]〖解 析〗{|23}A x x =-<<,{|1}B x x =,[1A B ∴=,3).〖答 案〗C2.sin 210︒的值为( )A. BC .12-D .12〖解 析〗1sin 210sin(18030)sin302︒=︒+︒=-︒=-.〖答 案〗C3.过两点(2,0)A -,(0,3)B 的直线方程为( ) A .3260x y --=B .3260x y +-=C .3260x y -+=D .3260x y ++=〖解 析〗直线经过两点(2,0)A -,(0,3)B ,而这2个点恰是直线和坐标轴的交点,∴过两点(2,0)A -,(0,3)B 的直线方程为123x y+=-,即3260x y -+=. 〖答 案〗C4.若数列{}n a 满足111n na a +=-,12a =,则2023(a = ) A .1-B .1C .2D .12〖解 析〗由题意,12a =,21111112a a ===---,3211111(1)2a a ===---,4131121112a a a ====--,⋅⋅⋅⋅⋅⋅, 所以{}n a 是以4为周期的周期数列, 所以202345053312a a a ⨯+===. 〖答 案〗D5.若0b a <<,则下列不等式中成立的是( ) A .11b a< B .2a bb a+> C .22b a <D .()()ln b ln a -<- 〖解 析〗取1a =-,2b =-,112>-,A 错误. 22(2)(1)->-,C 错误. 21ln ln >,D 错误.易得ba ,0ab >,则2b a a b a b b a +⋅=,当且仅当b aa b=,即a b =时取等号,又0b a <<,显然取不到等号,则2b aa b+>,B 正确. 〖答 案〗B6.若数列2-,a ,b ,c ,8-是等比数列,则实数b 的值为( ) A .4或4-B .4-C .4D .5-〖解 析〗2-,a ,b ,c ,8-是等比数列,2(2)(8)16b ∴=-⨯-=, 又2-,b ,8-均为该数列中的奇数项,0b ∴<,4b ∴=-. 〖答 案〗B7.溶液酸碱度是通过pH 计算的,pH 的计算公式为[]pH lg H +=-,其中[]H +表示溶液中氢离子的浓度,单位是摩尔/升,若人体胃酸中氢离子的浓度为22.510-⨯摩尔/升,则胃酸的pH 是(参考数据:20.3010)(lg ≈ ) A .1.398B .1.204C .1.602D .2.602〖解 析〗22(2.510)( 2.510)(1222)122 1.6020PH lg lg lg lg lg --=-⨯=-+=---=+≈. 〖答 案〗C8.要得到函数cos(2)6y x π=-的图象,只需将函数cos2y x =的图象( )A .向左平移6π个单位 B .向右平移6π个单位 C .向左平移12π个单位 D .向右平移12π个单位〖解 析〗cos(2)cos(2)cos[2()]6612y x x x πππ=-=-=-,所以将函数cos2y x =的图象向右平移12π个单位可得到cos(2)6y x π=-的图象.〖答 案〗D9.2022年北京冬奥会开幕式始于24节气倒计时,它将中国人的物候文明、传承久远的诗歌、现代生活的画面和谐统一起来.我国古人将一年分为24个节气,如图所示,相邻两个节气的日晷长变化量相同,冬至日晷长最长,夏至日晷长最短,周而复始.已知冬至日晷长为13.5尺,夏至日晷长为1.5尺,则一年中夏至到秋分的日晷长的和为( )尺.A .24B .60C .40D .31.5〖解 析〗相邻两个节气的日晷长变化量相同,且从冬至到夏至日晷长逐渐变短,∴从冬至日晷长到夏至日晷长的各数据依次排成一列,构成等差数列{}n a ,其中113.5a =,13 1.5a =; 故数列{}n a 的公差131 1.513.51131131a a d --===---, 同理,从夏至到冬至的日晷长依次排成一列,构成递增等差数列{}n b , 其中冬至日晷长1 1.5b =,公差为1, 故秋分日晷长7167.5b b =+=, 故一年中夏至到秋分的日晷长的和为1.57.5731.52+⨯=(尺). 〖答 案〗D10.若ABC ∆是边长为1的等边三角形,G 是边BC 的中点,M 为线段AG 上任意一点,则BM MG ⋅的取值范围是( )A .B .3[0,]4C .3[,0]4-D .[ 〖解 析〗因为ABC ∆是边长为1的等边三角形,G 是边BC 的中点,M 为线段AG 上任意一点,故AG BG ⊥,且AG =,302MG AG =, 所以23[,0]4BM MG MB MG MG ⋅=-⋅=-∈-.〖答 案〗C11.函数()f x 是定义在R 偶函数,且在[0,)+∞单调递增,若0.13a =,30.1b =,3log 0.1c =,则( )A .f (a )f >(b )f >(c )B .f (b )f >(c )f >(a )C .f (c )f >(a )f >(b )D .f (c )f >(b )f >(a )〖解 析〗根据题意,函数()f x 是定义在R 偶函数,则f (c )33(log 0.1)(log 10)f f ==,又由300.130.10.1132log 10<=<=<,而()f x 在[0,)+∞单调递增,则有f (c )f >(a )f >(b ). 〖答 案〗C12.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||(AB = )A B C D .56〖解 析〗由题意知,角α是第一或第四象限的角,由22cos22cos 13αα==-,知cos α=,因为21cos ||||B A x x AB AB α--===||AB . 〖答 案〗A二、填空题:本大题共4个小题,每小题5分,共20分,将〖答 案〗直接填写在答题卡相应题号后的横线上.13.半径为2cm ,中心角为30︒的扇形的弧长为 cm . 〖解 析〗圆弧所对的中心角为30︒即为6π弧度,半径为2cm ,弧长为||2()63l r cm ππα=⋅=⨯=.〖答 案〗3π 14.若x ,y 满足约束条件423x y x y y +⎧⎪-⎨⎪⎩,则3z x y =+的最大值为 .〖解 析〗作出不等式组对应的平面区域如图:设3z x y =+,得3y x z =-+,平移直线3y x z =-+,由图象可知当直线3y x z =-+经过点A 时,42x y x y +=⎧⎨-=⎩,解得(3,1)A ,直线3y x z =-+的截距最大,此时z 最大,33110max z =⨯+=. 则3z x y =+的最大值是10. 〖答 案〗1015.已知函数||,0()1,0x lnx x f x e x >⎧=⎨+⎩,且函数()()g x f x a =-恰有三个不同的零点,则实数a 的取值范围是 .〖解 析〗由()0g x =得()f x a =,即函数()g x 的零点是直线y a =与函数()y f x =图象交点横坐标,当0x 时,()1x f x e =+是增函数,函数的值域为(1,2],当01x <时,()f x lnx =-是减函数,当0x →时,()f x →+∞,f (1)0=, 当1x >时,()f x lnx =是增函数,当x →+∞时,()f x →+∞, 在坐标平面内作出函数()y f x =的图象,如图,观察图象知,当12a <时,直线y a =与函数()y f x =图象有3个交点,即函数()g x 有3个零点,所以实数a 的取值范围是:12a <. 〖答 案〗(1,2]16.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,其外接圆的半径2R =,且ABC ∆的面积S =ab 的最小值为 . 〖解 析〗由正弦定理知,224sin cC=⨯=,所以sin 4c C =,因为ABC ∆的面积11sin 224cS ab C ab =⋅,所以abc =所以228ab ab +⋅==,当且仅当ab 时取等号, 所以ab 的最小值为8. 〖答 案〗8三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(10分)已知函数2()2f x x ax =+-,()0f x >的解集为{|1x x <-或}x b >. (1)求实数a ,b 的值;(2)若(0,)x ∈+∞时,求函数()4()f x g x x+=的最小值. 解:(1)关于x 的不等式220x ax +->的解集为{|1x x <-或}x b > 1∴-,b 是相应方程220x ax +-=的两个根,∴112b a b -+=-⎧⎨-⨯=-⎩,解得12a b =-⎧⎨=⎩, 1a ∴=-,2b =.(2)由题意知()42()1f x g x x x x+==+-, (0,)x∈+∞,∴22()1211g x x x x x=+-⋅-=, 当且仅当2x x=时,即x 时,取等号成立.故函数()g x 的最小值为1-. 18.(12分)已知数列{}n a 前n 项和2n S n n =+. (1)求数列{}n a 的通项公式; (2)令11n n n b a a +=,求证:数列{}n b 的前n 项和14n T <. 解:(1)数列{}n a 前n 项和2n S n n =+,∴当1n =时,12a =,当2n 时,22(1)(1)2n a n n n n n =+----=∴数列{}n a 的通项公式2n a n =(2)由(1)知当数列{}n a 的通项公式:2n a n =, 12n n a a +-=,1111()2n n n b a a +∴=⨯-, 122311111111[]2n n n T a a a a a a +∴=⨯-+-+⋯+- 11111111111()()222224444n a a n n +=⨯-=⨯-=-<++, 14n T ∴<, 19.(12分)已知函数()sin()(0,0,0)2f x A x A πωϕωϕ=+>><<的部分图象如图所示.(1)求函数()f x 的〖解 析〗式;(2)若()f x 在区间[0,]m上的值域为,求m 的取值范围. 解:(1)由函数()f x 图象,可得2A =,3734632T πππ=+=,2T π∴=, 0ω>,可得21Tπω==,()2sin()f x x ϕ∴=+, 又()f x 图象过点7(,2)6π-,∴72sin()26πϕ+=-,即7sin()16πϕ+=-, ∴73262k ππϕπ+=+,k Z ∈,解得23k πϕπ=+,k Z ∈,又02πϕ<<,∴3πϕ=,故函数〖解 析〗式()2sin()3f x x π=+.(2)由(1)知()2sin()3f x x π=+,[0x ∈,]m ,则[,]333x m πππ+∈+, 又()f x的值域为,∴2233m πππ+,且0m >, 故63mππ.即[,]63m ππ∈. 20.(12分)在①313log 1log n n b b +-=,②542S b =-这两个条件中任选一个补充在下面的问题中,并解答.已知等差数列{}n a 的前n 项和为n S ,数列{}n b 是正项等比数列,且339S b ==,414b a =,______.(1)求数列{}n a 和{}n b 的通项公式; (2)若n n n c a b =,求数列{}n c 的前n 项和n T . 解:选①.(1)设数列{}n b 的公比为(0)q q >, 313log 1log n n b b +-=,得13n nb b +=,则3q =. 已知数列{}n a 为等差数列,设等差数列{}n a 的公差为d ,334149S b b a ==⎧⎨=⎩,∴21231333()999312q a a d b b q q d=⎧⎪=+=⎪⎨==⎪⎪=+⎩, 解得111a b ==,2d =,故数列{}n a 和{}n b 的通项公式分别为21n a n =-,13n n b -=; 选②.数列{}n a 为等差数列,设数列{}n a 的公差为d ,数列{}n b 的公比为(0)q q >,334145492S b b a S b ==⎧⎪=⎨⎪=-⎩,∴21231133()99931251092a a db b q q d a d q =+=⎧⎪==⎪⎨=+⎪⎪+=-⎩ 解得111a b ==,2d =,3q =,故数列{}n a 和{}n b 的通项公式分别为21n a n =-,13n n b -=. (2)由(1)知1(21)3n n n n c a b n -==-⨯,∴()()01221133353233213n n n T n n --=⨯+⨯+⨯++-⨯+-⨯①,()()12313133353233213n n n T n n -=⨯+⨯+⨯++-⨯+-⨯②,①-②得1231212(3333)(21)3n n n T n --=+⨯++++--⨯13(13)12(23)32(22)313n n n n n -⨯-=+⨯--⨯=---⨯-,∴1(1)3n n T n =+-⨯.21.(12分)在ABC ∆中、角A 、B 、C 所对的边分别为a 、b 、c ,已知2cos cos b A a B =,且tan C =- (1)求角B 的大小;(2)若点D 在AC 边上,满足2AC AD =,且3AB =,BD =BC 的长. 解:(1)因为2cos cos b A a B =,故2sin cos sin cos B A A B =, 即可得tan 2tan A B =⋯⋯①,tan tan()C B A =-+=-tan tan tan()1tan tan A BA B A B++==-②,联立①②得tan B =(舍),故6B π=; (2)由题意得:1()2BD BA BC =+,故2221(2||||cos )4BD BA BC BA BC B =++即222111(9||2||3cos )(9||33||)444BC BC B BC BC =++⨯⨯=++,整理得2||33||120BC BC +-=,解得||3BC =,或-),故BC =22.(12分)已知函数2()22cos 1f x x x =-+, (1)求()f x 单调递增区间;(2)是否存在实数m 满足对任意1x R ∈,任意2x R ∈,使111122()x x x x e e m e e --++++28()f x 成立.若存在,求m 的取值范围;若不存在,说明理由.解:(1)2()2(2cos 1)2cos22sin(2)6f x x x x x x π=--=-=-,由222262k x k πππππ--+,k Z ∈,得63k x k ππππ-+,k Z ∈.∴函数()2sin(2)6f x x π=-的单调递增区间为[6k ππ-,]3k ππ+,k Z ∈;(2)由(1)可知()2sin(2)6f x x π=-,2()2max f x ∴=,实数m 满足对任意1x R ∈,任意2x R ∈,使1111222()8()x x x x e e m e e f x --++++成立. 即对任意1x R ∈,111122()82x x x x e e m e e --++++成立, 也就是111122()60x x x x e e m e e --++++成立. 令111122()6x x x x y e e m e e --=++++,设11x x e e t -+=,那么11112222()22x x x x e e e e t --+=+-=- 1x R ∈,∴112x x t e e -=+,转化为240t mt ++在[2t ∈,)+∞上恒成立. 令2()4g t t mt =++,其对称轴2mt =-,[2t ∈,)+∞上, ∴①当22m-时,即4m -,()min g t g =(2)820m =+,解得4m -; ②当22m->,即4m <-时,2()()4024min m m g t g =-=-,解得m ∈∅.综上可得,存在实数m 满足对任意1x R ∈,任意2x R ∈,使111122()8x x x x e e m e e --++++2()f x 成立,且实数m 的取值范围是[4-,)+∞.。
山西省临汾市洪洞县刘家垣中学2022年高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知△ABC的角A,B,C所对的边分别为a,b,c,∠C=90°,则的取值()A.(0,2)B.C.D.参考答案:C【考点】正弦定理.【分析】由∠C=90°,可得a=csinA,b=ccosA,代入可得=,由于A∈.可得∈.即可得出.【解答】解:∵∠C=90°,∴a=csinA,b=ccosA,A∈.∴∈,∴∈.则=sinA+cosA=∈.故选:C.2. 若正实数x,y满足2x+y+6=xy,则xy的最小值为()A.2B.3C.18D.参考答案:C【考点】基本不等式.【分析】由正实数x,y满足2x+y+6=xy≥6+2,令=t>0,化为t2﹣2t﹣6≥0,解出即可得出.【解答】解:由正实数x,y满足2x+y+6=xy≥6+2,令=t>0,化为t2﹣2t﹣6≥0,解得t≥3,∴xy的最小值为18.当且仅当2x=y=6时取等号.故选:C.3. 已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于A. B. C. D.参考答案:B4. 已知函数,若存在,且,使成立,则以下对实数的推述正确的是()A. B. C. D.参考答案:A【分析】先根据的图象性质,推得函数的单调区间,再依据条件分析求解.【详解】解:是把的图象中轴下方的部分对称到轴上方,函数在上递减;在上递增.函数的图象可由的图象向右平移1个单位而得,在,上递减,在,上递增,若存在,,,,使成立,故选:.【点睛】本题考查单调函数的性质、反正切函数的图象性质及函数的图象的平移.图象可由的图象向左、向右平移个单位得到,属于基础题.5. 某空间几何体的三视图如下图所示,则该几何体的体积为()A.4+2π B.2+6π C.4+π D.2+4π参考答案:D该几何体是一个三棱柱与一个圆柱的组合体,体积.6. 函数f(x)=log2(3x﹣1)的定义域为()A.[1,+∞) B.(1,+∞)C.[0,+∞) D.(0,+∞)参考答案:D【考点】对数函数的定义域;函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据函数成立的条件,即可求出函数的定义域.【解答】解:要使函数有意义,则3x﹣1>0,即3x>1,∴x>0.即函数的定义域为(0,+∞),故选:D.【点评】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础.7. 直线、分别过点P(-1,3),Q(2,-1),它们分别绕P、Q旋转,但始终保持平行,则、之间的距离的取值范围为A.B.(0,5)C.D.参考答案:A略8. 设,则的大小关系是()A. B.C. D.参考答案:D略9. (5分)已知函数f(x)=()|x|,设a=f(2﹣0.3),b=f(log20.3),c=f(ln10),则a,b,c 的大小关系是()A.a>c>b B.b>a>c C.c>a>b D.a>b>c参考答案:D考点:指数型复合函数的性质及应用.专题:函数的性质及应用.分析:比较2﹣0.3,log20.3,ln10的绝对值的大小,结合指数函数的单调性即可解得此题.解答:∵|2﹣0.3|=2﹣0.3<1,1<|log20.3|=log2<2,ln10>2,∴|2﹣0.3|<|log20.3|<|ln10|;又y=()x是减函数,∴f(2﹣0.3)>f(log20.3)>f(ln10);故a>b>c.故选:D.点评:本题主要考察了利用指数型复合函数的单调性比较大小,属于中档题.10. 如图是根据,的观测数据(i=1,2,…,10)得到的散点图,由这些散点图可以判断变量,具有线性相关关系的图是()A. ①②B. ①④C. ②③D. ③④参考答案:D试题分析:若变量,具有线性相关关系,那么散点就在某条直线附近,从左上到右下,或左下到右上,故选D.考点:散点图二、填空题:本大题共7小题,每小题4分,共28分11. 每项为正整数的数列{a n}满足,且,数列{a n}的前6项和的最大值为S,记的所有可能取值的和为T,则_______.参考答案:62【分析】采用逆推的方法可知所有可能的取值,从而得到;根据前6项和的所有可能结果可知,作差得到结果.【详解】由数列每项均为正整数,则采用逆推的方式可得下图:又前6项和所有可能的结果中最大值为:本题正确结果:62【点睛】本题考查根据数列各项之间的关系求解数列中的项的问题,关键是能够采用逆推的方式准确求解出所有可能的取值.12. 设集合A={x|x2﹣3x+2=0},集合B={x|x2﹣4x+a=0,a为常数},若B?A,则实数a的取值范围是:.参考答案:a≥4【考点】集合的包含关系判断及应用.【专题】集合.【分析】先求出集合A中的元素,结合集合A和B的关系,通过讨论B中的元素得到关于a的方程,解出即可.【解答】解:集合A={x|x2﹣3x+2=0}={1,2},集合B={x|x2﹣4x+a=0,a为常数},若B?A,则B是?时:△=16﹣4a<0,解得:a>4,B={1}时:则1﹣4+a=0,解得:a=3, a=3时:解得B={1,3},不合题意, B={2}时:则4﹣8+a=0,解得:a=4, 综上:实数a 的取值范围是:a≥4 故答案为:a≥4.【点评】本题考查了集合之间的关系,考查二次函数问题,分类讨论,是一道基础题.13. 如图,一个等腰直角三角形的直角边长为2,分别以三个 顶点为圆心,1 为半径在三角形内作圆弧,三段圆弧与斜边围成区域(图中白色部分).若在此三角形内随机取一点,则点落在区域内的概率为.参考答案:14.设a >1,若对于任意的x∈[a,2a],都有y∈[a,a 2]满足方程log a x+log a y=3,则a 的取值范围是 .参考答案:[2,+∞)【考点】对数的运算性质. 【专题】计算题.【分析】先由方程log a x+log a y=3解出y ,转化为函数的值域问题求解.【解答】解:易得,在[a ,2a]上单调递减,所以,故?a≥2故答案为[2,+∝).【点评】本题考查对数式的运算、反比例函数的值域、集合的关系等问题,难度不大.注意函数和方程思想的应用.15. 已知正实数,,且,若,则的值域为 .参考答案:因为,所以.因为且,.所以,所以,所以,.则的值域为.16. 计算: ▲ .参考答案:17. (5分)如图,△ABC 是直角三角形,∠ACB=90°,PA⊥平面ABC ,此图形中有 个直角三角形.参考答案:4考点:棱锥的结构特征.专题:证明题.分析:本题利用线面垂直,判定出线线垂直,进而得到直角三角形,只需证明直线BC⊥平面PAC问题就迎刃而解了.解答:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.故答案为:4点评:本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.三、解答题:本大题共5小题,共72分。
下学期期末考试高一年级文科数学试题一.选择题 (本大题共12小题,每小题5分,共60分) 1.不等式0)2(≥+x x 的解集为( )A .}20|{-≤≥x x x 或B .}02|{≤≤-x xC . }20|{≤≤x xD .}20|{≥≤x x x 或2. 数列5791,,,,....81524--的一个通项公式是( ) A. 1221(1)()n n n a n N n n ++-=-∈+ B.1221(1)()3n nn a n N n n -+-=-∈+ C. 1221(1)()2n n n a n N n n ++-=-∈+ D. 1221(1)()2n n n a n N n n-++=-∈+ 3. 设,,a b c R ∈,且a b >,则( ) A.ac bc > B.11a b< C .22a b > D .33a b >4. 在等差数列{}n a 中,210,a a 是方程22x x -6a 等于 ( ). A.12 B.14 C .-745. sin cos αα+=则sin 2α=( ) A .23- B .29-C .29 D .236.在等比数列中,a 1=98,a n =13,q =23,则项数n 为( )A .3B .4C .5D .67.的解集为(1,3)-( )A .3B .13-C .-1D .18.若sin cos 1sin cos 2αααα+=-,则tan 2α= ( )A. 34 B .34-C .35-D .359. 在ABC ∆中,角A 、B 的对边分别为a 、b 且2A B =,4sin 5B =,则ab的值是( ) A .35B .65 C .43 D .8510. 已知数列{}n a 的通项公式1()2n n a n N n ++=∈+,设{}n a 的前n 项积为n s ,则使132n s <成立的自然数n ( )A .有最大值62B .有最小值63C .有最大值62D .有最小值31 11.已知71cos =α,1413)cos(=-βα,且20παβ<<<,=β ( ) A.4πB.6π C.3π D.π125 12.已知数列{}n a 满足1(1)21,nn n a a n ++-=-则{}n a 的前60项和为( )A .3690B .3660C .1845D .1830 二、填空题:(本大题共4小题,每小题5分,共20分。
) 13.不等式(3)(2)01x x x -+>-的解集为___________.14.已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. 15.函数()f x =22sin 2cos 2x x -的最小正周期是 . 16. 如图,从玩具飞机A 上测得正前方的河流的两岸B ,C 的俯 角分别为67°,30°,此时气球的高是46 m ,则河流的宽度BC 约等于________m .(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,3≈1.73)三、解答题:本大题共6小题,满分70分。
解答应写出文字说明,证明过程或演算步骤。
17. (本小题满分10分)当a 为何值时,不等式22(1)(1)10a x a x ----<的解集是全体实数?18.(本小题满分12分) 已知280,0,1x y y x>>+=且,求: (1) xy 的最小值;(2) x y +的最小值.19.( 本小题满分12分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (1) 求n a 及n S ;第16题图(2) 求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T .20.(本小题满分12分)已知错误!未找到引用源。
. (1)求角错误!未找到引用源。
的大小;(2)如果错误!未找到引用源。
,错误!未找到引用源。
,求错误!未找到引用源。
的面积.21. (本小题满分12分)已知函数()sin()cos(2)f x x a x θθ=+++,其中a ∈R ,(,)22ππθ∈- (1)当4a πθ==时,求()f x 在区间[]0,π上的最大值与最小值;(2)若()0,()12f f ππ==,求a ,θ的值.22.(本小题满分12分)设各项均为正数的等比数列{}n a 中,133510,40.a a a a +=+= 2log n n b a = (1)求数列{}n b 的通项公式; (2)若111,nn n nb c c c a +==+,求证: 3n c <; (3)是否存在正整数k ,使得1111210n n n kb b b n ++⋅⋅⋅⋅⋅⋅+>+++对任意正整数n 均成立?若存在,求出k 的最大值,若不存在,说明理由.高一年级文科数学试答案17若a =1,则原不等式为-1<0,恒成立;………….2分.若a =-1,原不等式为2x -1<0,即x <12,不符合题目要求,舍去.………….4分(2)当a 2-1≠0,即a ≠±1时,原不等式的解集是全体实数的条件是⎩⎪⎨⎪⎧a 2-1<0,Δ=(a -1)2+4(a 2-1)<0,…………6分解得-35<a <1. ………….9分综上所述,当-35<a ≤1时,原不等式的解集是全体实数.………….10分18.解:(1)∵x >0,y >0,∴xy =2x +8y ≥216xy 即xy ≥8xy ,∴xy ≥8, 即xy ≥64. …………4分当且仅当2x =8y即x =16,y =4时,“=”成立.…………5分∴xy 的最小值为64…………6分(2)∵x >0,y >0,且2x +8y -xy =0, ∴2x +8y =xy ,即2y +8x=1.∴x +y =(x +y )·(2y +8x )=10+2x y +8yx≥10+22x y ·8yx=18…………10分当且仅当2x y =8yx,即x =2y =12时“=”成立.∴x +y 的最小值为18. …………12分 19. (1)解得13a =,2d =,……….2分所以32(1)21n a n n =+-=+;………….3分2(1)3222n n n S n n n -=+⨯=+.………….6分 (2)由(Ⅰ)可知,22n S n n =+,所以所以123111111n n nT S S S S S -=+++++L 1111111111(1)232435112n n n n =-+-+-++-+--++L 111112212n n ⎛⎫=+-- ⎪++⎝⎭31114212n n ⎛⎫=-+ ⎪++⎝⎭.……….12分20.解:(1)因为错误!未找到引用源。
,所以错误!未找到引用源。
,……………………3分 又因为错误!未找到引用源。
,所以错误!未找到引用源。
………………………5分 (2)因为错误!未找到引用源。
,错误!未找到引用源。
,所以错误!未找到引用源。
…………6分 由正弦定理错误!未找到引用源。
,得错误!未找到引用源。
……………………………………7分 因为错误!未找到引用源。
,所以错误!未找到引用源。
……………………………………8分解得错误!未找到引用源。
,因为错误!未找到引用源。
,所以错误!未找到引用源。
……………………………………10分故△ABC 的面积错误!未找到引用源。
…………………………………………12分21.解:(1)当a =2,θ=π4时,f (x )=sin ⎝⎛⎭⎫x +π4+2cos ⎝⎛⎭⎫x +π2=22()sin x +cos x -2sin x =22 cos x -22sin x =sin ⎝⎛⎭⎫π4-x ,……………….3分因为x ∈[0,π],从而π4-x ∈⎣⎡⎦⎤-3π4,π4,…………………4分 故f (x )在[0,π]上的最大值为22,最小值为-1………….6分 (2)由⎩⎪⎨⎪⎧f ⎝⎛⎭⎫π2=0,f (π)=1得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2 θ-sin θ-a =1. ………………7分. 又θ∈⎝⎛⎭⎫-π2,π2知cos θ≠0, 解得⎩⎪⎨⎪⎧a =-1,θ=-π6.………….12分 22.解:(1)设数列{a n }的公比为q (q >0),由题意有⎩⎪⎨⎪⎧a 1+a 1q 2=10a 1q 2+a 1q 4=40,∴a 1=q =2,∴a n =2n , ∴b n =n . …………3分.(2)∵c 1=1<3,c n +1-c n =n2n ,…………4分.当n ≥2时,c n =(c n -c n -1)+(c n -1-c n -2)+…+(c 2-c 1)+c 1=1+12+222+…+n -12n -1,∴12c n =12+122+223+…+n -12n . 相减整理得:c n =1+1+12+…+12n -2-n -12n -1=3-n +12n -1<3,故c n <3. …………7分.(3)令f (n )=1b n +1+1b n +2+…+1b n +n=1n +1+1n +2+ (12)∵f (n +1)-f (n )=12n +1+12n +2-1n +1=12n +1-12n +2>0, ∴f (n +1)>f (n ). ∴数列{f (n )}单调递增, ∴f (n )min =f (1)=12.由不等式恒成立得:k 10<12,∴k <5.故存在正整数k ,使不等式恒成立,k 的最大值为4…………12分.。