高一下学期期末数学(文)试题及答案
- 格式:doc
- 大小:406.50 KB
- 文档页数:6
青海省西宁市2021-2022学年高一下学期期末考试数学试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a ,b ,c 是任意实数,且a b >,则下列不等式一定成立的是( ) A .22a b >B .11a b< C .ac bc > D .22a b >〖解 析〗a ,b ,c 是任意实数,且a b >, ∴选项A ,如01>-,则选项A 不成立,选项B ,如31>-,则选项B 不成立, 选项C ,如0c =,则选项C 不成立,选项D ,根据2x y =增函数,则22a b >,选项D 正确. 〖答 案〗D2.在ABC ∆中,若45,60,A B BC =︒=︒=(AC = )A .B .CD .〖解 析〗在ABC ∆中,45,60,A B BC =︒=︒=由正弦定理得,sin sin BC ACA B=sin 60AC =︒,解得:AC = 〖答 案〗A3.某人连续投篮2次,事件“至少有1次投中”的对立事件是( ) A .恰有1次投中 B .至多有1次投中C .2次都投中D .2次都未投中〖解 析〗某人连续投篮2次,事件“至少有1次投中”的对立事件是2次都未投中. 〖答 案〗D4.已知等比数列{}n a 的前3项和为78,第1项与第3项的和为60,则数列{}n a 的公比 为( ) A .3B .2C .13D .3或13〖解 析〗设数列{}n a 的公比为q ,等比数列{}n a 的前3项和为78,第1项与第3项的和为60, 2786018a ∴=-=,1360a a +=,∴181860q q +=,解得3q =或13. 〖答 案〗D5.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若2220a c b +-<,则ABC ∆必为( ) A .钝角三角形B .直角三角形C .锐角三角形D .等腰三角形〖解 析〗因为2220a c b +-<,所以由余弦定理得,222cos 02a c b B ac +-=<,又因为(0,)B π∈,所以(,)2B ππ∈,所以ABC ∆为钝角三角形.〖答 案〗A6.执行如图的程序框图,输出的S 的值为( )A .1-B .0C .1D .2〖解 析〗当1n =时,cos02S π==,当2n =时,0cos 1S π=+=-, 当3n =时,31cos12S π=-+=-, 当4n =时,1cos20S π=-+=, 当5n =时,50cos02S π=+=, 当6n =时,0cos31S π=+=-,.........所以S 是以4为周期的函数,所以当202345053n ==⨯+时,1S =-.〖答 案〗A7.已知x ,y 都是正数,若2x y +=,则14x y+的最小值为( ) A .74B .92C .134D .1〖解 析〗已知x ,y 都是正数,且2x y +=,则141141419()()(5)(522222y x x y x y x y x y +=++=+++=, 当且仅当23x =,43y =时等号成立, 所以14x y +的最小值为:92.〖答 案〗B8.某大学女生的体重y (单位:)kg 与身高x (单位:)cm 之间的线性回归方程为ˆ0.8585.71yx =-,则下列说法错误的是( ) A .y 与x 正相关B .回归直线过样本的中心点(x ,)yC .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则其体重必为58.79kg 〖解 析〗对于A ,由于线性回归方程中x 的系数为0.85, 因此y 与x 呈正相关,故A 正确,对于B ,回归直线必过样本的中心点(x ,)y ,故B 正确,对于C ,由线性回归方程中系数的意义可知,该大学某女生身高增加1cm ,则其体重约增加0.85kg ,故C 正确,对于D ,当该大学某女生身高为170cm ,则其体重估计值为58.79kg ,故D 错误. 〖答 案〗D9.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,30a =,25b =,42A =︒,则此三角形解的情况为( ) A .无解B .有两解C .有一解D .有无数解〖解 析〗在ABC ∆中,由正弦定理有sin sin a b A B =,sin sin b A B a =,5sin sin 6B A =,sin30sin sin45A ︒<<︒,1sin 2A <<55sin 126A <<,∴5sin 12B <<a b >,A B ∴>, B 只能为锐角的一个值,所以ABC ∆只有一个解.〖答 案〗C10.2020年是全面实现小康社会目标的一年,也是全面打赢脱贫攻坚战的一年,某研究性学习小组调查了某脱贫县的甲、乙两个家庭,对他们过去6年(2014年到2019年)的家庭收入情况分别进行统计,得到这两个家庭的年人均纯收入(单位:百元/人)茎叶图.对甲、乙两个家庭的年人均纯收入(以下分别简称“甲”“乙” )情况的判断,正确的是( )A .过去的6年,“甲”的极差大于“乙”的极差B .过去的6年,“甲”的平均值大于“乙”的平均值C .过去的6年,“甲”的中位数大于“乙”的中位数D .过去的6年,“甲”的平均增长率大于“乙”的平均增长率 〖解 析〗对于A ,甲的极差为42366-=,乙的极差为41347-=, 所以“甲”的极差小于“乙”的极差,故选项A 错误; 对于B ,甲的平均数是1230(363737384042)66⨯+++++=,乙的平均数为1228(343638394041)66⨯+++++=,所以“甲”的平均值大于“乙”的平均值,故选项B 正确; 对于C ,甲的中位数是1(3738)37.52⨯+=,乙的中位数是1(3839)38.52⨯+=,所以“甲”的中位数小于“乙”的中位数,故选项C 错误;对于D ,过去61,1,因为42413634<, 所以“甲”的平均增长率小于“乙”的平均增长率,故选项D 错误. 〖答 案〗B11.已知数列{}n a 满足2(1)n n a n =-,则12321(n a a a a ++++⋯+= )A .(1)(21)n n -++B .(1)(21)n n ++C .(1)n n -+D .(1)n n +〖解 析〗22222221232112345(2)(21)n a a a a n n +++++=-+-+-++-+2222221(23)(45)[(2)(21)]n n =-+-+-++-+(21)(22)1(23)(45)(221)[12345(21)](1)(21)2n n n n n n n ++=--+-+--++=-+++++++=-=-++. 〖答 案〗A 12.设区间[3D π=,]a ,若[2a π∈-,]π,则“函数cos(2)3y x π=-在D 上为减函数”的概率为( ) A .19B .23C .29D .12〖解 析〗由2223k x k ππππ-+,k Z ∈,可得263k x k ππππ++,k Z ∈,函数cos(2)3y x π=-在[3π,]a 上为减函数, 只需考虑0k =,即区间[6π,2][33ππ,]a ,则233aππ<, 所以“函数cos(2)3y x π=-在D 上为减函数”的概率为22339()2ππππ-=--. 〖答 案〗C二、填空题:本题共4小题,每小题5分,共20分. 13.不等式2680x x ++>的解集为 .〖解 析〗不等式2680x x ++>化为(2)(4)0x x ++>,2x ∴>-或4x <-, 〖答 案〗(-∞,4)(2--⋃,)+∞14.已知公差为整数的等差数列{}n a 满足145a a +=,122a a =,则11n n a a +⎧⎫⎨⎬⎩⎭的前11项和为 .〖解 析〗设公差为整数的等差数列{}n a 的公差为d ,则由141252a a a a +=⎧⎨=⎩,整理得:111235()2a d a a d +=⎧⎨+=⎩.解得111a d =⎧⎨=⎩或16173a d =-⎧⎪⎨=⎪⎩(舍去). 所以1(1)1n a n n =+-⨯=, 所以11111(1)1n n a a n n n n +==-++, 所以12231112111111111111122311121212a a a a a a +++=-+-++-=-=. 〖答 案〗111215.某校高二(1)班共有48人,学号依次为1,2,3,⋯,48,现用系统抽样的方法抽取一个容量为6的样本.已知学号为3,11,19,27,43的同学在样本中,那么还有一名同学的学号为 . 〖解 析〗抽样间距为4886=,以还有一名同学的学号为27835+=. 〖答 案〗3516.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,22()sin()sin b c A C bc A -+=,且3B π=,则C 的大小为 .〖解 析〗由22()sin()sin b c A C b A -+=,得22()sin sin b c B bc A -=, 结合正弦定理可得22()b c b bca -=即22ac b c =-①,由余弦定理得2221cos 22a cb B ac +-==,即222a c bac +-=②,联立①②可得2,a c b ==,则222222cos 2a b c C ab +-===,故6C π=.〖答 案〗6π 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)我国棉花产量居世界首位,产棉省市区有22个新疆是长绒棉的主产区,新疆棉区日照充足,气候干旱,雨量稀少,属灌溉棉区,所产的新疆长绒棉因质地光亮、有弹性,绒长质优,原棉色泽好,备受消费者的青睐.某科技公司欲进一步改良优质棉品质,对甲乙两块试验田种植的两种棉花新品种的棉绒长度进行测量,分别记录抽查数据如下(单位:):mm甲:102 101 99 98 103 98 99; 乙:110 115 90 85 75 115 110.试从统计的角度分析说明哪个棉花新品种比较稳定. 解:品种甲的平均数1102101999810398991007x ++++++==,甲的方差为2222222211[(102100)(101100)(99100)(98100)(103100)(98100)(99100)]7s =-+-+-+-+-+-+-247=, 乙的平均数21101159085751151101007x ++++++==,乙的方差为2222222221[(110100)(115100)(90100)(85100)(75100)(115100)(110100)]7s =-+-+-+-+-+-+-16007=,12x x =,2212s s <, ∴甲块试验田种植的棉花新品种的棉绒长度比较稳定.18.(12分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且1a =,c =. (1)若1b =,求B ; (2)若6A π=,求b .解:(1)1a =,c ,1b =,.由余弦定理可得:222cos2a c b B ac +-===,又(0,)B π∈,∴6B π=.(2)1a =,c由正弦定理可得:sin 1sin 2c A C a ===(0,)C π∈,∴3C π=或23C π=.当3C π=时,由内角和定理可得2B π=,ABC ∴∆为直角三角形,∴2b ==;当23C π=时,由内角和定理可得6A B π==,b a ∴=,1b ∴=. 综上,2b =或1b =.19.(12分)已知n S 是公差不等于0的等差数列{}n a 的前n 项和,77S =,5a 是4a 与7a 的等比中项.(1)求数列{}n a 的通项公式; (2)求数列n S n ⎧⎫⎨⎬⎩⎭的前20项和.解:(1){}n a 是等差数列,17263542a a a a a a a ∴+=+=+=, 由77S =,得1747()72722a a a +⨯==,则477a =,41a ∴=, 设数列{}n a 的公差为d ,则由2547a a a =,得2(1)1(13)d d +=⋅+, 解得0d =(舍去)或1d =.4(?4)?3n a a n d n ∴=+=; (2)由(1)知1()(5)513,,2(1)2222n n n n n a a S n n n a n S n n +--=-====-+-, 令n n S b n =,则12(1)2n b n =-+-,∴111122(1)222n n b b n n +-=-++--=, {}n b ∴是首项为2-,公差为12的等差数列, ∴12202019120(2)5522b b b ⨯+++=⨯-+⨯=. 即数列n S n ⎧⎫⎨⎬⎩⎭的前20项和为55.20.(12分)某企业投资两个新型项目,投资新型项目A 的投资额m (单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m =-,投资新型项目B 的投资额x (单位:十万元)与纯利润y (单:万元)的散点图如图所示.(1)求y 关于x 的线性回归方程;(2)若该企业有一笔50万元的资金用于投资A ,B 两个项目中的一个,为了收益最大化,应投资哪个项目?附:回归直线ˆˆˆybx a =+的斜率和截距的最小二乘估计分别为1221ˆni ii nii x ynxy b xnx ==-=-∑∑,ˆˆa y bx =-.解:(1)由散点图可知,x 取1,2,3,4,5时,y 的值分别为2,3,5,7,8.所以3,5x y ==. 2222221223354758535ˆ 1.61234553b ⨯+⨯+⨯+⨯+⨯-⨯⨯==++++-⨯,则ˆ5 1.630.2a =-⨯=. 故y 关于x 的线性回归方程为ˆ 1.60.2yx =+. (2)若投资A 项目,则该企业所得纯利润为501.70.5810⨯-=万元; 若投资B 项目,则该企业所得纯利润为501.60.28.210⨯+=万元; 因为88.2<,所以投资B 项目收益最大.21.(12分)已知数列{}n a ,{}n b 满足11310b a =,*12()n n n b a n N =+∈,且2a ,7a ,21b -成等比数列,其中{}n a 为正项等差数列. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n S . 解:(1)设{}n a 的公差为(0)d d >, 11310b a =,113(12)10a a ∴+=,∴134a =, 2134a a d d =+=+,713664a a d d =+=+,223?144()4b a d ==+, 由2a ,7a ,21b -成等比数列,得2233(6)4()44d d +=+,0d >,则316d =,∴333(?1)(3)41616n a n n =+=+;(2)因为3(3)16n a n =+,所以31(3)216n n b n =++, 令(3)2n n +的前n 项和为n T , 124252(3)2n n T n =⨯+⨯+++⨯,①则23124252(3)2n n T n +=⨯+⨯+++⨯,②①-②得,123142222(3)2n n n T n +-=⨯++++-+⨯,∴1(2)24n n T n +=+⋅-,故33(2)284n n S n n =+⋅+⋅-.22.(12分)饮用水水源的安全是保障饮用水安全的基础.同时国家提倡节约用水,全民积极维护饮用水水源安全,保障安全饮水2021年5月13日下午,正在河南省南阳市考察调研的**来到淅川县,先后考察了陶岔渠首枢纽工程、丹江口水库,听取南水北调中线工程建设管理运行和水源地生态保护等情况介绍.为了提高节约用水意识,某校开展了“节约用水,从我做起”活动,从参赛的学生中随机选取100人的成绩作为样本,得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值,并估计该校此次参赛学生成绩的平均分x (同一组数据用该组区间的中点值代表);(2)在该样本中,若采用分层抽样方法,从成绩低于65分的学生中随机抽取6人调查他们的答题情况,再从这6人中随机抽取3人进行深入调研,求这3人中至少有1人的成绩低于55分的概率.解:(1)由频率分布直方图可知,(0.0050.02520.01)101a +⨯++⨯=,解得0.035a =; 这组数据的平均数为500.05600.25700.35800.25900.171⨯+⨯+⨯+⨯+⨯=, 所以估计该校此次参赛学生成绩的平均分71x =;(2)根据频率分布直方图可知,成绩在[45,55),[55,65)内的频率分别为0.05,0.25, 所以采用分层抽样的方法从样本中抽取6人,则成绩在[45,55)内的有1人,在[55,65)内的有5人,所以从这6人中随机抽取3人进行深入调研,这3人中至少有1人的成绩低于55分的概率为32653612C C C -=.。
2022-2023学年北京市丰台区高一(下)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知向量a →=(﹣1,2),b →=(﹣2,k ).若a →∥b →,则实数k =( ) A .1B .﹣1C .4D .﹣42.设i 是虚数单位,则1−i i=( )A .1+iB .1﹣iC .﹣1+iD .﹣1﹣i3.在平面直角坐标系xOy 中,角α与角β均以x 轴的非负半轴为始边,终边关于原点O 对称.若角α的终边与单位圆⊙O 交于点P (23,−√53),则cos β=( )A .23B .−23C .√53D .−√534.已知sin α=45,α∈(0,π2),则sin(α−π4)=( )A .√210B .−√210C .7√210D .−7√2105.《数书九章》是中国南宋时期杰出数学家秦九韶的著作,在该书的第五卷“三斜求积”中,提出了由三角形的三边直接求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”把以上这段文字写成公式,就是S =√14[c 2a 2−(c 2+a 2−b 22)2](其中S 为三角形面积,a 为小斜,b 为中斜,c 为大斜).在△ABC 中,若a =√2,b =√3,c =3,则△ABC 的面积等于( ) A .√24B .√22C .√34D .√326.已知m ,n 是两条不重合直线,α,β是两个不重合平面,则下列说法正确的是( ) A .若m ∥n ,n ∥α,则m ∥αB .若α⊥β,m ∥α,则m ⊥βC .若α⊥β,n ⊥α,m ⊥n ,则m ⊥βD .若α⊥β,m ⊄α,m ⊥β,则m ∥α7.将函数y =cos2x 图象上的点P(π6,m)向右平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =cos(2x −π6)的图象上,则( )A .m =12,s 的最小值为π12B .m =12,s 的最小值为π6C .m =√32,s 的最小值为π12D .m =√32,s 的最小值为π68.如图,在四边形ABCD 中,AB ‖CD ,AB =3,CD =2,AD =√3,∠BAD =90°.若P 为线段AB 上一动点,则CP →⋅DP →的最大值为( )A .2B .3C .6D .79.如图,在正方形SG 1G 2G 3中,E ,F 分别为边G 1G 2,G 2G 3的中点.现沿线段SE ,SF 及EF 把这个正方形折成一个四面体,使G 1,G 2,G 3三点重合,重合后的点记为G .在该四面体G ﹣SEF 中,作GO ⊥平面SEF ,垂足为O ,则O 是△SEF 的( )A .垂心B .内心C .外心D .重心10.如图,已知直线l 1∥l 2,A 为l 1,l 2之间一定点,并且点A 到l 1的距离为2,到l 2的距离为1,B 为直线l 2上一动点,作AC ⊥AB ,且使AC 与直线l 1交于点C ,则△ABC 面积的最小值为( )A .1B .32C .2D .4二、填空题共5小题,每小题5分,共25分。
2021-2022学年安徽省安庆市第一中学高一下学期期末数学试题一、单选题1.化简:OP OA PB BC -++=( )A .PCB .0C .ABD .AC【答案】D【分析】利用向量的加减法运算法则直接求解.【详解】OP OA PB BC AP PB BC AB BC AC -++=++=+=. 故选:D2.在ABC 中,1,2,60a c B ===︒,则b =( )A.1 B .2 C D 【答案】D【分析】根据由余弦定理,可得2222cos b a c ac B =+-,代入数据即得.【详解】由余弦定理,得2222212cos 1221232b ac ac B =+-=+-⨯⨯⨯=,∴ b =故选:D.3.已知i 为虚数单位,复数z 满足|2i |1z -=,则||z 的最大值为( ) A.1 B C .2D .3【答案】D【分析】设i(,)z x y x y =+∈R ,利用|2i |1z -=推出z 对应复平面上的点的轨迹,||z 的最大值即为轨迹上的点到原点距离的最大值.【详解】设i(,)z x y x y =+∈R ,由|2i |1z -=,1,则22(2)1x y +-=,于是(,)A x y 可看成以(0,2)为圆心,半径为1的圆上运动,||z 意为A 到(0,0)的距离,距离最大值为3,所以max ||=3z . 故选:D.4.如图正方形OABC 的边长为1,它是水平放置的一个平面图形的直观图,则原图形的面积( )A .22B .1C 2D .(212【答案】A【分析】由题意求出直观图中OB 的长度,根据斜二测画法,求出原图形平行四边形的高,即可求出原图形的面积.【详解】解:由题意正方形OABC 的边长为1,它是水平放置的一个平面图形的直观图, 所以OB 2=2 所以原图形的面积为:1×2=2 故选A .【点睛】本题考查斜二测直观图与平面图形的面积的关系,斜二测画法,考查计算能力. 5.小红同学统计了她妈妈最近6次的手机通话时间(单位:分钟),得到的数据分别为12,5,7,11,15,30,则这组数据的60%分位数是( ) A .12 B .11.5C .11D .7【答案】A【分析】将数据排序,根据百分位数的求法求60%分位数. 【详解】将数据从小到大排序为5,7,11,12,15,30, 所以660% 3.6⨯=,故该组数据的60%分位数是12. 故选:A6.设事件A ,B 相互独立,()0.6P A =,()0.3P B =,则()P AB AB ⋃=( ) A .0.36 B .0.504C .0.54D .0.9【答案】C【分析】根据独立事件的概率计算公式,结合题意,带值求解即可.【详解】根据题意,AB AB 与互斥,A B ,相互独立,B ,A 相互独立,AB ,AB 相互独立,故()P AB AB ⋃=()()()()()()P AB P AB P A P B P A P B +=+0.60.70.40.30.54=⨯+⨯=.故选:C.7.已知长方体1111ABCD A B C D -中14AB AA ==,3BC =,M 为1AA 的中点,N 为11C D 的中点,过1B 的平面α与DM ,1A N 都平行,则平面α截长方体所得截面的面积为( ) A .322 B .311C .422D .511【答案】A【分析】过1B 作11//B E A N 交11D C 延长线于E ,G 为1CC 中点,连接1B G ,利用长方体性质及线面平行的判定证1//A N 面1B GE 、//DM 面1B GE ,即面1B GE 为平面α,再延长EG 交DC 于F ,连接AF ,利用线线、线面的性质确定面1AFGB 为平面α截长方体所得截面,最后延长1,AF B G 分别交BC 于一点并判断交于同一点,根据已知结合余弦定理、三角形面积公式及1134AFGB AHB S S =求截面面积即可.【详解】过1B 作11//B E A N 交11D C 延长线于E ,则11112C ED C =,若G 为1CC 中点,连接1B G ,而M 为1AA 的中点,在长方体中1//B G DM ,而111B G B E B ⋂=且11,B G B E ⊂面1B GE ,由1A N ⊄面1B GE ,则1//A N 面1B GE ,由DM ⊄面1B GE ,则//DM 面1B GE , 所以面1B GE 即为平面α,延长EG 交DC 于F ,易知:F 为DC 中点,则1//EF C D 且1EF C D =,又11//C D B A 且11C D B A =, 故1AFEB 为平行四边形,则1//EF B A 且1EF B A =,故1,,,,A F E G B 共面, 连接AF ,即面1AFGB 为平面α截长方体所得截面,延长1,AF B G 分别交BC 于一点,而在1,ABH B BH 中,CF CG 都为中位线, 由14AB AA ==,3BC =,则1CG CFB B AB=,故1,AF B G 交BC 于同一点H , 易知:△1AHB 为等腰三角形且1213AH B H ==142AB =,则1104329cos 25213AHB -∠==⨯,可得1sin AHB ∠=,又113315244213AFGB AHB S S ==⨯⨯⨯=故选:A【点睛】关键点点睛:利用长方体的性质及线面平行的判定确定平面α,再根据平面的基本性质找到平面α截长方体所得截面,并应用余弦定理、三角形面积公式及相似比求截面面积.8.将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有 A .12种 B .18种C .24种D .36种【答案】A【详解】【思路点拨】先排第一列三个位置,再排第二列第一行上的元素,则其余元素就可以确定了.解:先排第一列,由于每列的字母互不相同,因此共有3×2×1种不同的方法;再排第二列,其中第二列第一行的字母共有2种不同的排法,第二列第二、三行的字母只有1种排法,因此共有3×2×1×2=12(种)不同的方法. 二、多选题9.若复数z 满足()12i 8i z -=-,则( )A .z 的实部为2B .zC .z 的虚部为2D .z 在复平面内表示的点位于第四象限【答案】AB【分析】化简复数后根据实部、虚部的概念可判断选项A 、C ,求出复数的模,可判断选项B ,根据复数的几何意义可判断选项D. 【详解】因为()()()()8i 12i 8i 1015i 23i 12i 12i 12i 5z -+-+====+--+,所以z 的实部为2,z 的虚部为3,所以||z =z 在复平面内表示的点位于第一象限故A 、B 正确,C ,D 错误. 故选:AB10.已知O 是ABC 所在平面内一点,则下列结论正确的是( ) A .若()()0AB AC AB AC +⋅-=,则ABC 为等腰三角形B .若0OA OB OC ++=,则O 是ABC 的外心 C .若0AB BC ⋅>,则ABC 为钝角三角形D .若0OA BC ⋅=,0OB AC ⋅=,则0OC AB ⋅= 【答案】ACD【分析】由数量积的运算判断A ,根据向量的夹角公式判断C ,由垂直的向量表示判断D ,根据向量线性运算判断B .【详解】由()()0AB AC AB AC +⋅-=,得22AB AC =,即AB AC =,故A 对; 由0OA OB OC ++=,取BC 中点D ,连接OD ,则2OB OC OD OA +==-, 所以,OA OD 共线,且O 在线段AD 上,21OA OD =,即O 为重心,故B 错;由0AB BC ⋅>,得B π-为锐角,B 为钝角故C 对;由0OA BC ⋅=,0OB AC ⋅=,得,OA BC OB AC ⊥⊥,知O 为ABC 的垂心,所以0OC AB ⋅=,故D 对.故选:ACD.11.某班级到一工厂参加社会实践劳动,加工出如图所示的圆台12O O ,在轴截面ABCD 中,2cm AB AD BC ===,且2CD AB =,则( )A .该圆台的高为1cmB .该圆台轴截面面积为233cmC 373πD .一只小虫从点C 沿着该圆台的侧面爬行到AD 的中点,所经过的最短路程为5cm 【答案】BCD【分析】由勾股定理即可求得圆台的高,即可判断A 选项;由梯形面积公式即可判断B选项;由圆台体积公式即可判断C 选项;由圆台侧面展开图结合勾股定理即可判断D 选项.【详解】如图,作BE CD ⊥交CD 于E ,易得12CD ABCE -==,则22213BE ,则圆台的高为3cm ,A 错误;圆台的轴截面面积为()2133c 4m 232⨯+⨯=,B 正确;圆台的体积为()3173cm 33443πππππ⨯⨯++⋅=,C 正确; 将圆台一半侧面展开,如下图中ABCD ,设P 为AD 中点,圆台对应的圆锥一半侧面展开为扇形COD ,由1CE EO =可得2BC OB ==,则4OC =,4242COD ππ∠==,又32ADOP OA =+=,则22435CP =+=,即点C 到AD 的中点所经过的最短路程为5cm ,D 正确. 故选:BCD.12.如图,矩形ABCD 中,E 为边AB 的中点,将△ADE 沿直线DE 翻转成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻转过程中,下列命题正确的是( )A .MB 是定值 B .点M 在圆上运动C .一定存在某个位置,使DE ⊥A 1CD .一定存在某个位置,使MB ∥平面A 1DE 【答案】ABD【分析】取CD 的中点N ,先证平面MBN ∥平面A 1DE ,再得MB ∥平面A 1DE ;根据余弦定理计算BM 为定值;再根据BM 为定值,可得点M 在圆上运动;若DE ⊥A 1C ,根据条件推出DE ⊥A 1E ,与题意矛盾【详解】解:取DC 的中点N ,连接MN ,NB ,则MN ∥A 1D ,NB ∥DE , 因为MN ∩NB =N ,A 1D ∩DE =D , 所以平面MNB ∥平面A 1DE , 因为MB ⊂平面MNB ,所以MB ∥平面A 1DE ,D 正确;∠A 1DE =∠MNB ,MN =12A 1D =定值,NB =DE =定值,根据余弦定理得,MB 2=MN 2+NB 2-2MN ·NB ·cos ∠MNB ,所以MB 是定值,A 正确; 因为B 是定点,所以M 在以B 为圆心,MB 为半径的圆上,B 正确;在矩形ABCD 中,AB =2AD ,E 为边AB 的中点,所以DE ⊥EC ,若DE ⊥A 1C ,可得DE ⊥平面A 1CE ,即得DE ⊥A 1E ,与∠DEA 1为45︒矛盾,∴不存在某个位置,使DE ⊥A 1C ,C 不正确. 故选: ABD. 三、填空题13.一栋楼有6个单元,小王和小李均住在此楼内,他们住在同一单元的概率为_____. 【答案】16【详解】两人所有的居住方式有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36种,而住同一单元的只有6种:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),故所求概率为61366= 故答案为1614.在正四棱锥P ABCD -中,4AB =,26PA =P ABCD -外接球的体积是______. 【答案】36π【分析】画出图形,作PO '⊥平面ABCD ,垂足为O ',可得正四棱锥P ABCD -外接球的球心O 在PO '上,设四棱锥P ABCD -外接球的半径为R ,然后利用勾股定理求解即可.【详解】连接AC BD ,交于O '点,连接PO ',所以PO '⊥底面ABCD , 从而正四棱锥P ABCD -外接球的球心O 在PO '上,连接OD ,正方形ABCD 的边长为4, 可得22O D '=26PA PD ==224O P PD O D -'=',设四棱锥P ABCD -外接球的半径为R ,则()2222R O D O O O P O O =+=-'''', 即()22284R O O O O =+='-',解得1'=O O , 所以3R =,故四棱锥P ABCD -外接球的体积是34π336π3⨯=. 故答案为:36π.15.安排5名志愿者完成,,A B C 三项工作,其中A 项工作需3人,,B C 两项工作都只需一人,则不同的安排方式共有______种. 【答案】20【分析】先从5人选3人一组参加A 项工作,然后其他两人完成,B C 即可.【详解】A 项工作安排3人有35C 10=,然后安排,B C 有22A 2=,则所安排的方式共10220⨯=种. 故答案为:20.16.如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ︒∠=,AB=AD 1=.若点E 为DC 上的动点,则AE BE ⋅的最小值为______.【答案】2116【分析】建立直角坐标系,得出(1,)AE t =-,33,22BE t ⎛⎫=-- ⎪ ⎪⎝⎭,利用向量的数量积公式即可得出23322AE BE t t ⋅=-+,结合[0,3]t ∈,得出AE BE ⋅的最小值. 【详解】因为AD CD ⊥,所以以点D 为原点,DA 为x 轴正方向,DC 为y 轴正方向,建立如图所示的平面直角坐标系,因为1AD AB ==,所以(1,0)A ,又因为120DAB ︒∠=,所以直线AB 3332B ⎛ ⎝⎭,因为AB BC ⊥,所以直线BC 的斜率为3所以直线BC 的方程为3332y x ⎫=-⎪⎝⎭, 令0x =,解得3y =3)C , 设点E 坐标为(0,)E t ,则3]t ∈,则(1,)AE t =-,33,2BE t ⎛=- ⎝⎭, 所以23333122AE BE t t t ⎛⎛⎫⋅=-⨯-+⋅=+ ⎪ ⎝⎭⎝⎭又因为t ∈,所以当t =AE BE ⋅取得最小值为2116.【点睛】本题主要考查平面向量基本定理及坐标表示、平面向量的数量积以及直线与方程. 四、解答题17.已知复数()i ,R,0z a b a b ab =+∈<满足z =2z 为纯虚数. (1)求复数z ;(2)设z ,2z ,2z z -在复平面内对应的点分别为A ,B ,C ,求△ABC 的面积. 【答案】(1)1i z =-或1i z =-+; (2)1.【分析】(1)由复数模的意义、纯虚数的意义列式计算作答.(2)利用(1)的结论,求出点A ,B ,C 的坐标,求出三角形面积作答. 【详解】(1)设i z a b =+(a ,R b ∈),则2222i z a b ab =-+,依题意,222a b +=且220a b -=,而0ab <,解得a =1,b =-1或a =-1,b =1, 所以1i z =-或1i z =-+.(2)当1i z =-时,22i z =-,21i z z -=+,则()1,1A -,()0,2B -,()1,1C ,2AC =,点B 到边AC 距离为1,则1ABC S =△,当1i z =-+时,22i z =-,213i z z -=-+,则()1,1A -,()0,2B -,()1,3C -,2AC =,点B 到边AC 距离为1,1ABC S =△,所以△ABC 的面积是1.18.在ABC 中,内角、、A B C 所对的边为a b c 、、,若向量(1,sin )m C =,向量(sin(),1)n B A =-,且3sin 2m n A ⋅=,π3C =(1)求b a(2)若边c =ABC 的周长 【答案】(1)3或1 2(2)4【分析】(1)由已知条件分类讨论即可求得ba的值;(2)分类讨论求得a b 、的值,即可求得ABC 的周长.【详解】(1)sin()sin sin cos cos sin sin()2sin cos m n B A C B A B A B A B A ⋅=-+=-++= 则2sin cos 3sin26sin cos B A A A A ==,即()3sin sin cos 0A B A -=当cos 0A =时,πππ,,236A C B ===,则πsin sin 16πsin 2sin 2b B a A === 当cos 0A ≠时,3sin sin 0A B -=,即sin 3sin B A =,则sin 3sin b B a A == (2)①当πππ,,236A C B ===时,由7c =,可得213b =,2213a = 则ABC 的周长为22121721733a+b+c =++=+; ②当ππ,32C A =≠,3b a =时,由7c =, 可得()()222π7323cos 3a a a a =+-⋅,整理得21a =,则1a =,3b = 则ABC 的周长为13747a+b+c =++=+.19.第24届冬奥会于2022年2月4日至2月20日在北京举行,组委会为普及冬奥知识,面向全市征召a 名志愿者成立冬奥知识宣传小组,现把该小组成员按年龄分成[20,25),[25,30),[30,35),[35,40),[40,45]这5组,得到的频率分布直方图如图所示,已知年龄在[25,30)内的人数为35.(1)求m 和a 的值,并估计该冬奥知识宣传小组成员年龄的中位数(中位数精确到0.1);(2)若用分层抽样的方法从年龄在[30,35),[35,40),[40,45]内的志愿者中抽取6名参加某社区的宣传活动,再从这6名志愿者中随机抽取2名志愿者去该社区的一所高中组织一次冬奥知识宣讲,求这2名志愿者中至少有1人年龄在[35,40)内的概率.【答案】(1)0.07m =,100a =,31.7(2)35【分析】(1)先计算各组的频率,再根据频率和为1计算出m 的值,然后再根据[25,30)段的人数和对应的频率计算出总人数;利用面积法求出中位数;(2)先计算出年龄在[30,35),[35,40),[40,45]内的志愿者人数;再求从这6名志愿者中随机抽取2名志愿者的基本事件总数和至少有一名志愿者年龄在[35,40)内的事件数,代入古典概型概率计算公式,可得答案【详解】(1)由频率分布直方图知:(0.010.060.040.02)51m ++++⨯=,解得0.07m = … 因为年龄在[25,30)内的人数为35,所以35(0.075)100a =÷⨯=设冬奥知识宣传小组成员年龄的中位数的估计值为x ,则[30,35)x ∈内,且满足0.0150.075(30)0.060.5x ⨯+⨯+-⨯=,解得23131.73x =≈ (2)由频率分布直方图知:小组成员年龄在[30,35),[35,40),[40,45]的人数之比为3:2:1,故抽取的6名志愿者中,在区间[30,35),[35,40),[40,45]中分别抽取了3人,2人,1人记[30,35)中的3名志愿者为123,,A A A ,[35,40)中的2名志愿者为12,B B ,[40,45]中的1名志愿者为C ,则从6人中再随机抽取2人的所有可能有121311121(,),(,),(,),(,),(,),A A A A A B A B A C2321222313231212(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)A A A B A B A C A B A B A C B B B C B C ; 共15种,至少有1人年龄在[35,40)内的情形有9种,故所求概率为93155P == 20.如图,在边长为4的正三角形ABC 中,E ,F 分别是边AB ,AC 上的点,EF BC ∥,AD BC ⊥,EH BC ⊥,FG BC ⊥,垂足分别是D ,H ,G ,将△ABC 绕AD 所在直线旋转180°.(1)由图中阴影部分旋转形成的几何体的体积记为V ,当E ,F 分别为边AB ,AC 的中点时,求V ;(2)由内部空白部分旋转形成的几何体侧面积记为S ,当E ,F 分别在什么位置时,S 最大?【答案】53(2)E ,F 分别为AB ,AC 的中点时S 最大【分析】(1)依题意可得阴影部分旋转后的几何体是一个圆锥挖去一个圆柱,根据圆锥、圆柱的体积公式计算可得;(2)设DG x =,()0,2x ∈,表示出FG ,则旋转图的侧面积2S DG FG π=⨯⨯,再利用基本不等式计算可得;【详解】(1)解:由圆锥与圆柱的定义可知,将ABC 绕AD 旋转180°,阴影部分旋转后的几何体是一个圆锥挖去一个圆柱,且圆锥的底面半径为2,高为23,圆柱的底面半径为1,高为3.因此阴影部分形成的几何体的体积为V V V =-圆锥圆柱1534231333πππ=⨯⨯⨯-⨯⨯=. (2)解:设DG x =,()0,2x ∈,则2CG x =-,()32FG x =-, 此时()223223S DG FG x x πππ=⨯⨯=-≤,. 当且仅当1x =时等号成立,即E ,F 分别为AB ,AC 的中点时S 最大.21.如图,在直角梯形OABC 中,//,,22,OA CB OA OC OA BC OC M ⊥==为AB 上靠近B 的三等分点,OM 交AC 于,D P 为线段BC 上的一个动点.(1)用OA 和OC 表示OM ;(2)求OD DM; (3)设OB CA OP λμ=+,求λμ⋅的取值范围.【答案】(1)2233OM OA OC =+;(2)3;(3)3[0,]4. 【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,OD 将由这一组基向量的唯一表示出而得解;(3)由动点P 设出1(0)2CP xOA x =≤≤,结合平面向量基本定理,λμ⋅建立为x 的函数求解.【详解】(1)依题意12CB OA =,23AM AB =, 22221221()()33333333AM OB OA OC CB OA OC OA OA OC OA ∴=-=+-=+-=-,2122()3333OM OA AM OA OC OA OA OC ∴=+=+-=+; (2)因OM 交AC 于D ,由(1)知2222()3333t t OD tOM t OA OC OD OA OC ==+==+, 由共起点的三向量终点共线的充要条件知,22133t t +=,则3t 4=,3OD DM =,||3||OD DM =; (3)由已知12OB OC CB OC OA =+=+, 因P 是线段BC 上动点,则令1(0)2CP xOA x =≤≤, ()()()()OB CA OP OA OC OC CP x OA OC λμλμλμμλ=+=-++=++-,又,OC OA 不共线,则有1131222x x λμμλμλμ=--=⎧⎧⎪⎪⇒⎨⎨=+=⎪⎪+⎩⎩, 1330111222x x μ≤≤⇒≤+≤⇒≤≤, 211(1)()24λμμμμ⋅=-=--在3[1,]2μ∈上递增,所以min max 331,()0,,()24μλμμλμ=⋅==⋅=, 故λμ⋅的取值范围是3[0,]4. 【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.22.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60BAD ∠=︒,PAD △是正三角形,E 为线段AD 的中点,()0PF FC λλ=>.(1)求证:平面PBC ⊥平面PBE ;(2)是否存在点F ,使得58B PAE D PFB V V --=若存在,求出λ的值;若不存在,请说明理由.(3)若平面PAD ⊥平面ABCD ,在平面PBE 内确定一点H ,使CH FH +的值最小,并求此时BH BP的值. 【答案】(1)证明见解析;(2)存在,4λ=;(3)点H 是使CH FH +的值最小时,在平面PBE 上的一点,BH 2BP 3=. 【分析】(1)先证明AD ⊥平面PBE .,然后得BC ⊥平面PBE ,再得面面垂直;(2)利用棱锥体积之间的关系111222B PAE P ADB P BCD F BCD V V V V λ----+===,D PFB P BDC F BCC F BCD V V V V λ----=-=,可得λ的关系,求得λ;(3)延长CB 到C ',使得BC BC '=,由(1)知CB ⊥平面PBE ,得C '是点C 关于面PBE 的对称点,在平面PBC 中,过点C '作C F PC '⊥,垂足为F ,交PB 于H ,则点H 是使CH FH +的值最小时,在平面PBE 上的一点,然后计算出长度即得.【详解】解:(1)证明:因为PAD △是正三角形,E 为线段AD 的中点,所以PE AD ⊥.因为ABCD 是菱形,所以AD AB =.因为60BAD ∠=︒,所以ABD △是正三角形,所以BE AD ⊥,而BE PE E ⋂=,,BE PE ⊂平面PBE ,所以AD ⊥平面PBE .又//AD BC ,所以BC ⊥平面PBE .因为BC ⊂平面PBC所以平面PBC ⊥平面PBE .(2)由PF FC λ=,知()1PC PF FC FC λ=+=+. 所以,111222B PAE P ADB P BCD F BCD V V V V λ----+===, D PFB P BDC F BCC F BCD V V V V λ----=-=. 因此,58B PAE D PFB V V --=的充要条件是1528λλ+=, 所以,4λ=.即存在满足()0PF FC λλ=>的点F ,使得58B PAE D PFB V V --=,此时4λ=. (3)延长CB 到C ',使得BC BC '=,由(1)知CB ⊥平面PBE ,PB ⊂平面PBE ,CB PB ⊥,则C '是点C 关于面PBE 的对称点,.在平面PBC 中,过点C '作C F PC '⊥,垂足为F ,交PB 于H ,则点H 是使CH FH +的值最小时,在平面PBE 上的一点设2BC a =,则3PE BE a ==,因为平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,PE AD ⊥,PE ⊂平面PAD ,所以PE ⊥平面ABCD ,因为BE ⊂平面ABCD ,所以PE BE ⊥,所以6PB a =,所以2tan tan 6BC BC H BPC PB '∠=∠==, 所以4tan 6BH BC BC H a ''=∠=, 所以BH 2BP 3=.。
2023-2024学年山东省青岛市胶州市高一下学期期末学业水平检测数学试题❖一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知复数z 满足,则的虚部为A.B.1C.D.i2.在空间直角坐标系中,点关于y 轴对称点的坐标为A. B. C.D.3.已知,是两个不同的平面,m ,n 是两条不同的直线,能使“”成立的一组条件是A.,,B.,,C.,,D.,,4.若构成空间的一个基底,则下列向量不共面的是A.,,B.,,C.,,D.,,5.如图,圆锥的母线长为3,底面半径为1,一只蚂蚁从点P 处沿着该圆锥侧面爬行一周后回到点P 处,则蚂蚁爬行的最短路线长为A. B.3 C. D.6.正四棱台的上、下底面边长分别是2和4,高是,则它的侧面积为A.6B.C.24D.447.若为斜三角形,,则的值为()A. B. C.0D.18.已知平面,平面,,BD 与平面所成的角为,,,则点C 与点D 之间的距离为A.B.C.或D.或二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.正方体中,点E,F分别为,AB的中点,则A.AC与EF为异面直线B.平面C.过点A,E,F的平面截正方体的截面为三角形D.平面10.已知向量在向量上的投影向量为,向量,则向量可以为A. B. C. D.11.已知四面体VABC的所有棱长都等于6,点P在侧面VBC内运动包含边界,且AP与平面VBC所成角的正切值为,点Q是棱VB的中点,则A.该四面体的高为B.该四面体的体积为C.点P的运动轨迹长度为D.过ACQ的平面截该四面体内最大球的截面面积为三、填空题:本题共3小题,每小题5分,共15分。
12.图为某种礼物降落伞的示意图,其中有8根绳子和伞面连接,每根绳子和水平面的法向量的夹角均为已知礼物重量为2kg,每根绳子的拉力大小相同.则降落伞在匀速下落的过程中每根绳子拉力的大小为__________重力加速度g取13.已知直三棱柱的所有顶点都在表面积为的球的表面上,,,则此直棱柱的体积为__________.14.在四面体ABCD中,面ABC与面BCD所成的二面角为,顶点A在面BCD上的射影是H,的重心是G,若,,则__________.四、解答题:本题共5小题,共77分。
广西壮族自治区桂林市恭城中学2021-2022学年高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,则的取值范围是()A. B. C. D.参考答案:C【分析】由利用余弦定理,可得,利用正弦定理边化角,消去C,可得,利用三角形是锐角三角形,结合三角函数的有界性,可得【详解】因为,所以,由余弦定理得:,所以,所以,由正弦定理得,因为,所以,即,因为三角形是锐角三角形,所以,所以,所以或,所以或(不合题意),因为三角形是锐角三角形,所以,所以,则,故选C.【点睛】这是一道解三角形的有关问题,在解题的过程中,涉及到的知识点有余弦定理,正弦定理,诱导公式,正弦函数在某个区间上的值域问题,根据题中的条件,求角A的范围是解题的关键.2. 设的内角所对的边分别为,若三边的长为连续的三个正整数,且,则为( )A.4∶3∶2B.5∶6∶7C.5∶4∶3D.6∶5∶4参考答案:D略3. 数列的通项公式是,若前n项的和为,则项数n为,()A.4 B.5C.6 D.7参考答案:C略4. 设s是等差数列{a}的前n项和,已知s=36, s=324, s=144 (n>6),则n=( )A 15B 16C 17D 18参考答案:D5. 一个几何体的三视图如图所示,则该几何体的体积为A、 B、 C、 D、参考答案:C6. 下列各组函数中表示同一函数的是:A、f(x)=x与g(x)=()2B、f(x)=lne x与g(x)=e lnxC、f(x)=,与g(x)=D、f(x)=与g(t)=t+1(t≠1)参考答案:D7. (4分)将进货单价为80元的商品按90元出售时,能卖出400个.若该商品每个涨价1元,其销售量就减少20个,为了赚取最大的利润,售价应定为每个()A.115元 B.105元 C.95元D.85元参考答案:C考点:函数模型的选择与应用.专题:应用题.分析:根据题意,设售价定为(90+x)元,由利润函数=(售价﹣进价)×销售量可得关于x的函数方程,由二次函数的性质可得答案.解答:解:设售价定为(90+x)元,卖出商品后获得利润为:y=(90+x﹣80)(400﹣20x)=20(10+x)=20(﹣x2+10x+200);∴当x=5时,y取得最大值;即售价应定为:90+5=95(元);故应选:C.点评:本题考查了商品销售中的利润关系,是二次函数模型,属于基础题.8. 如图是挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为A.84,4.84 B.84,1.6C.85,1.6 D.85,4参考答案:C略9. 若函数的定义域为R,则实数a的取值范围是()A.(-∞,1)∪(9,+∞) B.(1,9) C.(-∞,-2] D.(-∞,-2)参考答案:B10. 式子的值为()A. B. C.D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 用列举法表示集合__________. 参考答案:集合,当时,,当时, ,当时, , 当时,,当时,显然,∴列举法表示集合, 综上所述,答案:.12. 已知集合,且M 中含有两个元素,则符合条件的集合M有 ▲ 个.参考答案:313. 设三元集合=,则 . 参考答案:1试题分析:集合,且,,则必有,即,此时两集合为,集合,,,当时,集合为,集合,不满足集合元素的互异性.当时,,集合,满足条件,故,因此,本题正确答案是:.考点:集合相等的定义.14. 函数的最小值是参考答案:-1 略15. (5分)若l 为一条直线,α,β,γ为三个互不重合的平面,给出下面四个命题:①α⊥γ,β⊥γ,则α⊥β;②α⊥γ,β∥γ,则α⊥β;③l∥α,l⊥β,则α⊥β.④若l∥α,则l 平行于α内的所有直线.其中正确命题的序号是.(把你认为正确命题的序号都填上)参考答案:②③考点: 四种命题的真假关系;空间中直线与平面之间的位置关系;平面与平面之间的位置关系.专题: 分析法.分析: 若α⊥γ,β⊥γ,则α与β可能平行与可能相交,可判断①的正误; 由两个平行的平面与第三个平面的夹角相同,可判断②的正误; 根据面面垂直的判断定理,我们判断③的正误;若l∥α,则l 与α内的直线平行或异面,可判断④的正误;逐一分析后,即可得到正确的答案.解答: ①中,若α⊥γ,β⊥γ,则α与β可能平行与可能相交,故①错误; ②中,若α⊥γ,β∥γ,则α⊥β,故②正确;③中,若l∥α,l⊥β,则α中存在直线a 平行l ,即 a⊥β,由线面垂直的判定定理,得则α⊥β,故③正确;④中,若l∥α,则l 与α内的直线平行或异面,故④的错误; 故答案:②③点评: 本题考查的知识点是利用空间直线与平面之间的位置关系及平面与平面之间的位置关系判断命题的真假,处理此类问题的关键是熟练掌握线面平行或垂直的判定方法和性质. 16. 如图程序框的运行结果是 .参考答案:120【考点】程序框图.【分析】由图知,循环体执行一次,a 的值减少一次,其初值为6,当a <4时,循环体不再执行,故此循环体可执行三次,又S 的初值为1,每执行一次循环体,其值变成原来的a 倍,由此规律计算出S 的值即可得到答案【解答】解:由图,循环体共执行三次,由S 的初值为1,每执行一次循环体,其值变成原来的a 倍,故S=1×6×5×4=120 故答案为120.17. 正项数列{a n }的前n 项和为S n ,满足a n =2﹣1.若对任意的正整数p 、q (p≠q),不等式S P +S q>kS p+q 恒成立,则实数k的取值范围为.参考答案:【考点】8H :数列递推式.【分析】a n =2﹣1,可得S n =,n≥2时,a n =S n ﹣S n ﹣1,利用已知可得:a n ﹣a n ﹣1=2.利用等差数列的求和公式可得S n ,再利用基本不等式的性质即可得出.【解答】解:∵a n =2﹣1,∴S n =,∴n≥2时,a n =S n ﹣S n ﹣1=﹣,化为:(a n +a n ﹣1)(a n ﹣a n ﹣1﹣2)=0, ∵?n∈N *,a n >0, ∴a n ﹣a n ﹣1=2. n=1时,a 1=S 1=,解得a 1=1.∴数列{a n }是等差数列,首项为1,公差为2.∴S n =n+=n 2.∴不等式S P +S q >kS p+q 化为:k <,∵>,对任意的正整数p 、q (p≠q),不等式S P +S q >kS p+q 恒成立,∴.则实数k 的取值范围为.故答案为:.三、 解答题:本大题共5小题,共72分。
山东省潍坊市2021-2022学年高一下学期期末考试数学试题一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在正方体1111ABCD A B C D -中,与棱1AA 异面的棱有( ) A .8条B .6条C .4条D .2条〖解 析〗如图所示,正方体1111ABCD A B C D -中,与棱1AA 异面的棱有:BC ,CD ,11C D ,11B C . 〖答 案〗C2.下列命题正确的是( ) A .若向量//a b ,//b c ,则//a c B .模相等的两个平行向量是相等向量C .方向不同的两个向量不可能是共线向量D .若向量(3,6)a =--,则a 分别在x 轴,y 轴上的投影的数量之和为9-〖解 析〗A .若a 与c 不共线,0b =,满足//a b ,//b c ,则得不出//a c ,A 错误; B .模相等方向相反时,这两个向量不相等,B 错误; C .方向相反的两个向量共线,C 错误;D.(3,6)a =--在x 轴上的投影为3-,在y 轴上的投影为6-,D 正确.〖答 案〗D3.下列各式化简结果为12的是( ) A .212cos 75-︒ B .sin15cos15︒︒C .sin14cos16sin76cos74︒︒+︒︒D .tan20tan25tan20tan25︒+︒+︒︒〖解 析〗对于A ,原式1(1cos150)cos150cos30=-+︒=-︒=︒=,故错误; 对于B ,原式1111sin302224=︒=⨯=,故错误;对于C ,原式1sin14cos16cos14sin16sin(1416)sin302=︒︒+︒︒=︒+︒=︒=,故正确; 对于D ,原式tan(2025)(1tan20tan25)tan20tan25=︒+︒-︒︒+︒︒tan45(1tan20tan25)tan20tan251tan20tan25tan20tan251=︒-︒︒+︒︒=-︒︒+︒︒=,故错误.〖答 案〗C4.定义域是复数集的子集的函数称为复变函数,2()f z z =就是一个多项式复变函数.给定多项式复变函数()f z 之后,对任意一个复数0z ,通过计算公式1()n n z f z +=,n N ∈,可以得到一列值0z ,1z ,2z ,⋯,n z ,⋯.若2()f z z =,01z i =-,当3n 时,(n z = ) A .122n -B .22nC .122n +D .14n -〖解 析〗依题意,21(1)2z i i =-=-,22(2)4z i =-=-,243(4)2z =-=, 当3n 时,0n z >,由21n n z z +=,得:212log 2log n n z z +=,而23log 4z =,则2122n nlog z log z +=,当4n 时,252622422323242521n n n log z log z log z log z log z log z log z log z log z log z -=⨯⨯⨯⨯⋅⋅⋅⨯31422n n --=⨯=, 23log 4z =满足上式,∴当3n 时,12log 2n n z -=,122n n z -=.〖答 案〗A5.在ABC ∆中,若3AB =,4BC =,30C =︒,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定〖解 析〗3AB =,4BC =,AB BC <,C A ∴<,A ∴必为大于30︒的角,故A 可以为锐角,也可以是钝角,∴此三角形有二解.〖答 案〗B 6.若tan 2θ=-,则sin cos2(sin cos θθθθ=- )A .65-B .25-C .25D .65〖解 析〗因为tan 2θ=-,所以sin cos2sin cos θθθθ-22sin ()sin cos cos sin θθθθθ-=-sin (cos sin )(cos sin )sin cos θθθθθθθ+-=-2sin cos sin θθθ=--222sin cos sin sin cos θθθθθ--=+22tan 1tan tan θθθ--=+2441-=+25=-. 〖答 案〗B7.如图,在平行四边形ABCD 中,E ,F 分别为线段AD ,CD 的中点,且AF CE G =,则( )A .12AF AD AB =-B .2133AG AD AB =- C .1()2EF AD AB =+D .3BG GD =〖解 析〗E ,F 分别为线段AD ,CD 的中点,∴12EF AC =, AC AD AB =+,∴1()2EF AD AB =+,故选项C 正确; 12AF AD DF AD AB =+=+,故选项A 错误; 221333AG AF AD AB ==+,故选项B 错误; 2BG GD =,故选项D 错误.〖答 案〗C8.已知函数()cos (0)f x x x ωωω=>,若()f x 的图像在区间(0,)π上有且只有2个最低点,则实数ω的取值范围为( ) A .137(,]62B .725(,]26C .814(,]33D .28(,]33〖解 析〗函数()cos (0)2cos()3f x x x x πωωωω=>=+,若()f x 的图像在区间(0,)π上有且只有2个最低点,(33x ππω+∈,)3πωπ+, 353ππωππ∴<+,求得81433ω<. 〖答 案〗C二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分. 9.已知正四棱台上、下底面边长分别为2,4,侧棱长为2,则( )A .正四棱台的高为2BC .正四棱台的表面积为20+D〖解 析〗对于A ,正四棱台上下底面对角线长为,∴正四棱台的高h ==错误;对于B ,正四棱台的斜高h '==B 正确;对于C ,正四棱台侧面积为14(24)2⨯⨯+4,16,∴正四棱台的表面积41620S =++=+C 正确;对于D ,正四棱台的体积1(416)3V =D 正确.〖答 案〗BCD10.设1z ,2z ,3z 为复数,且30z ≠,则下列命题正确的是( ) A .若12||||z z =,则12z z =± B .若1323z z z z =,则12z z = C .若2313||z z z =,则13z z =D .若21z z =,则1323||||z z z z =〖解 析〗当11z =,2z i =时,12||||z z =,但12z z ≠±,故选项A 错误;1323z z z z =,且30z ≠,12z z ∴=,故选项B 正确;当1z i =,3z i =-时,2313||z z z =,但13z z ≠,故选项C 错误; 若21z z =,则1313||||||z z z z =⋅,23231313||||||||||||||z z z z z z z z =⋅=⋅=⋅, 故选项D 正确. 〖答 案〗BD11.已知函数()cos(2)12f x x π=+,则下列说法正确的是( )A .函数()f x 的最小正周期为2πB .函数()f x 的图像关于直线1124x π=对称C .函数()f x 的图像关于点7(,0)24π-对称D .函数()f x 在(0,)4π上单调递减〖解 析〗对于函数()cos(2)12f x x π=+,对于A :函数的最小正周期为22ππ=,故A 错误; 对于B :当1124x π=时,1124()cos 12424f ππ==-,故B 正确; 对于C :当724x π=-时,7142()cos()cos()02424242f ππππ--=+=-=,故C 正确; 对于D :当(0,)4x π∈时,72(,)121212x πππ+∈,故函数在该区间上单调递减,故D 正确.〖答 案〗BCD12.在ABC ∆中,P ,Q 分别为边AC ,BC 上一点,BP ,AQ 交于点D ,且满足AP tPC =,BQ QC λ=,BD DP μ=,AD mDQ =,则下列结论正确的为( )A .若12t =且3λ=时,则23m =,9μ=B .若2μ=且1m =时,则13λ=,12t =C .若121tλ-=时,则121t μ-=D .(1)(1)(1)(1)t mt m μλμλ=++++ 〖解 析〗由题意得:1t AC AP t +=,1m AQ AD m+=,BQ QC λ=, ()AQ AB AC AQ λ-=-,即111AQ AC AB λλλ=⋅+⋅++, 即11111m t AD AP AB m t λλλ++=⋅⋅+⋅++, 所以111111t m mAD AP AB t m m λλλ+=⋅⋅+⋅++++,因为B ,D ,P 三点共线,所以1111111t m mt m m λλλ+⋅⋅+⋅=++++,当12t =,且3λ=时,11312111311312m m m m +⋅⋅+⋅=++++,解得23m =,1BP BD μμ+=,1BC BQ λλ+=,AP tPC =, ∴()BP BA t BC BP -=-,即111t BP BC BA t t=⋅+⋅++, 即11111t BD BC BA t t μλμλ++=⋅⋅+⋅++,所以111111t BD BC BA t t λλλλλλ+++=⋅⋅+⋅++,因为A ,D ,Q 三点共线,所以1111111t t t λμμλμμ+⋅⋅+⋅=++++, 当12t =,且3λ=时,131121113111122μμμμ+⋅⋅+⋅=++++,解得9μ=,故A 正确; 若2μ=且1m =时,11211t t λλλ+⋅+=++,,113112t t t λλ+⋅+=++,解得12λ=,13t =,故B 错误; 1111111t t t λμμλμμ+⋅⋅+⋅=++++,变形为1111t t t t λλλμ++=+++①, 若121t λ-=时,则2t t λλ-=,代入①式得1111t μ-=+, 假设1111t μ-=+成立,则121t t=+,解得2t =-,此时10λ=,显然无解,故假设不成立,故C 错,同理可得1111111m m m λμμλμμ++⋅⋅+⋅=+++,1111111m t m m t m μμμ++⋅⋅+⋅=+++,所以111111(1)(1)t m m t m m μμμμμ-⋅=-=++++++,111111(1)(1)m m m m m λμμλμμ-⋅=-=++++++, 所以(1)(1)(1)(1)t mt m μλμλ=++++.故D 正确. 〖答 案〗AD三、填空题:本大题共4小题,每小题5分,共20分.把〖答 案〗填在答题卡的相应位置. 13.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,若222sin a c b B +-=,则B = .〖解析〗因为222sin a c b B +-=,所以由余弦定理可得2cos sin ac B B =,所以可得tan B =, 又(0,)B π∈,则3B π=.〖答 案〗3π14.已知正三棱柱111ABC A B C -的底面边长为1,侧棱长为2,则其外接球的表面积为 . 〖解 析〗如图,设正三棱柱111ABC A B C -的上下底面中心分别为E ,F ,则由正三棱柱与球的对称性可知EF 的中点O 即为正三棱柱111ABC A B C -的外接球心, OA ∴即为外接球的半径R ,设正三角形ABC 的截面小圆半径为r ,又正三棱柱111ABC A B C -的底面边长为1,∴由正弦定理可得12sin 60r =︒,∴r =,又12EF AA ==,1OF ∴=,在Rt AOF ∆中由勾股定理可得222r OF R +=,∴2113R +=,∴243R =,∴正三棱柱111ABC A B C -的外接球的表面积为24164433R πππ=⨯⨯=. 〖答 案〗163π 15.如图所示,为测算某自然水域的最大宽度(即A ,B 两点间的距离),现取与A ,B 两点在同一平面内的两点C ,D ,测得C ,D 间的距离为1500米,135ADB ∠=︒,15BDC DCA ∠=∠=︒,120ACB ∠=︒,则A ,B 两点的距离为 米.〖解 析〗由题意可知在ADC ∆中,13515150ADC ADB BDC ∠=∠+∠=︒+︒=︒, 则1801501515DAC ∠=︒-︒-︒=︒,故1500AD DC ==, 在BDC ∆中,15120135DCB ACD ACB ∠=∠+∠=︒+︒=︒, 故1801351530DBC ∠=︒-︒-︒=︒,故由sin sin BD CDDCB DBC=∠∠得1500sin 21sin 2CD DCB BD DBC ∠===∠,在ADB ∆中,2222cos135AB AD BD AD BD =+-⋅⋅︒,22215002150051500=++⨯⨯=⨯,故AB =). 〖答案〗16.在平面直角坐标系xOy 中,给定1(A x ,1)y ,2(B x ,2)y ,假设O ,A ,B 不在同一直线上,利用向量的数量积可以方便的求出OAB ∆的面积为12211||2S x y x y =-.已知三点(1,1)A ,(3,4)B -,2(,8)1tC t +,则ABC ∆面积的最大值为 . 〖解 析〗依题意,在ABC ∆中,1(OA x =,1)y ,2(OB x =,2)y , 则ABC ∆的面积为12211||2S x y x y =-, 当(1,1)A ,(3,4)B -,2(1t C t +,8)时,(4,3)AB =-,2(11t AC t =-+,7) 则ABC ∆面积22113|3(1)28||25|2121ABC t t S t t ∆=-+=+++, 显然ABC ∆面积取最大值时,必有0t >,因此,当0t >时,213131353(25)(25)(25)1212242ABC t S t t t t ∆=+=+=++⨯, 当且仅当1t =时取“=”, 所以ABC ∆面积的最大值为534. 〖答 案〗534四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知(3,)A m ,(2,1)B ,(2,1)C -,(,2)D n -是复平面内的四个点,其中m ,n R ∈,且向量AC ,BD 对应的复数分别为1z ,2z ,且1262z z i -=-+. (1)求1z ,2z ; (2)若复数12z tz z +=,t R ∈,在复平面内对应的点Z 在第四象限,求实数t 的取值范围. 解:(1)由已知可得(5,1)AC m =--,(2BD n =-,3)-, 则15(1)z m i =-+-,223z n i =--,所以123(4)62z z n m i i -=--+-=-+,则3642n m -=-⎧⎨-=⎩,解得2m =,9n =,所以15z i =--,273z i =-, (2)因为125(5)(73)(327)(223)73(73)(73)58z t i t t i i t t iz z i i i +--+-+-+-++-+====--+ 在复平面内对应的点在第四象限,则32702230t t -+>⎧⎨-+<⎩,解得322273t <<,即实数t 的范围为3222(,)73. 18.(12分)已知向量(1,2)a =,(2,5)b =-,2()c a tb t R =+∈. (1)若c b ⊥,求t 的值;(2)若c 与a 的夹角为锐角,求t 的取值范围. 解:(1)c b ⊥,(22,45)c t t =-+,∴2(22)5(45)0c b t t ⋅=--++=,∴1629t =-; (2)c 与a 的夹角为锐角,∴0c a ⋅>,且c 与a 不共线,∴222(45)0452(22)0t t t t -++>⎧⎨+--≠⎩,解得54t >-且0t ≠,t ∴的取值范围为:504t t t ⎧⎫-≠⎨⎬⎩⎭且.19.(12分)在ABC ∆中,点P 在边BC 上,3C π=,4AP =,记AC 的长为m ,PC 的长为n ,且16mn =. (1)求APB ∠;(2)若ABC ∆的面积为sin PAB ∠. 解:(1)在APC ∆中,由于3C π=,AC m =,PC n =,16AC PC mn ⋅==,所以利用余弦定理2222cos3AP AC PC AC PC π=+-⋅⋅,整理得:22216()3m n mn m n mn =+-=+-,解得8m n +=,故4m n ==, 则:AC PC AP ==,所以APC ∆为等边三角形,所以23APB π∠=. (2)由ABC S ∆=,所以1sin 2AC BC ⋅⋅⋅=7BC =,则3BP =;如图所示:作AD BC ⊥交BC 于点D ,由(1)可知:在等边三角形APC 中,AD =2PD =,在Rt ABD ∆中,AB = 在ABP ∆中,利用正弦定理:sin sin AB PBAPB PAB=∠∠,整理得:3sin74PAB ∠==.20.(12分)某景区为提升游客观赏体验,搭建一批圆锥形屋顶的小屋(如图1).现测量其中一个屋顶,得到圆锥SO 的底面直径AB 长为12m ,母线SA 长为18m (如图2).(1)现用鲜花铺设屋顶,如果每平方米大约需要鲜花50朵,那么装饰这个屋顶(不含底面)大约需要多少朵鲜花(参考数据: 3.14)π≈;(2)若C 是母线SA 的一个三等分点(靠近点)S ,从点A 到点C 绕屋顶侧面一周安装灯光带,求灯光带的最小长度.解:(1)圆锥的侧面展开图的面积为:618339.12S rl ππ==⨯⨯≈, 需要的鲜花为:339.125016956⨯=(朵); (2)圆锥的侧面展开图如图:122183ASC ππ∠==,18SA =,6SC =,在SAC ∆中,AC ==即灯光带的最小长度为米.21.(12分)已知函数5()sin(2)2cos()sin()644f x x x x πππ=--++. (1)求函数()f x 的单调递增区间;(2)若函数()y f x k =-在区间11[,]612ππ-上有且仅有两个零点,求实数k 的取值范围. 解:(1)5()sin(2)2cos()sin()644f x x x x πππ=--++ sin 2cos cos2sin 2cos()sin()6644x x x x ππππ=-+++12cos2sin(2)22x x x π=-++12cos2cos22x x x =-+12cos22x x =+sin(2)6x π=+, 令222262k x k πππππ-+++,k Z ∈,所以36k x k ππππ-++,k Z ∈,所以函数()f x 的单调递增区间为:[3k ππ-+,]6k ππ+,k Z ∈.(2)函数()y f x k =-在区间11[,]612ππ-上有且仅有两个零点, 即曲线sin(2)6y x π=+与直线y k =在区间11[,]612ππ-上有且仅有两个交点, 由11[,]612x ππ∈-,可得2[66x ππ+∈-,2]π, 当11[,]612x ππ∈-时,()sin(2)[16f x x π=+∈-,1], 设26t x π=+,则sin y t =,[6t π∈-,2]π,当(1k ∈-,1)(02-⋃,1)时,曲线sin y t =与直线y k =区间[6t π∈-,2]π上有且仅有两个交点.22.(12分)已知函数()sin()(0f x x ωϕω=+>,||)ϕπ<,()f x 图像上相邻的最高点与最低点的横坐标相差2π,3x π=-是()f x 的一条对称轴,且()(1)6f f π>. (1)求()f x 的〖解 析〗式;(2)将函数()f x 的图像向右平移12π个单位得到函数()t x 的图像,若存在1x ,2x ,⋯,m x 满足1205m x x x π<<⋯<,且1223|()()||()()|t x t x t x t x -+-+⋯+1|()()|20(2m m t x t x m --=,*)m N ∈,求m 的最小值;(3)令()()cos2h x f x x =-,()[()]g x h h x =,若存在[,]123x ππ∈使得2()(2)()30g x a g x a +-+-成立,求实数a 的取值范围.解:(1)由题意,周期22T ππ=⨯=,故22,()sin(2)f x x πωϕπ===+, 且2()()32k k Z ππϕπ⨯-+=+∈,即7()6k k Z πϕπ=+∈, 因为||ϕπ<,故766ππϕπ=-=或75266ππϕπ=-=-, 故()sin(2)6f x x π=+或5()sin(2)6f x x π=-.当()sin(2)6f x x π=+时,()sin(2)1,(1)sin(2)16666f f ππππ=⨯+==+<, 故()sin(2)6f x x π=+成立;当5()sin(2)6f x x π=-时, 55()sin(2)1,(1)sin(2)16666f f ππππ=⨯-=-=->-.综上有()sin(2)6f x x π=+; (2)由题意,()sin[2()]sin 2126t x x x ππ=-+=,根据题意,要使m 的值尽量小, 则1|()()|m m t x t x --要尽量大.又1|()()|2m m t x t x --,结合()sin 2t x x =的图象可得,当12345673579110,,,,,,444444x x x x x x x ππππππ=======, 8910111213151719,,,,54444x x x x x πππππ=====时, m 的取值最小为12,(3)由(1)()2sin(2)6f x x π=+,所以1()()cos2sin(2)cos2cos2cos262h x f x x x x x x x π=-=+-=+-12cos2sin(2)26x x x π=-=-, 当[,]123x ππ∈时,0262x ππ-, 0()1h x ∴,所以,2()2666h x πππ---,所以,1()[()]sin[2()][,sin(2)]626g x h h x h x ππ==-∈--, ∴1()1[,1sin(2)]26g x π+∈+-,2223ππ<<,∴2362πππ<-<sin(2)16π<-<, 由2()(2)()30g x a g x a +-+-,可得2()2()3[()1]g x g x a g x +++,所以,22()2()3[()1]22()1()1()1()1g x g x g x a g x g x g x g x ++++==+++++,由基本不等式可得2()12[()()1g x g x g x ++++,当且仅当1()1[,1sin(2)]26g x π++-时,等号成立,所以,22a .即a ∈)+∞.。
2021-2022学年河南省开封市大营乡第二中学高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列四组函数中,表示同一函数的是()A.与B.与C.与D.与参考答案:D在选项中,前者的属于非负数,后者的,两个函数的值域不同;在选项中,前者的定义域为,后者为或,定义域不同;在选项中,两函数定义域不相同;在选项中,定义域是的定义域为,定义域不相同,值域、对应法则都相同,所以是同一函数,故选D.2. 某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y轴表示离学校的距离。
X轴表示出发后的时间,则适合题意的图形是()参考答案:D3. 设集合,则满足A∪B=的集合B的个数是A.1 B.3 C.4 D.8参考答案:C4. 函数的定义域为()A.B.C.D.参考答案:D【考点】函数的定义域及其求法.【分析】根据函数成立的条件即可求函数的定义域.【解答】解:要使函数有意义,则2sin(π﹣2x)﹣1≥0,即sin2x≥,则2kπ+≤2x≤2kπ+,k∈Z,则kπ+≤x≤kπ+,k∈Z,即函数的定义域为,故选:D5. 若,则下列不等式成立的是()A.B.C.D.参考答案:C略6. 若不等式对任意的恒成立,则a的取值范围是()A.(-∞,0] B.C.[0,+∞) D.(-∞,2]参考答案:A由题意可得对任意的恒成立,∴对任意的恒成立,即对任意的恒成立,∴对任意的恒成立。
令,则,当且仅当时等号成立。
选A。
7. 集合P=,M=,则A.{1,2} B.{0,1,2}C.{︱0} D.{︱}参考答案:B8. “x=2kπ+(k∈Z)”是“|sinx|=1”的()A9. 函数的反函数为()A.y= B.y=C.y=D.y=参考答案:C10. 下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是()A.f(x)=x﹣1,g(x)=B.f(x)=2x﹣1,g(x)=2x+1C.f(x)=x2,g(x)=D.f(x)=1,g(x)=x0参考答案:C考点:判断两个函数是否为同一函数.专题:函数的性质及应用.分析:分别判断两个函数的定义域和对应法则是否完全相同即可.解答:解:A.函数g(x)的定义域为{x|x≠0},两个函数的定义域不相同,不是同一函数.B.函数f(x)和g(x)的定义域为R,两个函数的定义域相同,但对应法则不相同,不是同一函数.C.函数g(x)=x2,两个函数的定义域相同,对应法则相同,是同一函数.D.函数g(x)的定义域为{x|x≠0},两个函数的定义域不相同,不是同一函数.故选C.点评:本题主要考查判断两个函数是否为同一函数,判断的依据是判断两个函数的定义域和对应法则是否完全相同.二、填空题:本大题共7小题,每小题4分,共28分11. 若=,=,则=_________.参考答案:略12. 如图,点O为△ABC的重心,且OA⊥OB,AB=4,则的值为.参考答案:3213. 已知全集中有m个元素,中有n个元素.若非空,则的元素个数为________________参考答案:略14. 甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.7,现两人各自独立射击一次,均中靶的概率为______.参考答案:0.56【分析】根据在一次射击中,甲、乙同时射中目标是相互独立的,利用相互独立事件的概率乘法公式,即可求解.【详解】由题意,甲的中靶概率为0.8,乙的中靶概率为0.7,所以两人均中靶的概率为,故答案为:0.56【点睛】本题主要考查了相互独立事件的概率乘法公式的应用,其中解答中合理利用相互独立的概率乘法公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.15. 已知函数f(x)=Asin 2x,g(x)=,直线x=m与f(x),g(x)的图象分别交M、N两点,且|MN|(M、N两点间的距离)的最大值为10,则常数A的值为Δ .参考答案:5略16. 已知圆和直线,是直线上一点,若圆O上存在A,B 两点,满足,则实数的取值范围是________.参考答案:【分析】由向量相等可知三点共线且为线段中点,则;利用勾股定理和弦长为分别表示出和,从而可建立等式,根据的范围构造不等式可求得结果.【详解】由得:三点共线且为线段中点则:设圆心到直线的距离为则,为圆的弦本题正确结果:【点睛】本题考查直线与圆的相关知识的应用,涉及到直线被圆截得的弦长、勾股定理、两点间距离公式、直线与圆位置关系的应用,关键是能够利用向量相等得到三点共线和线段长度关系,从而构造方程来建立等量关系.17. 对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)f(x2) ,② f(x1x2)=f(x1)+f(x2) ,③ < 0,④,当f(x)=lnx时,上述结论中正确结论的序号是_____________.参考答案:略三、解答题:本大题共5小题,共72分。
2024届陕西省安康市高一数学第二学期期末达标测试试题考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线l 是平面a 的斜线,则a 内不存在与l ( ) A .相交的直线 B .平行的直线 C .异面的直线D .垂直的直线2.边长为2的正方形内有一封闭曲线围成的阴影区域.向正方形中随机地撒200粒芝麻,大约有80粒落在阴影区域内,则此阴影区域的面积约为( ) A .125B .85C .35D .253.已知向量a 是单位向量,b =(3,4),且b 在a 方向上的投影为74-,則2a b -= A .36B .21C .9D .64.如图所示:在正方体1111ABCD A B C D ﹣中,设直线1A B 与平面11A DCB 所成角为1θ,二面角1A DCA ﹣﹣的大小为2θ,则12θθ,为( )A .3045o o ,B .4530o o ,C .3060o o ,D .6045o o ,5.若集合,则A .B .C .D .6.已知向量a =(2,tan θ),b =(1,-1),a ∥b ,则tan()4πθ-=( )A .2B .-3C .-1D .-37.sin480°等于( )A .12-B .12C .D 8.已知正数x 、y 满足1x y +=,则141x y++的最小值为( ) A .2B .92C .143D .59.设点P 是函数y =(),Q x y 满足260x y --=,则PQ 的最小值为()A .4B 2C D 410.已知直线l ⊥平面α,直线m ⊂平面β,下列四个命题中正确的是( ). (1)l m αβ⇒⊥∥ (2)l m αβ⊥⇒∥ (3)l m αβ⇒⊥∥ (4)l m αβ⊥⇒∥ A .(1)与(2)B .(3)与(4)C .(2)与(4)D .(1)与(3)二、填空题:本大题共6小题,每小题5分,共30分。
2022年安徽省芜湖市第三中学高一数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数,在上恒有,则实数的范围是()... .参考答案:C略2. 判断下列各命题的真假:(1)向量的长度与向量的长度相等;(2)向量与向量平行,则与的方向相同或相反;(3)两个有共同起点的而且相等的向量,其终点必相同;(4)两个有共同终点的向量,一定是共线向量;(5)向量和向量是共线向量,则点A、B、C、D必在同一条直线上;(6)有向线段就是向量,向量就是有向线段.其中假命题的个数为()A、2个B、3个C、4个D、5个参考答案:C3. 知向量、、中任意二个都不共线,但与共线,且+与共线,则向量++=()A.B.C.D.参考答案:D略4. 已知函数f(x)=2x+2x﹣6的零点为x0,那么x0所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)参考答案:B【考点】函数零点的判定定理.【专题】函数思想;转化法;函数的性质及应用.【分析】判断函数的单调性,利用函数零点存在条件进行判断即可.【解答】解:∵函数f(x)=2x+2x﹣6为增函数,∴f(1)=2+2﹣6=﹣2<0,f(2)=22+2×2﹣6=2>0,则函数在(1,2)内存在零点,x0所在的区间是(1,2),故选:B.【点评】本题主要考查函数零点的判断,判断函数的单调性以及函数函数在区间端点处的符号关系是解决本题的关键.5. 点到圆上的点距离的最小值是A.1 B.4 C.5 D.6参考答案:B6. 若a>0,b>0,则不等式﹣b<<a等价于( )A.<x<0或0<x<B.﹣<x<C.x<﹣或x>D.x<或x>参考答案:D【考点】不等关系与不等式.【专题】计算题.【分析】由题意不等式﹣b<<a,然后再进行等价变换,进行移项、通分,然后进行求解.【解答】解:故选D.【点评】此题考查不等关系与不等式的性质,解题的关键是利用已知条件进行通分.7. 在△ABC中,若c4-2(a2+b2)c2+a4+a2b2+b4=0,则∠C等于( )A.90° B.120° C.60° D.120°或60°参考答案:D略8. 已知幂函数在(0,+∞)上单调递增,函数g(x)=2x﹣t,?x1∈[1,6)时,总存在x2∈[1,6)使得f(x1)=g(x2),则t的取值范围是()A.? B.t≥28或t≤1C.t>28或t<1 D.1≤t≤28参考答案:D【考点】幂函数的概念、解析式、定义域、值域.【分析】根据幂函数的定义以及函数的单调性求出f(x)的解析式,分别求出f(x),g(x)的值域,问题转化为[1,36)?[2﹣t,64﹣t),求出t的范围即可.【解答】解:由f(x)是幂函数得:m=0或2,而在(0,+∞)上单调递增,则f(x)=x2,x∈[1,6)时,f(x)∈[1,36),x∈[1,6)时,g(x)∈[2﹣t,64﹣t),若?x1∈[1,6)时,总存在x2∈[1,6)使得f(x1)=g(x2),则[1,36)?[2﹣t,64﹣t),故,解得:1≤t≤28,故选:D.9. 若A(3,﹣6),B(﹣5,2),C(6,y)三点共线,则y=()A.13 B.﹣13 C.9 D.﹣9参考答案:D【考点】三点共线.【专题】平面向量及应用.【分析】三点共线转化为具有公共点的向量共线,即可得出结论.【解答】解:由题意, =(﹣8,8),=(3,y+6).∵∥,∴﹣8(y+6)﹣24=0,∴y=﹣9,故选D.【点评】本题考查三点共线,考查向量知识的运用,三点共线转化为具有公共点的向量共线是关键.10. 下列命题正确的是().A.第一象限角是锐角B.钝角是第二象限角C.终边相同的角一定相等D.不相等的角,它们终边必不相同参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.= .参考答案:﹣4【考点】三角函数的化简求值.【分析】切化弦后通分,利用二倍角的正弦与两角差的正弦即可化简求值.【解答】解:原式====﹣4.故答案为:﹣4.12. 已知,则=___________________参考答案: 略13. 点P 为x 轴上的一点,,则的最小值是_____.参考答案:略14. (5分)在平面直角坐标系xOy 中,已知A (1,0),B (0,1),点C 在第一象限内,,且|OC|=2,若,则λ+μ的值是.参考答案:考点: 平面向量的基本定理及其意义.专题: 平面向量及应用.分析: 由题意可得点C 的坐标,进而可得向量的坐标,由向量相等可得,可得答案.解答: ∵点C 在第一象限内,∠AOC=,且|OC|=2,∴点C 的横坐标为x C =2cos =,纵坐标y C =2sin=1,故=(,1),而=(1,0),=(0,1),则λ+μ=(λ,μ)由=+?,∴λ+μ=1+故答案为:+1.点评: 本题考查平面向量的坐标运算,以及相等向量.15. 已知样本数据a 1,a 2,a 3,a 4,a 5的方差s 2=(a 12+a 22+a 32+a 42+a 52﹣80),则样本数据2a 1+1,2a 2+1,2a 3+1,2a 4+1,2a 5+1的平均数为 .参考答案:9或﹣7.【分析】设样本数据a 1,a 2,a 3,a 4,a 5的平均数为a ,推导出5a 2=80,解得a=4,由此能求出2a 1+1,2a 2+1,2a 3+1,2a 4+1,2a 5+1的平均数.【解答】解:设样本数据a 1,a 2,a 3,a 4,a 5的平均数为a ,∵样本数据a 1,a 2,a 3,a 4,a 5的方差s 2=(a 12+a 22+a 32+a 42+a 52﹣80), ∴S 2= [(a 1﹣a )2+(a 2﹣a )2+(a 3﹣a )2+(a 4﹣a )2+(a 5﹣a )2]= [a 12+a 22+a 32+a 42+a 52﹣2(a 1+a 2+a 3+a 4+a 5)a+5a 2]=(a 12+a 22+a 32+a 42+a 52﹣5a 2) =(a 12+a 22+a 32+a 42+a 52﹣80), ∴5a 2=80,解得a=±4,∴2a 1+1,2a 2+1,2a 3+1,2a 4+1,2a 5+1的平均数为2a+1, 当a=4时,2a+1=9 当a=﹣4时,2a+1=﹣7. 故答案为:9或﹣7.16. 若x,y∈R,且满足+= 6,则x + 2 y的最小值是,最大值是。
西宁市2023—2024学年第二学期末调研测试卷高一数学注意事项:1.本试卷满分150分,考试时间120分钟.2.本试卷为试题卷,不允许作为答题卷使用,答题部分请在答题卡上作答,否则无效.3.答题前,考生务必将自己的姓名、准考证号、考场、座位号填写在答题卡上,同时将学校、姓名、准考证号、考场填写在本试卷上.4.选择题用2B 铅笔把答题卡上对应题目的答案标号涂黑(如需改动,用橡皮擦干净后,再选涂其他答案标号).非选择题用0.5毫米的黑色签字笔答在答题卡相应的位置,书写工整,字迹清晰.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.若,则()A.B.C. D.2.有一个人在打靶中连续射击2次,事件“至少有1次中靶”的对立事件是( )A.至多有1次中靶B.2次都不中靶C.2次都中靶D.只有1次中靶3.已知三点共线,则的值为()A.-5 B.5 C.-3 D.34.如图,已知等腰直角三角形是一个平面图形的直观图,,斜边,则这个平面图形的面积是()A.C.15.以袁隆平院士为首的科学家研制成功的杂交水稻制种技术在世界上被誉为中国的“第五大发明”.育种技术的突破,杂交水稻的推广,不仅让中国人端稳饭碗,也为解决世界粮食短缺问题作出了巨大贡献.某农场种植的甲、乙两种水稻,在面积相等的两块稻田中连续6年的产量(单位:如下表:品种第1年第2年第3年第4年第5年第6年()i 11z -=z =1i --1i -+1i -1i+()()()1,2,2,4,,6A B C m m O A B '''O A A B =''''2O B ''=kg )甲900920900850910920乙890960950850860890根据以上数据,下面说法正确的是()A.甲种水稻产量的平均数比乙种水稻产量的平均数大B.甲种水稻产量的中位数比乙种水稻产量的中位数小C.甲种水稻产量的极差与乙种水稻产量的极差相等D.甲种水稻的产量比乙种水稻的产量稳定6.甲、乙两名射击运动员进行射击比赛,甲中靶的概率为,乙中靶的概率为0.9,且两人是否中靶相互独立.若甲、乙各射击一次,恰有一人中靶的概率为0.26,则()A.两人都中靶的概率为0.63B.两人都中靶的概率为0.70C.两人都中靶的概率为0.72D.两人都中靶的概率为0.747.在中,内角所对的边分别是,若,则的大小为()A. B. C. D.8.设向量,则( )A.“”是“”的必要条件B.“”是“”的必要条件C.“”是“”的充分条件D.“”是“”的充分条件二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在中,内角所对的边分别为,根据下列条件解三角形,其中有两解的是()A.B.C. D.10.如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,则下列结论正确的是( )x ABC V ,,A B C ,,a b c sin sin sin2sin sin a A b B c C C a B +-=Cπ6π4π22π3()()1,,,2a x x b x =-=- 3x =a b ⊥3x =a ∥b 0x =a b ⊥ 1x =+a ∥bABC V ,,A B C ,,a b c 10,60b c C === 4,60b c B === 2,45a b A === 8,4,60a b A ===2RA.圆柱的侧面积为B.圆锥的侧面积为C.圆柱的侧面积与球的表面积相等D.圆柱、圆锥、球的体积之比为11.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系.在如图所示的正五角星中,以为顶点的多边形为正五边形且)A. B.C. D.三、填空题:本题共3小题,每小题5分,共15分.12.若复数为虚数单位为纯虚数,则的值为__________.13.已知向量,则在方向上的投影向量的坐标为__________.14.在正方体中,是的中点,求与两条异面直线所成角的余弦值为__________.四、解答题:本大题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,在正方体中,是的中点,分别是的中点.求证:24πR 22πR 3:1:2,,,,P Q R S T PT AT =CQ TP DS += ES RQ PA-= AT BQ += ES AP DR -= ()221i(,i z m m m m =---+∈R )m ()()4,2,1,1a b == a b 1111ABCD A B C D -E BC DE 1CD 1111ABCD A B C D -H 11B D ,,E F G ,,DC BC HC(1)四点共面;(2)平面平面.16.(15分)为了解学生的周末学习时间(单位:小时),高一年级某班班主任对本班40名学生某周末的学习时间进行了调查,将所得数据整理绘制出如图所示的频率分布直方图.根据直方图所提供的信息:(1)用分层抽样的方法在和中共抽取6人成立学习小组,再从该小组派3人接受检测,求检测的3人来自同一区间的概率;(2)估计这40名同学周末学习时间的分位数.17.(15分)如图,某海域的东西方向上分别有两个观测塔,它们相距海里,现观测塔发现有一艘轮船在点发出求救信号,经观测得知点位于点北偏东,同时观测塔也发现了求救信号,经观测点位于点北偏西,这时位于点南偏西且与相距30海里的点有一救援船,其航行速度为30海里/小时.(1)求点到点的距离;(2)若命令处的救援船立即前往点营救,救援船能否在1小时内到达救援地点?请说明理由.,,,F G H B EFG ∥11BDD B [)20,25[]25,3025%,AB A D D A 45 B D B 75 B 45 BC BD C D)18.(17分)如图,在直三棱柱中,,点为棱的中点,点为棱上一点.(1)证明:;(2)求三棱锥的体积;(3)求直线与平面所成角的余弦值.19.(17分)对任意两个非零向量,定义.(1)若向量,求的值;(2)若单位向量满足,求向量与的夹角的余弦值;(3)若非零向量满足,向量与的夹角是锐角,且是整数,求的取值范围.2.65≈≈≈111ABC A B C -16,8,10,5AC BC AB AA ====D AB E 11A B 1AC B C ⊥B ECD -1AC 11BCC B ,m n 2m n m n n ⋅⊗= ()()5,3,3,2a b ==- ()2a a b ⊗+ ,a b ()()5216a b a b +⊗-= a a b - ,a b 3a b …a b ()4b a ⊗ a b ⊗西宁市2023—2024学年第二学期末调研测试卷高一数学参考答案及评分意见一、选择题题号12345678答案C B D A D C B C二、多选题(注意:部分选对的,选项为2个每个3分,选项为3个每个2分.)题号91011答案BC ACDAD三、填空题12.2 13.四、解答题(每题只提供一种方法,如有不同方法,可按评分意见酌情给分)15.证明:(1)连接,分别是的中点为的中位线,,四点共面;(2)由(1)知,()3,3BH,F G,BC HCFG∴CBHVFG∴∥BH,,,F G H B∴FG∥BH平面面,平面;又分别是的中点,平面平面,平面;面面,平面平面.16.解:(1)由图可知,40名学生中周末的学习时间在的人数为人,周末的学习时间在的人数为人,从中用分层抽样抽取6人,则周末的学习时间在的有4人,记为;周末的学习时间在的有2人,记为;则再从中选派3人接受检测的基本事件有,,共有20个,其中检测的3人来自同一区间的基本事件有,共有4个,所以检测的3人来自同一区间的概率;(2)学习时间在5小时以下的频率为,学习时间在10小时以下的频率为,所以分位数在区间内,则,所以这40名同学周末学习时间的分位数为8.75小时.17.解:(1)由题意知,,,FG ⊄ 11,BDD B BH ⊂11BDD B FG ∴∥11BDD B ,E F ,DC BC EF ∴∥DB EF ⊄1,BDD B DB ⊂11BDD B EF ∴∥11BDD B ,EF FG F EF ⋂=⊂ ,EFG FG ⊂EFG ∴EFG ∥11BDD B [)20,250.035406⨯⨯=[]25,300.0155403⨯⨯=[)20,25,,,A B C D []25,30,a b ,,,,,,ABC ABD ABa ABb ACD ACa ACb ,,,,,,,,,,,,ADa ADb Aab BCD BCa BCb BDa BDb Bab CDa CDb Cab Dab ,,,ABC ABD ACD BCD 41205P ==0.0250.10.25⨯=<0.10.0450.30.25+⨯=>25%[)5,100.250.1558.750.30.1-+⨯=-25%AB =904545DAB ∠=-= 907515DBA ∠=-=所以,在中,由正弦定理可得,即所以(海里);(2)在中,,由余弦定理得所以因为(海里)所以救援船能够在1小时内到达救援地点.18.(1)证明:三棱柱是直三棱柱,平面平面;,,则;1804515120ADB ∠=--= ABD V sin sin BD AB DAB ADB ∠∠=sin45BD = 10BD ===BCD V 180754560,30,10CBD BC BD ∠=--=== 2222cos CD BC BD BC BD CBD ∠=+-⋅⋅1900100230102=+-⨯⨯⨯700=CD ==10 2.6526.530≈⨯=< 111ABC A B C -∴11BCC B ⊥ABC 6,8,10AC BC AB === 222AB AC BC ∴=+AC BC ⊥平面平面平面,平面;又平面,(2)解:是的中点,三棱柱是直三棱柱,点到平面的距离即的长,(3)解:由(1)知平面,为直线与平面所成的角.在中,,,,即直线与平面19.解:(1)因为,11BCC B ⋂,ABC BC AC =⊂ABC AC ∴⊥11BCC B 1B C ⊂11BCC B 1;AC B C ∴⊥D AB 111222BCD BCA S S AC BC ∴==⨯⋅V V 116822=⨯⨯⨯12,= 111ABC A B C -∴E ABC 1AA 113B ECD E BCD BCD V V S AA --∴==⋅V 11253=⨯⨯20=AC ⊥11BCC B 1AC C ∠∴1AC 11BCC B 1Rt ACC V 116,5AC CC AA ===1AC ∴==111cos CC AC C AC ∠∴===1AC 11BCC B ()()5,3,3,2a b ==-所以,所以故的值为.(2)因为向量是单位向量,所以,由,可得,解得,则,可得,设向量与的夹角为,则,故向量与.(3)设向量与与的夹角为,则,由题意可知,则,()()()25,323,21,7a b +=+-=- ()()222(2)a a b a a b a b ⋅+⊗+=+ ()225137(1)7⨯-+⨯=-+1650=825=()2a a b ⊗+ 825,a b 1,1a b == ()()5216a b a b +⊗-= ()()22222221516(2)4454a b a b a a b b a b a b a a b b a b +⋅-+⋅-⋅+===--⋅+-⋅ 14a b ⋅= 22213()212142a b a a b b -=-⋅+=-⨯+= a b -=== a a b -θ()2cos a a b a a b aa b a a b θ⋅--⋅====-- a a b - a bϕ22cos cos ||b a b b a b a a a aϕϕ⋅⊗=== π02ϕ<<0cos 1ϕ<<因为,所以,所以.即则.因为是整数,所以,则,即,而,即,所以,因为,则,即,故的取值范围为.3a b (103)b a < …10cos 3b a ϕ<< 10,3b a <⊗< ()4043b a <⊗< ()4b a ⊗ ()41b a ⊗= 14b a ⊗= 1cos 4b a ϕ= 14cos b a ϕ= 103b a < …1104cos 3ϕ<…3cos 14ϕ<…22cos 4cos a a b a b bb ϕϕ⋅⊗=== 2299cos 1,4cos 4164ϕϕ<< (944)a b ⊗< …a b ⊗ 9,44⎡⎫⎪⎢⎣⎭。
北京大兴区黄村第四中学2021-2022学年高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若??{x|x2≤a,a∈R},则a的取值范围是()A.[0,+∞) B.(0,+∞)C.(﹣∞,0] D.(﹣∞,0)参考答案:A【考点】集合关系中的参数取值问题.【专题】计算题.【分析】由题意可得 {x|x2≤a,a∈R}≠?,从而得到a≥0.【解答】解:∵??{x|x2≤a,a∈R},∴{x|x2≤a,a∈R}≠?,∴a≥0.故选 A.【点评】本题主要考查集合关系中参数的取值范围问题,得到{x|x2≤a,a∈R}≠?,是解题的关键,属于基础题.2. (5分)如果,那么的值是()A.B.C.D.参考答案:B考点:运用诱导公式化简求值.专题:计算题.分析:根据题意结合诱导公式先对条件进行化简,然后对所求化简,进而可以得到答案.解答:由题意可得:,根据诱导公式可得cosA=,所以=cosA=,故选B.点评:解决此类问题的关键是熟练记忆诱导公式,以及进行正确的化简求值.3. 设A,B,I均为非空集合,且满足A?B?I,则下列各式中错误的是()A.(?I A)∪B=I B.(?I A)∪(?I B)=IC.A∩(?I B)=?D.(?I A)∩(?I B)=?I B参考答案:B4. 下列函数是奇函数的是()A.y=xsinx B.y=x2cosx C.y=D.y=参考答案:D【考点】函数奇偶性的判断.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】根据函数奇偶性的定义进行判断即可.【解答】解:A,y=xsinx为偶函数,不满足条件.B.函数y=x2cosx为偶函数,不满足条件.C.y=为偶函数,不满足条件.D.y=为奇函数,满足条件.故选:D.【点评】本题主要考查函数奇偶性的判断,要求熟练掌握常见函数的奇偶性,比较基础.5. 两直线与平行,则它们之间的距离为( )A. B. C. D.参考答案:D6. 判断下列各组中的两个函数是同一函数的为()⑴,;⑵,;⑶,;⑷,;⑸,A ⑴、⑵B ⑵、⑶C ⑷D ⑶、⑸参考答案:C7. 若△ABC边长为a,b,c,且则f(x)的图象A.在x轴的上方 B.在x轴的下方 C.与x轴相切 D.与x轴交于两点参考答案:A略8. 函数y=log2(1-x)的图象大致为( )参考答案:C略9. 定义在R上的函数对任意两个不相等实数,总有成立,则必有().A.函数是先增加后减少B.函数是先减少后增加C.在R上是增函数D.在R上是减函数参考答案:C略10. 若,则)A. B. C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数的图象上关于y轴对称的点恰有9对,则实数a的取值范围_________.参考答案:【分析】求出函数关于轴对称的图像,利用数形结合可得到结论.【详解】若,则,,设为关于轴对称的图像,画出的图像,要使图像上有至少9个点关于轴对称,即与有至少9个交点,则,且满足,即。
2022北京西城高一(下)期末数 学一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(4分)在复平面内,复数2z i i =+对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.(4分)设向量(3,1)a =,(1,2)b =−,则(2)(a b b −⋅= ) A .11−B .9−C .7−D .5−3.(4分)设m ,n 为两条直线,α,β为两个平面.若//αβ,//m n ,m α⊥,则( ) A .//n β B .n β⊥C .//m βD .以上答案都不对4.(4分)若3cos 5α=,则3sin()(2πα−= )A .35B .35−C .45 D .45−5.(4分)函数()sin(2)6f x x π=+,[0x ∈,]2π的最大值和最小值分别为( )A .1,1−B .11,22−C .1,12 D .1,12−6.(4分)在ABC ∆中,若222a b c kab +−=,则实数k 的取值范围是( ) A .(2,2)−B .(1,1)−C .1(2−,1)2D .(0,1)7.(4分)已知向量a ,b 满足||4a =,||2b =,()a b b +⊥,那么向量a ,b 的夹角为( ) A .6πB .3π C .23π D .56π 8.(4分)函数1cos 2()sin xf x x−=的图像( )A .关于原点对称B .关于y 轴对称C .关于直线x π=对称D .关于点(2π,0)对称9.(4分)设(,)αππ∈−,则“(4πα∈−,3)4π”是“sin cos 0αα+>”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件10.(4分)如图,正方形ABCD 的边长为2,P 为正方形ABCD 四条边上的一个动点,则PA PB ⋅的取值范围是( )A .[1−,2]B .[0,2]C .[0,4]D .[1−,4]二、填空题共5小题,每小题5分,共25分。
2022学年第二学期杭州市高一年级教学质量检测数学试题卷考生须知:1.本试卷分试题卷和答题卡两部分.满分150分,考试时间120分钟.2.答题前,必须在答题卡指定位置上用黑笔填写学校名、姓名、试场号、座位号、准考证号,并用2B 铅笔将准考证号所对应的数字涂黑.3.答案必须写在答题卡相应的位置上,写在其他地方无效.一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.)1. 设集合{}{}21,2,3,4,230AB xx x ==−−≤∣,则A B = ( )A. {}1,2,3,4B. {}1,2,3C. {}1,2D. {}1【答案】B 【解析】【分析】先求出集合B ,再求两集合的交集.【详解】由2230x x −−≤,得(1)(3)0x x +−≤,解得13x −≤≤, 所以{}13B x x =−≤≤,因为{}1,2,3,4A =,所以A B = {}1,2,3, 故选:B2. 若i 23i z ⋅=+(i 是虚数单位),则z =( )A. 2B. 3C.D. 【答案】C 【解析】【分析】先求得32i z =−,再根据模长公式即可求解. 【详解】因为()()()23i i 23i32i ii i z +−+===−−,所以z =.故选:C3. 军事上角的度量常用密位制,密位制的单位是“密位”1密位就是圆周的16000所对的圆心角的大小,.若角1000α=密位,则α=( ) A.π6B.π4C.π3D.5π12【答案】C 【解析】【分析】由密位制与弧度的换算公式可得,10002π6000α=×,从而可得解. 【详解】因为1密位等于圆周角的16000, 所以角1000α=密位时,1000π2π60003α=×=, 故选:C .4. 已知平面α⊥平面β,直线l α⊄,则“l β⊥”是“//l α”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件和必要条件的定义结合面面垂直的性质分析判断. 【详解】设m αβ= ,在平面α内作a m ⊥, 因为平面α⊥平面β,所以a β⊥, 因为l β⊥,所以a ∥l , 因为l α⊄,a α⊂, 所以//l α,而当平面α⊥平面β,直线l α⊄,//l α时,l 与平面β可能垂直,可能平行,可能相交不垂直, 所以“l β⊥”是“//l α”的充分而不必要条件, 故选:A5. 杭州亚运会火炬如图(1)所示,小红在数学建模活动时将其抽象为图(2)所示的几何体.假设火炬装满燃料,燃烧时燃料以均匀的速度消耗,记剩余燃料的高度为h ,则h 关于时间t 的函数的大致图象可能是( )A. B.C. D.【答案】A 【解析】【分析】根据火炬的形状:中间细、上下粗来分析剩余燃料的高度h 随时间t 变化的下降速度. 【详解】由图可知,该火炬中间细,上下粗,燃烧时燃料以均匀的速度消耗, 燃料在燃烧时,燃料的高度一直在下降,刚开始时下降的速度越来越快, 燃料液面到达火炬最细处后,燃料的高度下降得越来越慢, 结合所得的函数图象,A 选项较为合适. 故选:A.6. 雷峰塔位于杭州市西湖景区,主体为平面八角形体仿唐宋楼阁式塔,总占地面积3133平方米,项目学习小组为了测量雷峰塔的高度,如图选取了与底部水平的直线BC ,测得ABC ∠、ADC ∠的度数分别为α、β,以及D 、B 两点间的距离d ,则塔高AC =( )A. ()sin sin sin d αββα−B. ()sin sin cos d αββα−C.()tan tan tan d αββα−D.()sin cos sin d αββα−【答案】A 【解析】【分析】利用正弦定理可求得AD ,进而可得出sin AC AD β=,即为所求. 【详解】在ABD △中,BAD ADC ABC βα∠=∠−∠=−,由正弦定理可得sin sin BD AD BAD ABC=∠∠,即()sin sin d AD βαα=−,得()sin sin d AD αβα=−, 由题意可知,AC BC ⊥,所以,()sin sin sin sin d AC AD ADC αββα=∠=−.故选:A.7. 已知函数()()πe π,e xf x xg x =+=(e 为自然对数的底数),则( ) A. ()()()0,,x f x g x ∞∀∈+> B. 0e ,e ππx∃∈,当0x x =时,()()f x g x = C. ()()e ,e π,πx f x g x∀∈<D. ()2π0e ,x ∞∃∈+,当0x x >时,()()f x g x <【答案】D 【解析】【分析】观察到()(),f x g x 分别为一次函数和指数函数,则数形结合,依次判定即可.【详解】由题,假设当1x x =时,()()f x g x =,作出示意图如图所示:则1(0,)x x ∈时,()()f x g x >, 当1(,)x x ∈+∞时,()()f x g x <,则A 选项错误;因为e 1e π9π<<<,()()π1e π,1e f g =+=,()()11f g >,故C 选项错误,且()()()()()39393π99e π10e,9 1.299128,e .2f g f g=+>=<><<=,则结合图像可知,当ee ππx <<时,()()f x g x >恒成立,故B 选项错误; 对于D 选项,x →+∞时,由图可知()()f x g x <,则D 选项正确.故选:D.8. 设函数()()ππ3πsin 0,,0,1288f x x f f ωϕωϕ=+><−==,且()f x 在区间π,1224π− 上单调,则ω的最大值为( ) A. 1 B. 3C. 5D. 7【答案】B 【解析】【分析】根据π08f−= 与3π18f =可得()()211221,k k k k ω=−+∈Z ,再根据单调性可得8ω≤,验证7ω=, 5ω=与3ω=即可.【详解】由π08f−=,得()11ππ8k k ωϕ−+=∈Z , 由3π18f =,得()223πππ82k k ωϕ+=+∈Z , 两式作差,得()()211221,k k k k ω=−+∈Z ,因为()f x 在区间π,1224π−上单调,所以π12π2412π2ω+≤⋅,得8ω≤.当7ω=时,()117ππ8k k ϕ−+=∈Z ,因为π2ϕ<,所以π8ϕ=−, 所以()πsin 78f x x=−. 24ππ,12x∈−,π17π7π,8246x −∈− ,因为17ππ242−<−,所以()f x 在区间π,1224π−上不单调,不符合题意; 当5ω=时,()115ππ8k k ϕ−+=∈Z ,因π2ϕ<,所以3π8ϕ=−, 所以()3πsin 58f x x=−. 24ππ,12x∈−,3π19π5π,8246x −∈−− ,因为19ππ242−<−,所以()f x 在区间π,1224π−上不单调,不符合题意; 当3ω=时,()113ππ8k k ϕ−+=∈Z ,因为π2ϕ<,所以3π8ϕ=,所以()3πsin 38f x x=+. 24ππ,12x∈−,3πππ3,882x +∈ ,所以()f x 在区间π,1224π−上单调,符合题意,所以ω的最大值是3.故选:B.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,有选错的得0分,部分选对的得2分.) 9. 已知函数()2121x x f x −=+,则( )为A. 函数()f x 的图象关于原点对称B. 函数()f x 的图象关于y 轴对称C. 函数()f x 的值域为()1,1−D. 函数()f x 是减函数【答案】AC 【解析】【分析】求函数()f x 的奇偶性可判断AB ;分离参数可得()2121x f x =−+,根据指数函数的值域可判断C ;根据单调性的定义可判断D.【详解】()f x 的定义域为R ,()2121x x f x −=+,则()()21212121x x x x f x f x −−−−−==−=−++,所以()f x 为奇函数,()f x 的图象关于原点对称,A 正确,B 错误;()21212121x x x f x −==−++,因为211x +>,所以10121x<<+,20221x <<+, 所以211121x −<−<+,故()f x 的值域为()1,1−,C 正确; 设21x x >,则()()212122112121x x f x f x−=−−− ++()()()2112122222221212121x x x x x x −−=++++, 因为21x x >,所以2112220,210,210x x x x −>+>+>, 所以()()210f x f x −>,即()()21f x f x >, 所以函数()f x 是增函数,故D 错误, 故选:AC.10. 如图,O 是正六边形ABCDEF 的中心,则( )A. AB AF AO −=B. 3AC AE AD +=C. OA OC OB OD ⋅=⋅D. AD 在AB上的投影向量为AB【答案】CD 【解析】【分析】根据向量的线性运算法则,可判定A 、B 不正确,结合向量的数量积的定义域运算,可判定C 正确,结合向量的投影的定义与运算,可判定D 正确. 【详解】根据题意,结合平面向量的线性运算法则,可得:对于A 中,由B F AO FB A A =−≠,所以A 不正确;对于B 中,由232AO OC AO OE A AC AE O OC OE AO O A D O =+++=+=+++,所以B 不正确;对于C 中,设正六边形的边长为a ,可得111cos1202OA OC ⋅=××=−,111cos1202OB OD ⋅=××=− ,所以OA OC OB OD ⋅=⋅ ,所以C 正确;对于D 中,如图所示,连接BD ,可得BD AB ⊥,可得cos AD DAB AB ∠=,所以AD 在向量AB 上的投影向量为AB AB AB AB⋅= ,所以D 正确. 故选:CD.11. 如图,质点A 和B 在单位圆O 上逆时针作匀速圆周运动.若A 和B 同时出发,A 的角速度为1rad /s ,起点位置坐标为12 ,B 的角速度为2rad /s ,起点位置坐标为()1,0,则( )A. 在1s 末,点B 的坐标为()sin2,cos2B. 在1s 末,扇形AOB 的弧长为π13− C. 在7πs 3末,点,A B 在单位圆上第二次重合 D. AOB 面积的最大值为12 【答案】BCD 【解析】【分析】求出1s 末点A 和B 的坐标可判断选项AB;求出7πs 3末点A 和B 的坐标,结合诱导公式可判断C ;根据三角形面积公式可判断D.【详解】在1s 末,点B 的坐标为()sin2,cos2,点A 的坐标为ππcos 1,sin 133 ++;π13AOB ∠=−,扇形AOB 的弧长为π13−;设在s t 末,点,A B 在单位圆上第二次重合, 则π7π22π33t t t −==+=,故在7πs 3末,点,A B 在单位圆上第二次重合; 1sin 2AOBS AOB =∠△,经过5π6s 后,可得π2AOB ∠=,AOB 面积的可取得最大值12. 故选:BCD.12. 圆锥内半径最大的球称为该圆锥的内切球,若圆锥的顶点和底面的圆周都在同一个球面上,则称该球为圆锥的外接球.如图,圆锥PO 的内切球和外接球的球心重合,且圆锥PO 的底面直径为2a ,则( )A. 设内切球的半径为1r ,外接球的半径为2r ,则212r r =B. 设内切球的表面积1S ,外接球的表面积为2S ,则124S S =C. 设圆锥的体积为1V ,内切球的体积为2V ,则1294V V =D. 设S 、T 是圆锥底面圆上的两点,且ST a =,则平面PST 截内切球所得截面的面积为2π15a【答案】ACD 【解析】【分析】作出圆锥的轴截面,依题意可得PAB 为等边三角形,设球心为G (即为PAB 的重心),即可求出PAB 的外接圆和内切圆的半径,即可为圆锥的外接球、内切球的半径,即可判断A 、B ,由圆锥及球的体积公式判断C , ST所对的圆心角为π3(在圆O 上),设ST 的中点为D ,即可求出OD ,不妨设D 为OB 上的点,连接PD ,过点G 作GE PD ⊥交PD 于点E ,利用三角形相似求出GE ,即可求出截面圆的半径,从而判断D.【详解】作出圆锥的轴截面如下:因为圆锥PO 的内切球和外接球的球心重合,所以PAB 为等边三角形, 又2PB a =,所以OP ,设球心为G (即为PAB 的重心),所以23PGPO ==,13OG PO ==,即内切球的半径为1r OG ==,外接球的半径为2r PG ==,所以212r r =,故A 正确;设内切球表面积1S ,外接球的表面积为2S ,则214S S =,故B 错误; 设圆锥的体积为1V,则3121ππ3V a a , 内切球的体积为2V,则3324π3V a ==,所以1249V V =,故C 正确; 设S 、T 是圆锥底面圆上的两点,且ST a =,则 ST所对的圆心角为π3(在圆O 上),的设ST的中点为D,则πsin3OD a==,不妨设D为OB上的点,连接PD,则PD过点G作GE PD⊥交PD于点E,则PEG POD∽,所以GE PGOD PD=,=,解得GE=,所以平面PST截内切球截面圆的半径r所以截面圆的面积为22π15πar=,故D正确;故选:ACD【点睛】关键点睛:本题解答的关键是由题意得到圆锥的轴截面三角形为等边三角形,从而确定外接球、内切球的半径.二、填空题(本大题共4小题,每小题5分,共20分.)13. 设函数()12,01,02xx xf xx>=<,若()12f a=,则=a__________.【答案】14##0.25【解析】【分析】分段求解方程和指数方程,则问题得解.【详解】当0a>时,1212a=,14a∴=,当a<0时,1122a=,1a∴=(舍).14a∴=.故答案为:14. 14. 将曲线sin y x =上所有点向左平移(0)ϕϕ>个单位,得到函数sin y x =−的图象,则ϕ的最小值为__________. 【答案】π 【解析】【分析】先利用三角函数图象变换规律求出平移后的解析,再由两函数图象相同列方程可求得结果.【详解】将曲线sin y x =上所有点向左平移(0)ϕϕ>个单位,可得sin()y x ϕ=+, 因为sin()y x ϕ=+与sin y x =−的图象相同, 所以π2π,k k ϕ=+∈Z , 因为0ϕ>,所以ϕ的最小值为π, 故答案为:π15. 已知正三棱柱111ABC A B C 的各条棱长都是2,则直线1CB 与平面11AA B B 所成角的正切值为__________;直线1CB 与直线1A B 所成角的余弦值为__________. 【答案】 ①. ②. 14##0.25【解析】【分析】空1:取AB 中点D ,连接1,CD B D ,则可得1CB D ∠为直线1CB 与平面11AA B B 所成角,然后在1CB D 中求解即可;空2:分别取111,,BC BB A B 的中点,,E F G ,连接,,EF FG EG ,则可得EFG ∠(或其补角)为直线1CB 与直线1A B 所成角,然后在EFG 中求解即可. 【详解】空1:取AB 的中点D ,连接1,CD B D , 因为ABC 为等边三角形,所以CD AB ⊥, 因为1BB ⊥平面ABC ,CD ⊂平面ABC , 所以1BB CD ⊥,因为1BB AB B ∩=,1,BB AB ⊂平面11AA B B , 所以CD ⊥平面11AA B B ,的所以1CB D ∠直线1CB 与平面11AA B B 所成角, 因为正三棱柱111ABC A B C 的各条棱长都是2,所以12CD DB ===所以11tan CD CB D DB ∠=所以直线1CB 与平面11AA B B空2:分别取111,,BC BB A B 的中点,,E F G ,连接,,EF FG EG ,则EF ∥1B C,11122EF B C ==×, FG ∥1A B,11122FG A B ==×,所以EFG ∠(或其补角)为直线1CB 与直线1A B 所成角, 连接,DG DE,则EG =,在EFG 中,由余弦定理得2221cos 24EF FG EG EFG EF FG +−∠==−⋅, 因为异面直线所成的角的范围为0,2π,所以直线1CB 与直线1A B 所成角的余弦值为14,14.为16. 对于函数()()yf x x I ∈,若存在0x I ∈,使得()00f x x =,则称0x 为函数()y f x =的“不动点”.若存在0x I ∈,使得()()0ff x x=,则称0x 为函数()y f x =的“稳定点”.记函数()y f x =的“不动点”和“稳定点”的集合分别为A 和B ,即(){}()(){}|,|A x f x x B x f f x x ====.经研究发现:若函数()f x 为增函数,则A B =.设函数())R f x a ∈,若存在[]0,1b ∈使()()f f b b =成立,则a 的取值范围是__________. 【答案】10,4【解析】【分析】先判断())R f x a ∈是增函数,再根据题意可得()f b b =,代入可得2a b b =−,再结合二次函数的性质即可求解a 的取值范围.【详解】因为())R f x a ∈是增函数,所以()()ff b b =等价于()f b b =b =,所以2a b b =−,而2a b b =−在10,2上单调递增,在1,12上单调递减, 所以max 14a =,而当0b =时,0a =;当1b =时,0a =,即min 0a =, 所以a 的取值范围为10,4.故答案为:10,4三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在平面直角坐标系中,已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34,55P−. (1)求sin α的值;(2)若角β满足()sin αβ+,求cos β的值.【答案】(1)45−(2【解析】【分析】(1)根据某个角正弦的定义,直接求解即可;(2)首先由同角的三角函数的平方关系求出()cos αβ+,根据()cos cos βαβα =+− 及两角差的余弦公式,代入计算即可. 【小问1详解】由角α的终边过点34,55P −,得4sin 5y r α===−.【小问2详解】由角α的终边过点34,55P − ,得3cos 5x r α==, 由()sin αβ+()1cos 2αβ+=±, ()()()cos cos cos cos sin sin βαβααβααβα =+−=+++ ,当()1cos 2αβ+=时,134cos 255β =×+−=当()1cos 2αβ+=−时,134cos 255β =−×+−综上所述,cos β=.18. 某工厂产生的废气经过滤后排放,过滤过程中废气的污染物数量mg /L P 与时间h t 间的关系为0e kt P P −=(其中0,P k 是正常数).已知在前5个小时消除了10%的污染物.(1)求k 的值(精称到0.01); (2)求污染物减少50%需要花的时间(精确到0.1h )?参考数据:ln20.693,ln3 1.099,ln5 1.609===. 【答案】(1)0.02 (2)34.7【解析】【分析】(1)由题意可得5000.9e kP P −=,求解即可;(2)由题意可得0.02000.5e tP P −=,求解即可.【小问1详解】 由0ektP P −=知,当0=t 时,0P P =;当5t =时,()0110%PP =−;即5000.9ekP P −=,所以1ln0.95k =−,即()()1911ln 2ln3ln102ln3ln2ln50.0251055k =−=−×−=−×−−≈; 【小问2详解】当00.5P P =时,0.02000.5e tP P −=,即0.020.5e t −=,则50ln234.7t≈.故污染物减少50%需要花的时间约为34.7h .19. 我们把由平面内夹角成60°的两条数轴,Ox Oy 构成的坐标系,称为“@未来坐标系”.如图所示,21,e e分别为,Ox Oy 正方向上的单位向量.若向量12OP xe ye =+ ,则把实数对(),x y 叫做向量OP的“@未来坐标”,记{,}OP x y =.已知{}{}1122,,,x y x y 分别为向是,a b的@未来坐标.(1)证明:{}{}{}11221212,,,x y x y x x y y +=++;(2)若向量,a b 的“@未来坐标”分别为{}1,2,{}2,1,求向量,a b的夹角的余弦值.【答案】(1)证明见解析 (2)1314【解析】【分析】(1)因为{}{}111122122122,,,x y a x y x y b e e e y e x ==+==+,则{}{}()()111221122221,,x y e y x x y e x y e e +=+++计算即可证明;(2)由题意可得12122,2b e a e e e =+=+,根据向量夹角公式即可求解.因为{}{}111122122122,,,x y a x y x y b e e e y e x ==+==+, 所以{}{}()()111221122221,,x y e y x x y e x y e e +=+++()()211122x x y y e e =+++{}1212,x x y y =++【小问2详解】12122,2b e a e e e =+=+ ,()()221212121213222252a b e e e e e e e e ⋅+⋅+++⋅ ,122a e e =+=== ,212b e e =+===,所以13cos ,14a b a ba b⋅==. 20. 在四边形ABCD 中,//,sin 2sin AB CD AD ADC CD ABC ∠∠⋅=⋅.(1)求证:2BC CD =.(2)若33AB CD ==,且sin sin60AD ADB AB ∠°⋅=⋅,求四边形ABCD 的面积. 【答案】(1)证明见解析(2)若60ABD ∠= ,则四边形ABCD, 若120ABD ∠= ,则四边形ABCD【解析】【分析】(1)由条件结合正弦定理证明sin sin AD ADC BC ABC ⋅∠=⋅∠,由此证明结论; (2)由条件结合正弦定理求ABD ∠,由余弦定理求BD ,结合三角形面积公式求结论.在ACD 中,由正弦定理得sin sin AD ADC AC ACD ∠⋅∠⋅,因为AB CD ,所以ACD CAB ∠=∠, 所以sin sin AD ADC AC CAB ∠⋅∠⋅, ABC 中,由正弦定理得,即sin sin AC CAB BC ABC ∠⋅=⋅∠, 所以sin sin AD ADC BC ABC ⋅∠=⋅∠. 又sin 2sin AD ADC CD ABC ⋅∠=⋅∠, 所以sin 2sin BC ABC CD ABC ⋅∠=⋅∠, 所以2BC CD =.【小问2详解】在ABD △中,由正弦定理得sin sin sin60AD ADB AB ABD AB ∠∠⋅=⋅=⋅ , 所以sin sin60ABD ∠= , 所以60ABD ∠= 或120 ,①当60ABD ∠= 时,则60BDC ∠= ,在BCD △中,由余弦定理得,230BD BD −−=,又0BD >,解得BD =此时四边形ABCD 的面积()1S sin602AB CD BD =+××= ②当120ABD ∠= 时,则120BDC ∠= , 在BCD △中,由余弦定理得,230BD BD +−=,解得BD =,在此时四边形ABCD 的面积()1sin1202S AB CD BD =+××=21. 生活中为了美观起见,售货员用彩绳对长方体礼品盆进行捆扎.有以下两种捆扎方案:方案(1)为十字捆扎(如图(1)),方案(2)为对角捆扎(如图(2)).设礼品盒的长AB ,宽BC ,高1AA 分别为30cm,20cm,10cm .(1)在方案(2)中,若111110cm LA A E IC C H FB BG ======,设平面LEF 与平面GHI 的交线为l ,求证://l 平面ABCD ;(2)不考虑花结用绳,对于以上两种捆扎方式,你认为哪一种方式所用彩绳最少,最短绳长为多少cm ? 【答案】(1)证明见解析 (2)方案(2),最短绳长为100cm 【解析】【分析】(1)先证明LE IH ∥,从而可证LE 平面IHG ,进而得LE l ∥,从而可证l 平面1111D C B A ,从而可证//l 平面ABCD ;(2)方案1中,绳长为()()3010220102140cm +×++×=;方案2中,将长方体盒子展开在一个平面上,在平面展开图中彩绳是一条由F 到F ′的折线,从而可计算最短绳长. 【小问1详解】连接,LI EH ,在长方体中,111110cm LA A E IC C H FB BG ======, 则111110cm,20cm B LD B E ID H ====,所以LE IHLI EH ==,所以LE IH =,LI EH =,所以四边形LEHI 是平行四边形,LE IH ∴∥,又LE ⊄ 平面,IHG LE ⊂平面LEF LE ∴ 平面IHG ; 又LE ⊂ 平面LEF ,平面LEF ∩平面,GHI l LE l =∴∥; 又l ⊄ 平面1111,A B C D LE ⊂平面1111,A B C D l ∴ 平面1111D C B A , 又l ⊄ 平面,ABCD l ∴ 平面ABCD ; 【小问2详解】方案1中,绳长为()()3010220102140cm +×++×=; 方案2中,将长方体盒子展开在一个平面上,在平面展开图中彩绳是一条由F 到F ′的折线,如图所示,在扎紧的情况下,彩绳长度的最小值为FF ′长度,因为FB F B =′′′,所以100cm FF BB ′′′===,所以彩绳的最短长度为100cm .22. 已知函数()()1(0),(0)f x x x g x x x x=+>=>. (1)直接写出()()()()1f x g x g x f x −<−+的解集;(2)若()()()123f x f x g x ==,其中12x x <,求()()123f x x g x ++的取值范围;(3)已知x 为正整数,求()()()()22121h x m x m x m ∗=+−+∈N的最小值(用m 表示).【答案】(1)()2,+∞; (2)()()12392f x xg x ++>;(3)()min 322,1,8,2,()24,333,3m m h x m m m m m m ∗−= −= ∈ −=−+−+> N . 【解析】【分析】(1)转化为求解()1110x x x<−>,分01x <≤与1x >讨论即可求解; (2)根据韦达定理得()122t x x t +=>,再根据对勾函数的性质即可求解; (3)根据二次函数的性质分类讨论即可求解.【小问1详解】∵()()1(0),(0)f x x x g x x x x=+>=>, ∴()()()()1f x g x g x f x −<−+即为()1110x x x <−>, 当01x <≤时,110x −≤,故()1110x x x<−>,显然不成立; 当1x >时,110x −>,故()1110x x x <−>,即()210x x<>,解得2x >. 综上所述,()()()()1f x g x g x f x −<−+的解集为()2,+∞.【小问2详解】设()()()123f x f x g x t ===,则3x t =, 令1x t x+=,整理得:210x tx −+=, 故12x x t +=,且2Δ40t =−>,得2t >. ∴()()12312f x x g x t t ++=+在2+)∞(, 上单调递增, 所以11922222t t +>×+=, 即()()12392f x xg x ++>. 【小问3详解】 ()()()()()222222111211,11m mh x m x m x m x m m + +=+−+=+−− ++2121,11m m m m +=−+++ ()2,111m m m ∗∗∈∴−∈≤+N N ,, ①1m =时,()min 211,()121m h x h m −+=∴==−+; ②2m =时,()min 251,()2813m h x h m −+=∴==−+; ③3m =时,()()min 251,()232412m h x h h m −+=∴===−+; ④3m >时,2121,1111212m m m m m <−<−+<−+++, ∴()32min ()133h x h m m m m =−=−+−+. 综上所述,()min 322,1,8,2,()24,333,3m m h x m m m m m m ∗−= −= =∈ −=−+−+> N。
山西省2021-2022学年高一下学期期末考试数学试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|}A x y lnx ==,集合{|sin B y y x ==,}x A ∈,则(A B = )A .[1-,)∞B .(0,1]C .(0,1)D .(0,)+∞〖解 析〗{|}(0,)A x y lnx ===+∞,集合{|sin B y y x ==,}[1x A ∈=-,1],(0A B ∴=,1],〖答 案〗B2.某次体育考试,甲、乙的成绩达到优秀的概率分别为0.4,0.9,两人的成绩互不影响,则甲、乙两人的成绩都未达到优秀的概率为( ) A .0.06B .0.36C .0.28D .0.64〖解 析〗甲、乙达到优秀的概率分别是0.4、0.9, 则甲、乙未达到优秀的概率分别是10.4-和10.9-, 又甲、乙两人考试成绩互不影响,相互独立.∴甲、乙都未达到优秀的概率为(10.4)(10.9)0.06P =-⨯-=.〖答 案〗A3.若复数z 满足1z i =-+,则下列说法正确的是( ) A .z 的虚部为iB .z 的共轭复数为1z i =+C .z 在复平面内对应的点在第三象限D .||z =〖解 析〗1z i =-+,z ∴的虚部为1,1z i =--,z 在复平面内对应的点(1,1)-在第二象限,|||1|z i =--=ABC 错误,D 正确.〖答 案〗D4.数据22,24,32,33,35,28,56,x 的第65百分位数为35,则x 的取值可以是() A .20B .25C .30D .35〖解 析〗865% 5.2⨯=,∴这组数据的第65百分位数是第6项数据35,35x ∴.〖答 案〗D5.在ABC ∆中,角A ,B ,C 所对边分别为a ,b ,c ,3A π=,2b =,8c =,则2sin 2sin sin a b cA B C-+-+值等于( )AB. CD〖解 析〗由余弦定理得22212cos 464228522a b c bc A =+-=+-⨯⨯⨯=,解得a =ABC ∆外接圆半径为R ,则22sin 4sin 2sin 2sin 2sin sin sin 2sin sin sin a b c R A R B R C a R A B C A B C A -+-+=====-+-+. 〖答 案〗C6.设平面向量a ,b 满足||12a =,(1,22)b =,18a b ⋅=,则b 在a 方向上的投影向量为() A .18aB .18bC .12aD .12b〖解 析〗||12a =,18a b ⋅=,∴b 在a 方向上的投影向量1811||||12128a b a a a a a ⋅=⋅=⋅⋅=. 〖答 案〗A7.正三棱锥P ABC -的底面边长等于球O 的半径,且正三棱锥P ABC -的高等于球O 的直径,则球O的体积与正三棱锥P ABC -体积的比值为( ) ABC D . 〖解析〗设球O 的半径为r,球O 的体积为3143V r π=,正三棱锥P ABC -的底面积2212S r =,2h r =,棱锥的体积为232123V r =⨯=.所以12V V 〖答 案〗C8.已知点P 在ABC ∆的边BC 上,2AP PC CA ===,ABC ∆,则sin (PAB ∠= )A B C D〖解 析〗因为2AP PC CA ===,故等边三角形APC 的面积212sin 602APC S ∆=⨯⨯︒=,又ABC ∆1sin1202ABP S PA PB ∆=⋅⋅︒=, 解得3PB =,故5BC =,所以在ABC ∆中,22226019AB BC AC BC AC =+-⋅⋅︒=,故AB =,所以sin sin AB BPAPB PAB=∠∠3sin PAB =∠,解得:sin PAB ∠=. 〖答 案〗D9.如图是一个正方体的展开图,如果将它还原为正方体,则下列说法中正确的是( )A .直线CD 与直线GH 异面B .直线CD 与直线EF 共面C .直线AB 与直线EF 异面D .直线GH 与直线EF 共面〖解 析〗如图,点C 与点G 重合,故A 错误;//CE BD ,且CE BD =,∴四边形CDBE 是平行四边形,//CD EF ∴,CD ∴与EF 是共面直线,故B 正确;AB EF B =,AB ∴与EF 相交,故C 错误;EF ,GH 不在一个平面内,且EF 与GH 既不平行也不相交,EF ∴,GH 是异面直线,故D 错误.〖答 案〗B10.甲、乙两盒中皆装有若干个不同色的小球,从甲盒中摸出一个红球的概率是13,从乙盒中摸出一个红球的概率是12,现小明从两盒各摸出一个球,每摸出一个红球得3分,摸出其他颜色小球得0分,下列结论错误的是( ) A .小明得6分的概率为16B .小明得分低于6分的概率为13C .小明得分不少于3分的概率为23D .小明恰好得3分的概率为12〖解 析〗设“从甲盒中摸出一个红球”为事件1A ,“从乙盒中摸出一个红球”为事件2A , 则11()3P A =,21()2P A =,且1A ,2A 独立. 对选项A ,小明得(6分)的概率为111326⨯=,故A 正确;对选项B ,小明得分低于(6分)的概率为15166-=,故B 错误; 对选项C ,小明得分不少于(3分)的概率为122121()()1323P A P A -=-⨯=,故C 正确;在D 中,小明恰好得(3分)的概率为1121132322⨯+⨯=,故D 正确.〖答 案〗B11.下列四个等式中正确的是( )A.tan 205tan35205tan35︒+︒︒︒=B .2tan811tan8ππ=-C .221cos sin 882ππ-=D.14sincos1818π=〖解 析〗对于A,tan 205tan35tan 240tan(20535)1tan 205tan35︒+︒︒=︒+︒==-︒︒,tan 205tan35205tan35∴︒+︒︒⋅︒A 错误,对于B ,原式22tan1118tan 224218tan πππ=⋅==-,故B 错误,对于C,原式cos4π==,故C 错误, 对于D,7cos 2(coscossinsin )4cos11818183183181sincossincossin sin 18181818299ππππππππππππ---=== 4cos()4sin2994sin sin 99πππππ-===,故D 正确. 〖答 案〗D12.若点P 是棱长为2的正方体1111ABCD A B C D -表面上的动点,点M 是棱11A D 的中点,AP DM ⊥,则线段AP 长度的最大值为( )AB.C .3D.〖解 析〗分别取1DD ,1CC 中点E ,F ,连接EA ,EF ,FB ,首先EF 与CD 平行且相等,CD 与AB 平行且相等,因此EF 与AB 平行且相等,四边形EFBA 是平行四边形,在同一平面内,易得ADE ∆≅△1DD M ,1EAD MDD ∠=∠,所以190EAD MDA MDD MDA ∠+∠=∠+∠=︒,所以MD AE ⊥, 又AB ⊥平面11ADD A ,MD ⊂平面11ADD A ,所以AB MD ⊥, 又AEAB A =,AB ,AE ⊂平面ABFE ,所以MD ⊥平面ABFE .而MD AP ⊥,则P ∈平面ABFE ,所以P 点轨迹是矩形ABEF (除A 点), 四边形ABFE 是矩形,当P 与F 重合时,AF3=.〖答 案〗C二、填空题:本大题共4小题,每小题5分,共20分.13.若幂函数()y f x =的图象过点1(2,)4,则此函数的〖解 析〗式为 .〖解 析〗设幂函数为a y x =,幂函数()y f x =的图象过1(2,)4,∴124a =,解得2a =-.21()f x x∴=.〖答 案〗21x14.如图,作用于同一点O 的三个力1F ,2F ,3F 处于平衡状态,已知1||1F =,2||F ,1F 与2F 的夹角为34π,则3F 的大小为 .〖解 析〗三个力1F ,2F ,3F 处于平衡状态,123F F F ∴+=-,1||1F =,2||F =,1F 与2F 的夹角为34π,∴22223121212()21221(1F F F F F F F =+=++⋅=++⨯=, 3F ∴的大小为1.〖答 案〗115.关于函数()sin()sin 6f x x x π=+-①其表达式可写成()cos(2)6f x x π=-+;②曲线()y f x =关于直线12x π=-对称;③()f x 在区间[,]63ππ上单调递增;④(0,)2πα∃∈,使得()(3)f x f x αα+=+恒成立.其中正确的是 (填写正确的序号), 〖解 析〗函数11cos21()sin()sin cos )sin sin26224x f x x x x x x x π-=+=+=+11sin2sin(2)423x x x π==-, 对于①:由于11()sin(2)cos(2)2326f x x x ππ=-=-+,故①正确;对于②:函数()f x 满足11()sin()12222f ππ-=-=-,故②正确; 对于③:由于[,]63x ππ∈,故2[0,]33x ππ-∈,故函数在该区间上单调递增,故③正确;对于④,当4πα=时,使得3()()44f x f x ππ+=+恒成立,故④恒成立. 〖答 案〗①②③④16.如图所示,边长为a 的正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,将ADE ,EBF ,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若四面体A EFD '的四个顶点在同一个球面上,且该球的表面积为6π,则a = .〖解 析〗由题意可知△A EF '是等腰直角三角形,且90EA F ∠'=︒,又易知A E A D '⊥',A F A D '⊥',A E A F A ''=',A E ',A F '⊂平面A EF ',所以A D '⊥平面A EF ',将三棱锥的底面A EF '扩展为边长为2a的正方形, 然后扩展为底面边长为2a,高为a 的正四棱柱, 则三棱锥A EFD '-的外接球与正四棱柱的外接球相同,正四棱柱的对角线的长度就是外接,所以外接球的半径为R =,故球的表面积为222344)62S R a ππππ==⋅==,所以2a =. 〖答 案〗2三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(10分)已知函数2()(22)x f x m m m =--⋅是指数函数.(1)求实数m 的值;(2)解不等式22(2)(1)mm x x +<-.解:(1)由题意函数2()(22)x f x m m m =--⋅是指数函数,可知222101m m m m ⎧--=⎪>⎨⎪≠⎩,求得3m =.(2)由(1)得,不等式即3322(2)(1)x x +<-,32y x =在[0,)+∞上单调递增,∴201021x x x x+⎧⎪-⎨⎪+<-⎩,解得122x -<-, 故原不等式的解集为1[2,)2--.18.(12分)为减少水资源的浪费,某市政府计划对居民生活用水费用实施阶梯式水价制度.为了确定一个较为合理的用水标准,有关部门通过随机抽样调查的方式,获得过去一年4000户居民的月均用水量数据(单位:吨),并根据获得的数据制作了频率分布表:(1)求m ,n ,p ,q 的值;(2)求所获得数据中“月均用水量不低于30吨”发生的频率;(3)若在第4,5,6组用按比例分配的分层抽样的方法随机抽取6户做问卷调查,并在这6户中任选2户进行座谈会,求这2户中恰有1户是“月均用水量不低于50吨”的概率. 解:(1)由表中数据可得,4000(0.04610)1840m =⨯⨯=,0.046100.46n =⨯=,0.018100.0018p =÷=,40000.00624q =⨯=.(2)所获得数据中“月均用水量不低于30吨”发生的频率为0.0180.0120.0060.036++=.(3)用分层抽样的方法在4,5,6,组随机抽取6户做回访调查的人数分别为3,2,1, 设上述6户分别为A ,B ,C ,D ,E ,F ,在这6户中任选2户进行座谈会,分别有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种,其中这2户中恰有1户是“月均用水量不低于50吨”的事件为AF ,BF ,CF ,DF ,EF ,共5种, 故所求概率为51153P ==. 19.(12分)如图所示,在四棱锥P ABCD -中,//AB CD ,E 是线段PB 的中点,F 是线段DC 上的点,且12DF AB =.(1)证明://EF 平面PAD ;(2)若AB ⊥平面PAD ,PD AD =,PH AD ⊥,且PHAD H =.记直线PB 与平面ABCD所成角为α,直线PB 与平面PAD 所成角为β,比较cos α与sin β的大小,并说明理由. (1)证明:取PA 的中点M ,连接DM ,EM ,E 是PB 的中点,//EM AB ∴,且12EM AB =, 又//AB CD ,12DF AB =, //EM DF ∴,且EM DF =,∴四边形EFDM 为平行四边形,//EF DM ∴,DM ⊂平面PAD ,EF ⊂/平面PAD ,//EF ∴平面PAD .(2)解:连接BH ,AB ⊥平面PAD ,PH ⊂面PAD ,PH AB ∴⊥,又PH AD ⊥,ABAD A =,AB ,AD ⊂平面ABCD ,PH ∴⊥平面ABCD ,即PBH ∠为直线PB 与平面ABCD 所成的角,∴cos cos BHPBH PBα=∠=, AB ⊥平面PAD ,BPA ∴∠为直线PB 与平面PAD 所成角,又PA ⊂平面PAD ,PA AB ∴⊥,即sin sin ABBPA PBβ=∠=, 在PAD ∆中,PD AD =,H ∴与A 不重合,AB BH ∴≠, 在Rt ABH ∆中,AB BH <,sin cos βα∴<.20.(12分)已知复数1z a bi =+,a R ∈,b R ∈,0b ≠,2114z z z =+,221z -<. (1)求实数a 的取值范围; (2)若1122z z ω-=+,求22||z ω-的最小值. 解:(1)2122221444()()a b z z a b i z a b a b =+=++-++ 221z -<,2z ∴是实数,∴224bb a b=+,即224a b +=,22z a ∴=, 221z -<,221a ∴-<,即112a-<, 1z ∴的实部的取值范围为1(1,]2-;(2)2212212244422(2)842z a bi a b bi bi biz a bi a b a a ω--+-++=====+++++++, 222222()22(2)bi b z a a a a ω--=-=-++, 224a b +=,∴2222424222(2)5(2)22a a z a a a a a aω---=+=+=++-+++, 1(1,]2a ∈-,20a ∴+>,∴当42(2)2a a=++时,即2a =-22zω-取到最小值5, 又50>,故22||z ω-的最小值为5.21.(12分)如图,在四边形ABCD 中,3AB =,AD BCD ∆是以D 为直角顶点的等腰直角三角形,BAD θ∠=,(,)2πθπ∈.(1)当cos θ=时,求AC ; (2)当四边形ABCD 的面积取最大值时,求BD .解:(1)由题干可知,在ABD ∆中,3AB =,AD =cos θ=.则由余弦定理可得到:2222cos 1414620BD AB AD AB AD θθ=+-⋅=-=+=.解得BD =又因为(,)2πθπ∈,故sin θ==.再根据正弦定理得sin sin BD ABBAD ADB =∠∠3sin ADB =∠. 解得3sin 5ADB ∠=,由题意知在BCD ∆中,D 为直角,且BCD ∆是等腰直角三角形,所以2CDB π∠=且CD BD ==故得到3cos cos()sin 25ADC ADB ADB π∠=∠+=-∠=-.在ACD ∆中,由余弦定理得AC =(2)根据第一问可得:214BD θ=-,2113sin 722ABCD ABD BCD S S S BD θθθ∆∆=+=⨯+⨯=+-1572cos )7sin()2θθθϕ=-=+-.此时sin ϕ=cos ϕ= 又因为(0,)2πϕ∈,当2πθϕ-=时,四边形ABCD 的面积取得最大值.即2πθϕ=+,解得sin θ=cos θ=所以21414(26BD θ=-=-=.即BD22.(12分)如图,在三棱柱111?ABC A B C 中,平面11ACC A ⊥平面ABC ,160A AC ACB ∠=∠=︒,12C C AC BC ==,D 是BC 的中点.(1)证明:平面11A B D ⊥平面11BB C C ;(2)若2BC =,分别求过1A ,1B ,D 三点的截面将该三棱柱分得的两部分的体积. (1)证明:在三棱柱111ABC A B C -中,取AC 的中点H ,连接1A H ,HD ,1A C , 因为H ,D 分别为AC ,BC 的中点,所以//HD AB ,所以11//HD A B , 所以平面11A HDB 即为平面11A B D ,因为160A AC ∠=︒,1AA AC =,所以△1A AC 为正三角形,所以1A H AC ⊥, 又平面11ACC A ⊥平面ABC ,平面11ACC A ⋂平面ABC AC =,1A H ⊂平面11ACC A , 所以1A H ⊥平面ABC ,又BC ⊂平面ABC ,所以1A H BC ⊥, 在ABC ∆中,2AC BC =,60ACB ∠=︒,由余弦定理可得2222cos AB AC BC AC BC ACB =+-⋅∠,即AB , 所以222AC AB BC =+,即AB BC ⊥,因为//HD AB ,所以BC HD ⊥, 因为1A HHD H =,1A H ⊂平面11A HDB ,HD ⊂平面11A HDB ,所以BC ⊥平面11A HDB ,又BC ⊂平面11BB C C ,所以平面11A HDB ⊥平11BB C C ,即平面11A B D ⊥平面11BB C C ; (2)解:因为2BC =,所以14AC AA ==,因为H ,D 分别为AC ,BC 的中点,且11111//,2HD A B HD A B =, 所以111HDC A B C -是三棱台,因为ABC ∆中,,2AB BC AB BC ⊥==,所以11222ABC S AB BC ∆=⋅=⨯=,所以111A B C S =14HDC ABC S S ∆∆==,又1A H ⊥平面ABC ,且1A H =111HDC A B C -的体积1111111111()33HDC A B C HDC A B C V A H S S S S∆∆=++⋅=⨯+ 173=⨯,所以剩余几何体的体积111111212752ABC A B C HDC A B C V V V --=-=⨯⨯=,所以过A ,1B ,D 三点的截面将该三棱柱分得的两部分的体积分别为5和7.山西省2021-2022学年高一下学期期末考试数学试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|}A x y lnx ==,集合{|sin B y y x ==,}x A ∈,则(A B = )A .[1-,)∞B .(0,1]C .(0,1)D .(0,)+∞〖解 析〗{|}(0,)A x y lnx ===+∞,集合{|sin B y y x ==,}[1x A ∈=-,1],(0A B ∴=,1],〖答 案〗B2.某次体育考试,甲、乙的成绩达到优秀的概率分别为0.4,0.9,两人的成绩互不影响,则甲、乙两人的成绩都未达到优秀的概率为( ) A .0.06B .0.36C .0.28D .0.64〖解 析〗甲、乙达到优秀的概率分别是0.4、0.9, 则甲、乙未达到优秀的概率分别是10.4-和10.9-, 又甲、乙两人考试成绩互不影响,相互独立.∴甲、乙都未达到优秀的概率为(10.4)(10.9)0.06P =-⨯-=.〖答 案〗A3.若复数z 满足1z i =-+,则下列说法正确的是( ) A .z 的虚部为iB .z 的共轭复数为1z i =+C .z 在复平面内对应的点在第三象限D.||z =〖解 析〗1z i =-+,z ∴的虚部为1,1z i =--,z 在复平面内对应的点(1,1)-在第二象限,|||1|z i =--=ABC 错误,D 正确.〖答 案〗D4.数据22,24,32,33,35,28,56,x 的第65百分位数为35,则x 的取值可以是() A .20B .25C .30D .35〖解 析〗865% 5.2⨯=,∴这组数据的第65百分位数是第6项数据35,35x ∴.〖答 案〗D5.在ABC ∆中,角A ,B ,C 所对边分别为a ,b ,c ,3A π=,2b =,8c =,则2sin 2sin sin a b cA B C-+-+值等于( )AB. CD〖解 析〗由余弦定理得22212cos 464228522a b c bc A =+-=+-⨯⨯⨯=,解得a =ABC ∆外接圆半径为R ,则22sin 4sin 2sin 2sin 2sin sin sin 2sin sin sin a b c R A R B R C a R A B C A B C A -+-+=====-+-+. 〖答 案〗C6.设平面向量a ,b 满足||12a =,(1,22)b =,18a b ⋅=,则b 在a 方向上的投影向量为()A .18aB .18bC .12aD .12b〖解 析〗||12a =,18a b ⋅=,∴b 在a 方向上的投影向量1811||||12128a b a a a a a ⋅=⋅=⋅⋅=. 〖答 案〗A7.正三棱锥P ABC -的底面边长等于球O 的半径,且正三棱锥P ABC -的高等于球O 的直径,则球O的体积与正三棱锥P ABC -体积的比值为( ) ABC D . 〖解析〗设球O 的半径为r ,球O 的体积为3143V r π=,正三棱锥P ABC -的底面积2212S r =,2h r =,棱锥的体积为232123V r =⨯=.所以12V V〖答 案〗C8.已知点P 在ABC ∆的边BC 上,2AP PC CA ===,ABC∆,则sin (PAB ∠= )ABCD 〖解 析〗因为2AP PC CA ===,故等边三角形APC的面积212sin 602APC S ∆=⨯⨯︒=,又ABC ∆1sin1202ABP S PA PB ∆=⋅⋅︒=, 解得3PB =,故5BC =,所以在ABC ∆中,22226019AB BC AC BC AC =+-⋅⋅︒=, 故AB =, 所以sin sin AB BPAPB PAB=∠∠3sin PAB=∠,解得:sin PAB ∠=. 〖答 案〗D9.如图是一个正方体的展开图,如果将它还原为正方体,则下列说法中正确的是( )A .直线CD 与直线GH 异面B .直线CD 与直线EF 共面C .直线AB 与直线EF 异面D .直线GH 与直线EF 共面〖解 析〗如图,点C 与点G 重合,故A 错误;//CE BD ,且CE BD =,∴四边形CDBE 是平行四边形,//CD EF ∴,CD ∴与EF 是共面直线,故B 正确;AB EF B =,AB ∴与EF 相交,故C 错误;EF ,GH 不在一个平面内,且EF 与GH 既不平行也不相交,EF ∴,GH 是异面直线,故D 错误.〖答 案〗B10.甲、乙两盒中皆装有若干个不同色的小球,从甲盒中摸出一个红球的概率是13,从乙盒中摸出一个红球的概率是12,现小明从两盒各摸出一个球,每摸出一个红球得3分,摸出其他颜色小球得0分,下列结论错误的是( ) A .小明得6分的概率为16B .小明得分低于6分的概率为13C .小明得分不少于3分的概率为23D .小明恰好得3分的概率为12〖解 析〗设“从甲盒中摸出一个红球”为事件1A ,“从乙盒中摸出一个红球”为事件2A , 则11()3P A =,21()2P A =,且1A ,2A 独立. 对选项A ,小明得(6分)的概率为111326⨯=,故A 正确;对选项B ,小明得分低于(6分)的概率为15166-=,故B 错误; 对选项C ,小明得分不少于(3分)的概率为122121()()1323P A P A -=-⨯=,故C 正确;在D 中,小明恰好得(3分)的概率为1121132322⨯+⨯=,故D 正确.〖答 案〗B11.下列四个等式中正确的是( )A.tan 205tan35205tan35︒+︒︒︒=B .2tan811tan8ππ=-C .221cos sin 882ππ-=D.14sincos1818π=〖解 析〗对于A,tan 205tan35tan 240tan(20535)1tan 205tan35︒+︒︒=︒+︒==-︒︒,tan 205tan35205tan35∴︒+︒︒⋅︒A 错误,对于B ,原式22tan1118tan 224218tan πππ=⋅==-,故B 错误, 对于C,原式cos4π==,故C 错误, 对于D,7cos 2(coscossinsin )4cos11818183183181sincossincossin sin 18181818299ππππππππππππ---=== 4cos()4sin2994sin sin 99πππππ-===,故D 正确. 〖答 案〗D12.若点P 是棱长为2的正方体1111ABCD A B C D -表面上的动点,点M 是棱11A D 的中点,AP DM ⊥,则线段AP 长度的最大值为( )AB.C .3D.〖解 析〗分别取1DD ,1CC 中点E ,F ,连接EA ,EF ,FB ,首先EF 与CD 平行且相等,CD 与AB 平行且相等,因此EF 与AB 平行且相等,四边形EFBA 是平行四边形,在同一平面内,易得ADE ∆≅△1DD M ,1EAD MDD ∠=∠,所以190EAD MDA MDD MDA ∠+∠=∠+∠=︒,所以MD AE ⊥, 又AB ⊥平面11ADD A ,MD ⊂平面11ADD A ,所以AB MD ⊥, 又AEAB A =,AB ,AE ⊂平面ABFE ,所以MD ⊥平面ABFE .而MD AP ⊥,则P ∈平面ABFE ,所以P 点轨迹是矩形ABEF (除A 点),四边形ABFE 是矩形,当P 与F 重合时,AF 3=.〖答 案〗C二、填空题:本大题共4小题,每小题5分,共20分.13.若幂函数()y f x =的图象过点1(2,)4,则此函数的〖解 析〗式为 .〖解 析〗设幂函数为a y x =,幂函数()y f x =的图象过1(2,)4,∴124a =,解得2a =-.21()f x x∴=.〖答 案〗21x14.如图,作用于同一点O 的三个力1F ,2F ,3F 处于平衡状态,已知1||1F =,2||F ,1F 与2F 的夹角为34π,则3F 的大小为 .〖解 析〗三个力1F ,2F ,3F 处于平衡状态,123F F F ∴+=-,1||1F =,2||F =,1F 与2F 的夹角为34π,∴22223121212()21221(12F F F F F F F =+=++⋅=++⨯-=,3F ∴的大小为1.〖答 案〗115.关于函数()sin()sin 6f x x x π=+-①其表达式可写成()cos(2)6f x x π=-+;②曲线()y f x =关于直线12x π=-对称;③()f x 在区间[,]63ππ上单调递增;④(0,)2πα∃∈,使得()(3)f x f x αα+=+恒成立.其中正确的是 (填写正确的序号), 〖解 析〗函数11cos21()sin()sin cos )sin sin26224x f x x x x x x x π-=+=+=+11sin2sin(2)423x x x π==-, 对于①:由于11()sin(2)cos(2)2326f x x x ππ=-=-+,故①正确;对于②:函数()f x 满足11()sin()12222f ππ-=-=-,故②正确; 对于③:由于[,]63x ππ∈,故2[0,]33x ππ-∈,故函数在该区间上单调递增,故③正确;对于④,当4πα=时,使得3()()44f x f x ππ+=+恒成立,故④恒成立. 〖答 案〗①②③④16.如图所示,边长为a 的正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,将ADE ,EBF ,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若四面体A EFD '的四个顶点在同一个球面上,且该球的表面积为6π,则a = .〖解 析〗由题意可知△A EF '是等腰直角三角形,且90EA F ∠'=︒,又易知A E A D '⊥',A F A D '⊥',A E A F A ''=',A E ',A F '⊂平面A EF ',所以A D '⊥平面A EF ',将三棱锥的底面A EF '扩展为边长为2a的正方形, 然后扩展为底面边长为2a,高为a 的正四棱柱, 则三棱锥A EFD '-的外接球与正四棱柱的外接球相同,正四棱柱的对角线的长度就是外接,所以外接球的半径为R =,故球的表面积为222344)62S R a ππππ==⋅==,所以2a =. 〖答 案〗2三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(10分)已知函数2()(22)x f x m m m =--⋅是指数函数. (1)求实数m 的值;(2)解不等式22(2)(1)mm x x +<-.解:(1)由题意函数2()(22)x f x m m m =--⋅是指数函数,可知222101m m m m ⎧--=⎪>⎨⎪≠⎩,求得3m =.(2)由(1)得,不等式即3322(2)(1)x x +<-,32y x =在[0,)+∞上单调递增,∴201021x x x x+⎧⎪-⎨⎪+<-⎩,解得122x -<-,故原不等式的解集为1[2,)2--.18.(12分)为减少水资源的浪费,某市政府计划对居民生活用水费用实施阶梯式水价制度.为了确定一个较为合理的用水标准,有关部门通过随机抽样调查的方式,获得过去一年4000户居民的月均用水量数据(单位:吨),并根据获得的数据制作了频率分布表:(1)求m,n,p,q的值;(2)求所获得数据中“月均用水量不低于30吨”发生的频率;(3)若在第4,5,6组用按比例分配的分层抽样的方法随机抽取6户做问卷调查,并在这6户中任选2户进行座谈会,求这2户中恰有1户是“月均用水量不低于50吨”的概率.解:(1)由表中数据可得,4000(0.04610)1840m=⨯⨯=,0.046100.46n=⨯=,0.018100.0018p=÷=,40000.00624q=⨯=.(2)所获得数据中“月均用水量不低于30吨”发生的频率为0.0180.0120.0060.036++=.(3)用分层抽样的方法在4,5,6,组随机抽取6户做回访调查的人数分别为3,2,1,设上述6户分别为A,B,C,D,E,F,在这6户中任选2户进行座谈会,分别有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种,其中这2户中恰有1户是“月均用水量不低于50吨”的事件为AF,BF,CF,DF,EF,共5种,故所求概率为51153P==.19.(12分)如图所示,在四棱锥P ABCD-中,//AB CD,E是线段PB的中点,F是线段DC上的点,且12DF AB=.(1)证明://EF 平面PAD ;(2)若AB ⊥平面PAD ,PD AD =,PH AD ⊥,且PHAD H =.记直线PB 与平面ABCD所成角为α,直线PB 与平面PAD 所成角为β,比较cos α与sin β的大小,并说明理由. (1)证明:取PA 的中点M ,连接DM ,EM ,E 是PB 的中点,//EM AB ∴,且12EM AB =, 又//AB CD ,12DF AB =, //EM DF ∴,且EM DF =,∴四边形EFDM 为平行四边形,//EF DM ∴,DM ⊂平面PAD ,EF ⊂/平面PAD ,//EF ∴平面PAD .(2)解:连接BH ,AB ⊥平面PAD ,PH ⊂面PAD ,PH AB ∴⊥,又PH AD ⊥,ABAD A =,AB ,AD ⊂平面ABCD ,PH ∴⊥平面ABCD ,即PBH ∠为直线PB 与平面ABCD 所成的角,∴cos cos BHPBH PBα=∠=, AB ⊥平面PAD ,BPA ∴∠为直线PB 与平面PAD 所成角,又PA ⊂平面PAD ,PA AB ∴⊥,即sin sin ABBPA PBβ=∠=, 在PAD ∆中,PD AD =,H ∴与A 不重合,AB BH ∴≠, 在Rt ABH ∆中,AB BH <,sin cos βα∴<.20.(12分)已知复数1z a bi =+,a R ∈,b R ∈,0b ≠,2114z z z =+,221z -<. (1)求实数a 的取值范围;(2)若1122z z ω-=+,求22||z ω-的最小值. 解:(1)2122221444()()a b z z a b i z a b a b =+=++-++ 221z -<,2z ∴是实数,∴224bb a b=+,即224a b +=,22z a ∴=, 221z -<,221a ∴-<,即112a-<, 1z ∴的实部的取值范围为1(1,]2-;(2)2212212244422(2)842z a bi a b bi bi biz a bi a b a a ω--+-++=====+++++++, 222222()22(2)bi b z a a a a ω--=-=-++, 224a b +=,∴2222424222(2)5(2)22a a z a a a a a aω---=+=+=++-+++,1(1,]2a ∈-,20a ∴+>,∴当42(2)2a a=++时,即2a =-22z ω-取到最小值5, 又50>,故22||zω-的最小值为5.21.(12分)如图,在四边形ABCD 中,3AB=,AD BCD ∆是以D 为直角顶点的等腰直角三角形,BAD θ∠=,(,)2πθπ∈.(1)当cos θ=时,求AC ; (2)当四边形ABCD 的面积取最大值时,求BD .解:(1)由题干可知,在ABD ∆中,3AB=,AD=cos θ=. 则由余弦定理可得到:2222cos 1414620BD AB AD AB AD θθ=+-⋅=-=+=.解得BD =又因为(,)2πθπ∈,故sin θ==.再根据正弦定理得sin sin BD ABBAD ADB =∠∠3sin ADB=∠. 解得3sin 5ADB ∠=,由题意知在BCD ∆中,D 为直角,且BCD ∆是等腰直角三角形,所以2CDB π∠=且CD BD ==故得到3cos cos()sin 25ADC ADB ADB π∠=∠+=-∠=-.在ACD ∆中,由余弦定理得AC =(2)根据第一问可得:214BD θ=-,2113sin 722ABCD ABD BCD S S S BD θθθ∆∆=+=⨯+⨯=+-1572cos )7sin()2θθθϕ=-=+-.此时sin ϕ=cos ϕ= 又因为(0,)2πϕ∈,当2πθϕ-=时,四边形ABCD 的面积取得最大值.即2πθϕ=+,解得sin θ=cos θ=所以21414(26BD θ=-=-=.即BD22.(12分)如图,在三棱柱111?ABC A B C 中,平面11ACC A ⊥平面ABC ,160A AC ACB ∠=∠=︒,12C C AC BC ==,D 是BC 的中点.(1)证明:平面11A B D ⊥平面11BB C C ;(2)若2BC =,分别求过1A ,1B ,D 三点的截面将该三棱柱分得的两部分的体积.(1)证明:在三棱柱111ABC A B C -中,取AC 的中点H ,连接1A H ,HD ,1A C , 因为H ,D 分别为AC ,BC 的中点,所以//HD AB ,所以11//HD A B , 所以平面11A HDB 即为平面11A B D ,因为160A AC ∠=︒,1AA AC =,所以△1A AC 为正三角形,所以1A H AC ⊥, 又平面11ACC A ⊥平面ABC ,平面11ACC A ⋂平面ABC AC =,1A H ⊂平面11ACC A , 所以1A H ⊥平面ABC ,又BC ⊂平面ABC ,所以1A H BC ⊥, 在ABC ∆中,2AC BC =,60ACB ∠=︒,由余弦定理可得2222cos AB AC BC AC BC ACB =+-⋅∠,即AB , 所以222AC AB BC =+,即AB BC ⊥,因为//HD AB ,所以BC HD ⊥, 因为1A HHD H =,1A H ⊂平面11A HDB ,HD ⊂平面11A HDB ,所以BC ⊥平面11A HDB ,又BC ⊂平面11BB C C ,所以平面11A HDB ⊥平11BB C C ,即平面11A B D ⊥平面11BB C C ; (2)解:因为2BC =,所以14AC AA ==,因为H ,D 分别为AC ,BC 的中点,且11111//,2HD A B HD A B =, 所以111HDC A B C -是三棱台,因为ABC ∆中,,2AB BC AB BC ⊥==,所以11222ABC S AB BC ∆=⋅=⨯=,所以111A B C S =14HDC ABC S S ∆∆==,又1A H ⊥平面ABC ,且1A H =111HDC A B C -的体积1111111111()33HDC A B C HDC A B C V A H S S S S∆∆=++⋅=⨯+ 173=⨯,所以剩余几何体的体积111111212752ABC A B C HDC A B C V V V --=-=⨯⨯=,所以过A ,1B ,D 三点的截面将该三棱柱分得的两部分的体积分别为5和7.。
绝密★考试结束前2023学年第二学期期末高一数学试题(答案在最后)命题:考生须知:1.本卷满分150分,考试时间120分钟:2、答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字.3.所有答案必须写在答题卷上,写在试卷上无效;4.考试结束后,只需上交答题卷.第I 卷一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.)1.设集合{}{}2210,1,2,3,4A x x B =<<=∣,则A B = ()A.{}2 B.{}2,3 C.{}3,4 D.{}2,3,4【答案】B 【解析】【分析】解一元二次不等式求出集合A ,然后由交集运算可得.【详解】由2210x <<解得(A =⋃,所以{}2,3A B =I .故选:B2.若()2i 5i z +⋅=,则z 的虚部为()A.2i -B.2iC.2- D.2【答案】D 【解析】【分析】利用复数的除法运算求出复数z ,再根据虚部的概念进行选择.【详解】由()2i 5i z +⋅=⇒()()()5i 2i 5i 2i 2i 2i z ⋅-==++-510i12i 5+==+.所以复数z 的虚部为:2.故选:D3.已知()e ex xxf x a -=+是偶函数,则a =()A.2- B.1- C.1D.2【答案】B 【解析】【分析】由()()f x f x -=,列出方程,求出a 的值,再检验定义域是否关于原点对称即可.【详解】由()()f x f x -=得:e e e e x x x xx xa a ---=++,解得,1a =-.当1a =-时,()e e x xxf x -=-,定义域为()()00-∞∞ ,,+关于原点对称,故1a =-符合题意,故选:B.4.已知a ,R b ∈,p :a b <,q :()22a b a b >-,则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据q 解出a b ≠,再利用充分性和必要性即可判断.【详解】解:因为a ,R b ∈,q :()22a b a b >-即2220a ab b -+>,即2)0a b ->(,则a b ≠,而p :a b <,所以,p 是q 的充分不必要条件,故选:A .5.如图是一个古典概型的样本空间Ω和随机事件,A B ,其中()()()()Ω30,15,10,20n n A n B n A B ===⋃=,则()P AB =()A.14B.13C.12D.23【答案】B 【解析】【分析】根据韦恩图,进行分析,结合古典概型计算即可.【详解】()()()()Ω30,15,10,20n n A n B n A B ===⋃=,则()302010n AB =-=,则()()()101Ω303n ABP AB n ===.故选:B6.如图,计划在两个山顶,M N 间架设一条索道.为测量,M N 间的距离,施工单位测得以下数据:两个山顶的海拔高MC NB ==,在BC 同一水平面上选一点A ,在A 处测得山顶,M N 的仰角分别为60o 和30o ,且测得45MAN ∠= ,则,M N 间的距离为()A.100mB.C.D.【答案】C 【解析】【分析】根据题意,在直角ACM △和直角ABN 中,分别求得200AM =和AN =再在AMN 中,利用余弦定理,即可求解MN .【详解】由题意,可得60,30,45MAC NAB MC NB MAN ∠=∠===∠= ,且90MCA NBA ∠=∠= ,在Rt ACM 中,可得200m sin 60MCAM ==,在Rt ABN △中,可得sin 30NBAN ==,在AMN 中,由余弦定理得2222cos MN AM AN AM AN MAN=+-⋅∠222100222200002⎡=+-⨯⨯=⎢⎥⎣⎦,所以MN=.故选:C.7.已知函数()()sin,0f x xωω=>,将()f x图象上所有点向左平移π6个单位长度得到函数()y g x=的图象,若函数()g x在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A.(]0,4B.(]0,2C.30,2⎛⎤⎥⎝⎦D.(]0,1【答案】C【解析】【分析】由已知()πsin6g x xωω⎛⎫=+⎪⎝⎭,由()g x在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ππ62πππ662ωωω⎧≥-⎪⎪⎨⎪+≤⎪⎩,即可求得ω的取值范围.【详解】因为函数()()sin,0f x xωω=>,将()f x图象上所有点向左平移π6个单位长度得到函数=的图象,则()πsin6g x xωω⎛⎫=+⎪⎝⎭,因为函数()g x在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,结合各选项,只需πππ,622xωω⎡⎤+∈-⎢⎥⎣⎦即可,所以ππ62πππ662ωωω⎧≥-⎪⎪⎨⎪+≤⎪⎩,即332ωω≥-⎧⎪⎨≤⎪⎩,又因为0ω>,所以32ω<≤.故选:C.8.已知正四面体ABCD 中,E 是棱AC 上一点,过E 作平面α,满足AB //,CD α//α,若AB CD 、到平面α的距离分别是3和9,则正四面体ABCD 的外接球被平面α截得的截面面积为()A.99πB.100πC.103πD.108π【答案】A 【解析】【分析】补形成正方体,求出正方体棱长,然后可得外接球半径,然后可解.【详解】将正四面体补形成正方体,如图,因为//AB α,//IJ AB ,所以//IJ α,又//,,CD CD IJ α是平面CIDJ 内的相交直线,所以平面//CIDJ 平面α,因为AB CD 、到平面α的距离分别是3和9,所以正方体棱长为12,结合正方体对称性可知,球心O 到平面α的距离为3,记正四面体的外接球的半径为R ,则224312R =⨯,解得R =则外接球被平面α截得的截面半径r ==,所以,截面面积为2π99πr =.故选:A二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,有选错的得0分,部分选对的得部分分.)9.下列函数中,可以用零点存在定理判断函数在区间[]2,6上存在零点的是()A.()14f x x =- B.()ln 26f x x x =+-C.()2(3)f x x x =- D.()sincos 22x x f x =+【答案】BD 【解析】【分析】根据题意,利用函数的零点的定义,以及函数的单调性,结合零点的存在定理,逐项判定,即可求解.【详解】对于A 中,函数()14f x x =-,可得函数()f x 的值域为(,0)(0,)-∞+∞ ,所以函数()f x 在定义域(,4)(4,)-∞+∞ 没有零点,所以函数()14f x x =-不可以用零点存在定理判断函数()f x 在区间[]26,上存在零点,所以A 不符合题意;对于B 中,函数()ln 26f x x x =+-的定义域为(0,)+∞,且在定义域上为单调递增函数,因为()()2ln220,6ln660f f =-=+,所以()()260f f ⋅<,由零点的存在定理,可得函数()f x 在区间[]26,上存在零点,所以B 符合题意;对于C 中,函数()2(3)f x x x =-,令()0f x =,解得0x =或3x =,而()()222,66354f f ==⨯=,此时()()260f f ⋅>,所以函数()2(3)f x x x =-不可以用零点存在定理判断函数()f x 在区间[]26,上存在零点,所以C 不符合题意;对于D 中,函数()πsin cos sin()2224x x x f x =+=+,当[]2,6x ∈,可得ππππ3π1,3,244422x ⎡⎤⎛⎫+∈++⊆ ⎪⎢⎥⎣⎦⎝⎭,所以函数()πsin()24x f x =+在区间[]26,上为单调递减函数,因为()()π2sin1cos10,604f f =+>=+<,即()()260f f ⋅<,所以函数()sin cos 22x xf x =+可以用零点存在定理判断函数()f x 在区间[]26,上存在零点,所以D 符合题意.故选:BD.10.下列命题正确的是()A.若事件,,A B C 两两互斥,则()()()()P A B C P A P B P C =++∪∪成立.B.若事件,,A B C 两两独立,则()()()()P ABC P A P B P C =成立.C.若事件,A B 相互独立,则A 与B 也相互独立.D.若()()0,0P A P B >>,则事件,A B 相互独立与,A B 互斥不能同时成立.【答案】ACD 【解析】【分析】利用互斥事件的概率公式可判断选项A ;举反例判断选项B ;利用事件相互独立的判定公式判断选项C ,利用事件的独立性质和互斥判断选项D.【详解】对于A 选项,若事件,,A B C 两两互斥,则A B 与C 互斥,所以,()()()()()()P A B C P A B P C P A P B P C ⋃⋃=⋃+=++,因此A 正确;对于B ,考虑投掷两个骰子,记事件A :第一个骰子的点数为奇数,事件B :第二个骰子点数为奇数,事件C :两个骰子的点数之和为奇数,于是有()()()12P A P B P C ===,()()()14P AB P BC P AC ===,()0P ABC =,可以看出事件,,A B C 两两独立,但,,A B C 不互相独立,所以()()()()P ABC P A P B P C ≠,因此B 错误;对于C ,若事件,A B 相互独立,则()()()P AB P A P B =,又()()1P A P A =-,()()1P B P B =-,则()()()()()11P AB P A B P A P B P AB =-+=--+()()()()11P A P B P A P B ⎡⎤⎡⎤=--=⎣⎦⎣⎦,因此C 正确;对于D ,若()()0,0P A P B >>,事件,A B 相互独立,则()()()0P AB P A P B =>,若,A B 互斥,则()0P AB =,因此D 正确.故选:ACD.11.“圆柱容球”作为古希腊数学家阿基米德最得意的发现,被刻在他的墓碑上.马同学站在阿基米德的肩膀上,研究另外两个模型:“圆台容球”,“圆锥容球”,如下图,半径为R 的球分别内切于圆柱,圆台,圆锥.设球,圆柱,圆台,圆锥的体积分别为0123,,,V V V V .设球,圆柱,圆台,圆锥的表面积分别为0123,,,S S S S ,则以下关系正确的是()A.001123V S V S == B.0022V S V S >C.0033V S V S > D.03V V 的最大值为12【答案】AB 【解析】【分析】对于A ,由已知结合球和圆柱的体积公式、表面积公式即可依次求出0V 、1V 、0S 、1S ,从而得解;对于B ,设圆台上下底面的半径和母线长分别为12,,r r l ,由三角形全等得12l BP DP r r =+=+,求证CDO AOB ∠=∠得21122r R R r r R r =⇒=,进而由台体体积公式计算得()2221π3V R l R =-,由台体表面积公式得()2222πS l R=-,从而得02V V 和02S S 即可得解;对于C ,设圆锥的底面半径、高和母线长为r 、h 和1l ,由LHM LOM LOH HOM S S S S =++ 得1l R rh rR =-①,由1LQ l r =-和1tan R rOLM l r h∠==-,得21l r Rh r =+②,进而得2222Rr h r R=-和32122r R r l r R +=-,再由锥体体积公式和表面积公式即可求出3V 和3S ,从而得0033V S V S =;对于D ,由C 结合基本不等式即为03V V 的最大值.【详解】对于A ,由题得304π3V R =,231π22πV R R R =⋅=,204πS R =,2212π2π2=6πS R R R R =+⋅,所以320032114π24π23,2π36π3R V S R V R S R ====,所以001123V S V S ==,故A 正确;对于B ,设圆台上下底面的半径和母线长分别为12,,r r l ,圆台容球的轴截面如图所示,因为π,,,2OA OP OC R OB OB OD OD OAB OPB OPD OCD =====∠=∠=∠=∠=,所以,OAB OPB OPD OCD ≌≌,所以,AOB POB COD POD θ∠=∠=∠=∠,且12l BP DP r r =+=+,所以π+=2POB POD AOB COD ∠+∠=∠∠,又π+=2CDO COD ∠∠,所以CDO θ∠=,所以21122tan r R R r r R r θ==⇒=,所以(()22222221212121211ππππ2π33V r r r r R R r r r r =+⋅⋅=++()()222121211ππ33R r r r r R l R ⎡⎤=+-=-⎣⎦,()()()22222222121212121212ππππ2πS r r r r l r r r r r r r r ⎡⎤=+++=+++=++⎣⎦()()22212122π2πr r r r l R ⎡⎤=+-=-⎣⎦,所以()()32220022222222224π44π23,12ππ3R V S R R R V l R S l R l R R l R ====----,所以0022V S V S >,故B 正确;对于C ,设圆锥的底面半径、高和母线长为r 、h 和1l,圆锥容球的轴截面如图所示,则由LHM LOM LOH HOM S S S S =++ 得111111222222rh l R l R rR ⨯=⨯+⨯+⨯,整理得1rh l R rR =+即1l R rh rR =-①,因为π,,2OG OQ OM OM OGM OQM ==∠=∠=,所以QM GM r ==,故1LQ l r =-,所以1tan R rOLM l r h∠==-,所以()211Rh r l r l r r =-=-即21l r Rh r =+②,由①②得2R rh rR r Rh r -=+即2222R h Rr r h r R +=-,整理得2222Rr h r R =-,所以由①得2332221222222Rr r rR r r R r r R l r R r R r R ⨯-+-==-=--,所以()24232222122ππ33Rr Rr V r r R r R =⨯=--,324223122222πππππr R r r S r rl r r r R r R+=+=+⨯=--,所以()()()222222222232003444333224π,4π32π2πr R R r R R r R V S r RR R V Rr r S r r----=⨯==⨯=,所以0033V S V S =,故C 错误;对于D ,由题意可知r R >,所以由C 得()22222224432222R r R R r R V V r r⎛⎫+- ⎪-⎝⎭=≤=,当且仅当222R r R =-即r =时等号成立,故03V V 的最大值为2,故D 错误.故选:AB.【点睛】思路点睛:对于圆台的体积2V 和表面积2S ,先由三角形全等得12l r r =+,接着由CDO AOB∠=∠得212R r r =,进而由台体体积公式和表面积公式计算求出2V 和2S 即可得02V V 和02S S ;对于圆锥的体积3V 和表面积3S ,先由LHM LOM LOH HOM S S S S =++ 得1l R rh rR =-①,接着由1LQ l r =-和1tan R rOLM l r h ∠==-得21l r Rh r =+②,从而由①②得2222Rr h r R =-和32122r R r l r R +=-,再由锥体体积公式和表面积公式即可求出3V 和3S ,进而得0033V S V S =.第II 卷三、填空题(本大题共3小题,每小题5分,共15分.)12.lg83lg5++=______.【答案】9【解析】【分析】根据根式的化简与对数的运算法则计算即可.()3lg23lg563lg 2lg59+=++=.故答案为:913.已知()()3sin cos cos sin ,5αβααβαβ---=是第三象限角,则5πsin 4β⎛⎫+= ⎪⎝⎭______.【答案】10【解析】【分析】利用正弦的差角公式先计算()sin β-,结合诱导公式及同角三角函数的平方关系再利用正弦的和角公式计算即可.【详解】因为()()()()3sin cos cos sin sin sin 5αβααβααβαβ⎡⎤---=--=-=⎣⎦,且β为第三象限角,所以34sin ,cos 55ββ=-=-,所以5π5π5πsin sin cos cos sin 444βββ⎛⎫+=+ ⎪⎝⎭34525210⎛⎫⎛⎛⎫⎛⎫=-⨯-+-⨯-= ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭.故答案为:1014.在对树人中学高一年级学生身高的调查中,采用样本比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男生20人,其平均数和方差分别为170和10,抽取了女生30人,其平均数和方差分别为160和15.则估计出总样本的方差为______.【答案】37【解析】【分析】按男女生比例抽取样本,结合相应公式计算均值和方差即可.【详解】由题意知,总样本的平均数为203017016016420302030⨯+⨯=++,总样本的方差为()()2220301017016415160164375050⎡⎤⎡⎤⨯+-++-=⎣⎦⎣⎦.故答案为:37四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.已知,a b 是非零向量,()a ab ⊥- ,且6a b == .(1)求a 在b 方向上的投影向量;(2)求23a b - .【答案】(1)12b r(2)【解析】【分析】(1)根据条件得到18a b ⋅=,再利用投影向量的定义,即可求出结果;(2)利用(1)结果及数量积的运算律,即可求出结果.【小问1详解】因为()a a b ⊥- ,所以()20a a b a a b ⋅-=-⋅= ,又a = ,得到18a b ⋅= ,又6b = ,所以a 在b 方向上的投影向量为181362a b b b b b b ⋅⋅== .【小问2详解】由(1)18a b ⋅=,所以2222341294181218936180a b a a b b -=-⋅+=⨯-⨯+⨯= ,得到23a b -= .16.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不高于5.5”,根据直方图得到(C)P 的估计值为0.30.(1)求乙离子残留百分比直方图中,a b 的值;(2)求甲离子残留百分比的第75百分位数;(3)估计乙离子残留百分比的均值.(同一组数据用该组区间的中点值为代表)【答案】(1)0.35a =,0.10b =,(2)5.0(3)6.00【解析】【分析】(1)根据直方图()P C 的估计值,可列出式子求出a ,因为()1P U =(U 为全集),即可列出式子求出b ;(2)设甲离子残留百分比的第75百分位数为x ,根据条件,建立方程0.150.200.30( 4.5)0.200.75x +++-⨯=,即可求解;(3)将各个区间的中间值乘该组数据的频率,相加,再乘组距,即可求出乙离子残留百分比的平均值.【小问1详解】由已知得0.30=0.050.15b ++,解得0.10b =,所以10.200.150.300.35a =---=.【小问2详解】根据直方图,易知甲离子残留百分比的第75百分位数在区间[)4.5,5.5,设为x ,则0.150.200.30( 4.5)0.200.75x +++-⨯=,解得 5.0x =,所以甲离子残留百分比的第75百分位数为5.0.【小问3详解】乙离子残留百分比的平均值的估计值为30.0540.10+50.15+60.35+70.20+80.15=6.00⨯+⨯⨯⨯⨯⨯.17.在ABC V 中,角,,A B C 所对的边分别是,,a b c ,已知ABC V 的外接圆半径14R =,22sin sin sin sin 2sin A B A B c C ++=.(1)求角C ;(2)求2a b +的取值范围.【答案】(1)2π3(2),42⎛⎫ ⎪ ⎪⎝⎭【解析】【分析】(1)由外接圆半径可得2sin c C =,结合正弦定理可得222a b ab c ++=,由余弦定理可求出角C ;(2)将结合外接圆半径将边,a b 用角A,B 表示,再由(1)可知π3A B +=,进而2a b +用角B 来表示,结合三角函数的图象与性质即可求出范围.【小问1详解】由ABC 的外接圆半径14R =,则12sin 2c R C ==,可得2sin c C =,222sin sin sin sin sin A B A B C ∴++=.由正弦定理得222a b ab c ++=.由余弦定理得2221cos 222a b c ab C ab ab +--===-,()0,πC ∈ ,2π3C ∴=.【小问2详解】由(1)可得π3A B +=,1π1222sin 2sin sin sin sin sin 232a b R A R B A B B B ⎛⎫∴+=⨯⨯+⨯=+=-+ ⎪⎝⎭,cos 2B =,π0,,3B ⎛⎫∈ ⎪⎝⎭1cos ,12B ⎛⎫∴∈ ⎪⎝⎭,即242a b ⎛⎫+∈ ⎪ ⎪⎝⎭.18.三棱台111ABC A B C -中,AB AC ⊥,面11ABB A ⊥面11ACC A ,11112,4AA A C CC AC ====,且1BB 与底面ABC所成角的正弦值为5.(1)求证:AB ⊥面11ACC A ;(2)求三棱台111ABC A B C -的体积;(3)问侧棱1BB 上是否存在点M ,使二面角M AC B --成π6?若存在,求出1BM BB 的值;若不存在,说明理由.【答案】(1)证明见详解(2)3(3)存在,12【解析】【分析】(1)连接1AC ,过1A 作11//A G CC 交AC 于G ,由已知可得11A C AA ⊥,又平面11ABB A ⊥平面11ACC A ,则1A C ⊥平面11ABB A ,可得1A C AB ⊥,又AB AC ⊥,则可得AB ⊥平面11ACC A .(2)由已知可得平面11ACC A ⊥平面ABC ,过1A 作1A N AC ⊥,连接BN ,可得1A N ⊥平面ABC ,求得1A N =,如图,延长侧棱交于点O ,作OH AC ⊥于H ,连接BH ,可求得2AB =,又因为1BB 与底面ABC所成角的正弦值为5,可求得1BB =.(3)如图,作//MG OH 交BH 于G ,过G 作GK AC ⊥于K ,则//GK AB ,由(2),可得MG ⊥平面ABC ,则MKG ∠即为二面角M AC B --的平面角,设BM =,则BG =,MG =,由//GK AB ,可得()21KG x =-,若π6MKG ∠=,可得14x =,即M 为1BB 中点,即侧棱1BB 上是存在点M ,使二面角M AC B --成π6,则112BM BB =.【小问1详解】连接1AC,在梯形11ACC A 中,过1A 作11//A G CC 交AC 于G ,由11112,4AA A C CC AC ====,则1A AG 为等边三角形,则60A ∠=︒,四边形11A GCC 为菱形,则130GA C ∠=︒,所以190AA C ∠=︒,即11A C AA ⊥,因为平面11ABB A ⊥平面11ACC A ,平面11ABB A 平面111ACC A AA =,1A C ⊂平面11ACC A ,所以1A C ⊥平面11ABB A ,又AB ⊂平面11ABB A ,所以1A C AB ⊥,又因为AB AC ⊥,1AC C AC ⋂=,1AC A C ⊂、平面11ACC A ,所以AB ⊥平面11ACC A .【小问2详解】因为AB ⊥平面11ACC A ,AB ⊂平面ABC ,所以平面11ACC A ⊥平面ABC,过1A 作1A N AC ⊥,连接BN ,1A N ⊂平面11ACC A ,平面11ACC A 平面ABC AC =,则1A N ⊥平面ABC ,故几何体的高为1A N =如图,延长侧棱交于点O ,作OH AC ⊥于H ,连接BH ,由已知H 为AC 中点,2AH =,由(1)得,OH ⊥平面ABC ,因为1BB 与底面ABC所成角的正弦值为5,则余弦值为5,12OH A N ==5OB ==BH =,4OA ==,由(1)得AB OA ⊥,则2AB ==,又因为1BB 与底面ABC所成角的正弦值为5,所以1155BB ==,故三棱台体积为1111724242432483V ⎫=⨯⨯+⨯⨯+⨯⨯=⎪⎭.【小问3详解】如图,作//MG OH 交BH 于G ,过G 作GK AC ⊥于K ,则//GK AB,由(2)可得,MG ⊥平面ABC ,则MKG ∠即为二面角M AC B --的平面角,又BH ⊂平面ABC ,则MG BH ⊥,设BM =,则55BM BG ==⨯=,则MG =,由//GKAB ,得AB BH =,又)1HG BH BG x =-=-,所以()221KG x -==-,若π6MKG ∠=,则()tan 213MKG x ∠==-,解得14x =,所以52BM =,即M 为1BB 中点,即侧棱1BB 上是存在点M ,使二面角M ACB --成π6,则1122BM BB ==.19.对于012,,z z z ∈C ,记1020z z k z z -=-为12,z z 关于0z 的“差比模”.若取遍()00z r r =>,记12,z z 关于0z r =的“差比模”的最大值为max k ,最小值为min k ,若max min 2k k +=,则称12,z z 关于r 的“差比模”是协调的.(1)若0121i,1,122z z z =+==-,求12,z z 关于0z 的“差比模”;(2)若1211z z ==,是否存在2r <,使得12,z z 关于r 的“差比模”是协调的?若存在,求出r 的值;若不存在,说明理由;(3)若12,i,,z a z b a b ==∈R 且,a b r >,若12,z z 关于r 的“差比模”是协调的,求222b a r-的值.【答案】(1)33(2)不存在,理由见解析(3)2【解析】【分析】(1)由“差比模”定义代入复数0121i,1,122z z z =+==-,由复数的代数运算及求模可得;(2)由12z z =,利用共轭复数的性质与模的性质可得max min 1k k ⋅=,利用基本不等式可得max min 2k k +>可知不存在2r <,使得12,z z 关于r 的“差比模”是协调的;(3)设()0cos isin z r θθ=+,由k =平方整理再结合辅助角公式可得22222()())a r b r k θϕ+-+=+,利用三角函数有界性可得关于2k 的不等式,由此可解得2[,]k m n ∈,结合韦达定理与题意12,z z 关于r 的“差比模”是协调的,化简可求222b a r -.【小问1详解】由题意得0011z k z -==--3===,故12,z z 关于0z 的“差比模”为3.【小问2详解】先证明共轭复数有如下性质:若任意12,C z z ∈,则11121222,z z z z z z z z ⎛⎫±=±= ⎪⎝⎭.证明:设12i(,),i(,)z a b a b z c d c d =+∈=+∈R R ,则()()12i i i z z a b c d a c b d ±=+±+=±-±,而()()12i i i z z a b c d a c b d ±=-±-=±-±,故1212z z z z ±=±.1222222222i i i i z a b ac bd bc ad ac bd bc ad z c d c dc d c d c d ⎛⎫++-+-⎛⎫==+=- ⎪ ⎪+++++⎝⎭⎝⎭;1222222222i i i i z a b ac bd ad bc ac bd bc ad c d c d c d c d c d z -+-+-==+=--++++;故1122z z z z ⎛⎫= ⎪⎝⎭.综上,共轭复数的性质11121222,z z z z z z z z ⎛⎫±=±= ⎪⎝⎭得证.记当“差比模”取最大值max k 时的复数0z 为max z ,即1max max 2max z z k z z -=-.由已知12,11z z ==发现12z z =,由已证明共轭复数的性质与复数模的性质z z =可得因为1max 2max 2max 2max 2max 1max 1max max 2max 1max 1max 1z z z z z z z z z z z z z z k z z z z z z ⎛⎫-----===== ⎪-----⎝⎭,所以若当0max z z =时取得max k ,则0max z z =时取到min k ,故可知max min 1k k ⋅=,由取遍()00z r r =>,k =不恒为常数,则max min k k ≠,故由基本不等式可得max min 2k k +>,故不存在2r <,使得12,z z 关于r 的“差比模”是协调的.【小问3详解】12,i,,z a z b a b ==∈R 且,a b r >,设()0cos isin z r θθ=+,则()cos i sin cos sin ia r r k rb r θθθθ--==-+-,平方整理可得:222222()()2cos 2sin )a r b r k ar brk θθθϕ+-+=-=+所以sin()1θϕ+=≤,即22222222224()()44a r b r k a r b r k ⎡⎤+-+≤+⎣⎦,平方整理得:222422222222()2()()()0b r k a r b r k a r --+++-≤,令2t k =,设方程22222222222()2()()()0b r t a r b r t a r --+++-=,则()()2222222222224222Δ2()()4()()160a r b r b r a r a b r a b r ⎡⎤⎡⎤=++---=++>⎣⎦⎣⎦,故方程有两个不等的实数根,设为,m n ,不妨设m n <.由题意知0,0a r b r >>>>,22220,0a r b r ->->,则222222202()()()a r b r m n b r ++=->+,且2222220()()m a r b r n =->-,故方程22222222222()2()()()0b r t a r b r t a r --+++-=有两不等的正实数根,m n ,由关于2k 的不等式222422222222()2()()()0b r k a r b r k a r --+++-≤,解得2[,]k m n ∈,则max k =min k =由已知12,z z 关于r 的“差比模”2=,所以4m n ++=,利用韦达定理,222222222222()()()24()()a rb r a r b r b r ++-+=--,则有222222222222()()2()()4()a r b r a r b r b r +++--=-,化简可得2222a b r =-,故2222b a r-=.【点睛】结论点睛:有关共轭复数及模的常用性质有:(1)任意12,C z z ∈,则111212121222,,z z z z z z z z z z z z ⎛⎫±=±⋅== ⎪⎝⎭;(2)任意C z ∈,则2,z z z z z =⋅=.。
湖南省长沙市长沙县2021-2022学年高一下学期期末考试数学试题一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,四边形ABCD 中,AB DC =,则相等的向量是( )A .AD 与CBB .OB 与ODC .AC 与BDD .AO 与OC〖解 析〗四边形ABCD 中,AB DC =,∴四边形ABCD 是平行四边形,∴AO OC =.〖答 案〗D2.设复数z 满足2z i =-(其中i 为虚数单位),则||(z = )A B C .5 D〖解 析〗2z i =-,||z ∴= 〖答 案〗A3.圆柱内有一个球O ,该球与圆柱的上、下底面及母线均相切,已知圆柱的体积为16π,则球O 的体积为( ) A .323πB .12πC .16πD .643π〖解 析〗设圆柱的内切球的半径为R ,则圆柱的底面圆的半径为R ,高为2R ,∴圆柱的体积为2216R R ππ⋅=,38R ππ∴=, ∴圆柱的内切球O 的体积为343233R ππ=. 〖答 案〗A4.为了丰富高一学生的课外生活,某校要组建数学、计算机、航空模型、绘画4个兴趣小组,小明要随机选报其中的2个,则该试验中样本点的个数为( ) A .3B .5C .6D .9〖解 析〗要组建数学、计算机、航空模型、绘画4个兴趣小组,小明要随机选报其中的2个,∴则该试验中样本点的个数为246C =个. 〖答 案〗C5.“治国之道,富民为始”共同富裕是社会主义的本质要求,是中国式现代化的重要特征,是人民群众的共同期盼.共同富裕是全体人民通过辛勤劳动和相互帮助最终达到丰衣足食的生活水平,是消除两极分化和贫穷基础上的普遍富裕.请你运用数学学习中所学的统计知识加以分析,下列关于个人收入的统计量中,最能体现共同富裕要求的是( ) A .平均数小,方差大 B .平均数小,方差小 C .平均数大,方差大D .平均数大,方差小〖解 析〗方差反映的是一组数据的波动情况,方差越大说明数据偏离平均水平的程度越大,平均数是整体的平均水平,是一组数据的集中程度的刻画,所以最能体现共同富裕要求的是平均数大,方差小. 〖答 案〗D6.设l ,m ,n 均为直线,其中m ,n 在平面α内,则“l α⊥”是“l m ⊥且l n ⊥” 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件〖解 析〗l ,m ,n 均为直线,m ,n 在平面α内, l l m α⊥⇒⊥且l n ⊥(由线面垂直性质定理). 反之,如果l m ⊥且l n ⊥推不出l α⊥,也即//m n 时,l 也可能平行于α. 由充分必要条件概念可知,命题中前者是后者成立的充分非必要条件. 〖答 案〗A7.如图所示,在平行四边形ABCD 中,14AE AB =,14CF CD =,G 为EF 的中点,则(DG = )A .1122AD AB - B .1122AB AD - C .3142AD AB - D .3142AB AD - 〖解 析〗在平行四边形ABCD 中,14AE AB =,14CF CD =,∴14DE AE AD AB AD =-=-,3344DF DC AB ==, G 为EF 的中点,∴131111()288222DG DF DE AB AB AD AB AD =+=+-=-.〖答 案〗B8.人类通常有O ,A ,B ,AB 四种血型,某一血型的人可以给哪些血型的人输血,是有严格规定的.设X 代表O ,A ,B ,AB 中某种血型,箭头左边表示供血者,右边表示受血者,则输血规则如下:①X →X ;②O →X ;③X →AB .已知我国O ,A ,B ,AB 四种血型的人数所占比例分别为41%,28%,24%,7%,在临床上,按照上述规则,若受血者为A 型血,则一位供血者能为这位受血者正确输血的概率为( ) A .0.31B .0.48C .0.65D .0.69〖解 析〗若受血者为A 型血,则O 型血和A 型血可以为这位受血者输血,所以一位供血者能为这位受血者正确输血的概率为0.41+0.28=0.69. 〖答 案〗D二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列命题错误的是( ) A .//a b ,//b a αα⊂⇒ B .//a α,//b a b α⊂⇒ C .//a α,////a b b α⇒D .a α⊂/,//a b ,//b a αα⊂⇒〖解 析〗由//a b ,b α⊂,得a α⊂或//a α,故A 错误; 由//a α,b α⊂,得//a b 或a 与b 异面,故B 错误; 由//a α,//a b ,得b α⊂或//b α,故C 错误; 由a α⊂/,//a b ,b α⊂,得//a α,故D 正确. 〖答 案〗ABC10.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且2a =、3b =、4c =,下面说法错误的是( )A .sin :sin :sin 2:3:4ABC = B .ABC ∆是锐角三角形C .ABC ∆的最大内角是最小内角的2倍D .ABC ∆内切圆半径为12〖解 析〗因为2a =,3b =,4c =,sin :sin :sin ::2:3:4A B C a b c ∴==,故A 正确;可得c 为最大边,C 为最大角,由余弦定理可得22249161cos 022234a b c C ab +-+-===-<⨯⨯,可得C 为钝角,即ABC ∆的形状是钝角三角形.故B 错误;对于C ,由22291647cos 2248b c a A bc +-+-===,由227171cos22cos 12()1cos 8324A A C =-=⨯-=≠-=,故2A C ≠,故C 错误;由1cos 4C =-,sin C ∴=,11sin 2322ABC S ab C ∆∴==⨯⨯ 设ABC ∆内切圆半径为r ,∴1()2ABC a b c r S ∆++⋅=,r ∴=D 错误. 〖答 案〗BCD11.下列命题中是真命题的有( )A .有A ,B ,C 三种个体按3:1:2的比例分层抽样调查,如果抽取的A 个体数为9,则样本容量为30B .一组数据1,2,3,3,4,5的平均数、众数、中位数相同C .若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是甲D .某一组样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在区间[114.5,124.5]内的频率为0.4〖解 析〗对于A ,由分层抽样原理知,样本容量为9183312n ==++,所以选项A 错误; 对于B ,数据1,2,3,3,4,5的平均数为1(123345)36x =⨯+++++=,众数为6,中位数也是3,所以它们的平均数、众数和中位数相同,选项B 正确; 对于C ,甲组数据的方差为5,乙组数据为5,6,9,10,5; 它的平均数是1(569105)75x =⨯++++=,方差为2222221[(57)(67)(97)(107)(57)] 4.45s =⨯-+-+-+-+-=,这两组数据中较稳定的是乙,所以选项C 错误;对于D ,由题意知样本容量为10,样本数据落在区间[114.5,124.5]内的频数是4, 所以频率为0.4,选项D 正确. 〖答 案〗BD12.如图所示是正方体的平面展开图,那么在正方体中( )A .AC EF ⊥B .EF 和BC 所成的角是60︒ C .直线AC 和平面ABE 所成的角是30︒D .如果平面ABC ⋂平面CEF l =,那么直线//EF 直线l〖解 析〗如图,把正方体的平面展开图还原成正方体ADBG FCEH -,在正方体ADBG FCEH -中,可知//AC EG ,AC EG EF FG ===, 故异面直线AC 与EF 所成的角即为EG 与EF 所成的角为60︒,故A 项错误; 同理,EF 与BC 所成的角即为FG 与EF 所成的角为60︒,故B 项正确; 在正方体ADBG FCEH -中,AC CH =,HC EF ⊥,HC EB ⊥,EF EB E =,故HC ⊥平面ABEF ,则点C 到平面ABE 的距离为1122HC AC =,设直线AC 与平面ABE 所成的角为θ,则112sin 2HCAC θ==,故30θ=︒,故C 项正确; 在正方体ADBG FCEH -中,//AC EG ,//AB EF ,AC AB A =,EG EF E =,则平面//ABC 平面EFG ,平面EFG ⋂平面CEF 于直线EF ,平面ABC ⋂平面1CEF =,故直线//EF 直线l ,故D 项正确. 〖答 案〗BCD三、填空题:本大题共4小题,每小题5分,共20分.13.我国2021年9月至2022年3月的居民消费指数(上年同月100)=分别为100.7,101.5,102.3,101.5,100.9,100.9,101.5,则这组数据的第20百分位数是 .〖解 析〗将这组数据按从小到大排列为100.7,100.9,100.9,101.5,101.5,101.5,102.3,由20%7 1.4⨯=,可知这组数据的第20百分位数为第2项数据,即100.9. 〖答 案〗100.914.甲、乙、丙三人中任选两名代表,则甲被选中的概率是 .〖解 析〗由题意:甲、乙、丙三人中任选两名代表,共有三种情况:甲和乙、甲和丙、乙和丙,因每种情况出现的可能性相等,所以甲被选中的概率为23. 〖答 案〗2315.已知正方体1111ABCD A B C D -的棱长为1,则点B 到直线1AC 的距离为 . 〖解 析〗如图,连接1AC ,过B 作1BH AC ⊥,则BH 即为点B 到直线1AC 的距离,在正方体1111ABCD A B C D -中,AB ⊥平面11BCC B ,1AB BC ∴⊥,在直角1ABC ∆中,11AB BC AC BH ⨯=⨯,且111,AB BC AC ===所以BH =,点B 到直线1AC .〖答 16.已知AD 是ABC ∆的中线,若120A ∠=︒,2AB AC =-,则||AD 的最小值是 . 〖解 析〗2||||cos AB AC AB AC A =-=,120A ∠=︒,||||4AB AC ∴=1||(2AD =)AB AC +,2221||(||||24AD AB AC ∴=++221)(||||4)4AB AC AB AC =+-1(2||||4)14AB AC -= ∴||1min AD =.〖答 案〗1四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知复数134z i =+,22z i =-,i 为虚数单位.(1)若12z z z =,求z 的共轭复数; (2)若复数12z az +在复平面上对应的点在第一象限,求实数a 的取值范围. 解:(1)134z i =+,22z i =-,∴12234(34)32222z i i i z i z i i ++====-+--,∴322z i =--.(2)123423(42)z az i ai a i +=+-=+-在复平面上对应的点在第一象限,420a ∴->,解得2a <,故实数a 的取值范围为(,2)-∞.18.(12分)从1~30这30个整数中随机选择一个数,设事件M 表示选到的数能被2整除,事件N 表示选到的数能被3整除.求下列事件的概率: (1)这个数既能被2整除也能被3整除; (2)这个数能被2整除或能被3整除; (3)这个数既不能被2整除也不能被3整除.解:(1)1~30这30个整数中既能被2整除也能被3整除的有5个, 51()306P MN ∴==; (2)1~30这30个整数中能被2整除的有15个,能被3整除的有10个, 151()302P M ∴==,101()303P N ==, 1112()()()()2363P MN P M P N P MN ∴=+-=+-=; (3)事件“这个数既不能被2整除也不能被3整除”与事件“这个数能被2整除或能被3整除”互为对立事件, 21()1()133P MN P MB ∴=-=-=. 19.(12分)已知向量(6,1)a =,(2,3)b =-,(2,2)c =,(3,)d k =-. (1)求2a b c +-;(2)若(2)//()a c c kb ++,求实数k 的值.(3)若a 与d 的夹角是钝角,求实数k 的取值范围. 解:(1)(6,1)a =,(2,3)b =-,(2,2)c =,∴2(6a b c +-=,1)(4+-,6)(2-,2)(0=,5).(2)2(10,5)a c +=,(22,23)c kb k k +=-+,又(2)//()a c c kb ++,10(23)5(22)0k k ∴+--=,解得14k =-.(3)a 与d 的夹角是钝角,∴cos ,0||||a da d a d ⋅<>=<⋅,且cos ,1a d <>≠-,∴6(3)0a d k ⋅=⨯-+<,且361k -≠,解得18k <且12k ≠-, 故实数k 的取值范围为11(,)(,18)22-∞--.20.(12分)在锐角ABC ∆中,A ,B ,C 的对边分别为a ,b ,c 2sin c A =. (1)求角C 的大小;(2)若c =6ab =,求ABC ∆的周长.解:(12sin c A =及正弦定理得sinsin a Ac C =,因为sin 0A >,故sin C =.又ABC ∆为锐角三角形,所以3C π=. (2)由余弦定理222cos73a b ab π+-=,6ab =,得2213a b +=,解得:23a b =⎧⎨=⎩或32a b =⎧⎨=⎩,ABC ∴∆的周长为5a b c ++=. 21.(12分)“垃圾分类”相关管理条例的出台,最大限度地减少垃圾处置量,实现垃圾资源利用,改善垃圾资源环境.某部门在某小区年龄处于〖20,45〗岁的人中随机地抽取x 人,进行了“垃圾分类”相关知识掌握和实施情况的调查,并把达到“垃圾分类”标准的人称为“环保族”,得到如图所示各年龄段人数的频率分布直方图和表中的统计数据.组数分组“环保族”人数占本组的频率第一组 〖20,25) 45 0.75 第二组 〖25,30) 25 y 第三组 〖30,35) 20 0.5 第四组 〖35,40) z 0.2 第五组 〖40,45) 30.1(1)求x、y、z的值;(2)根据频率分布直方图,估计这x人年龄的平均值(同一组数据用该区间的中点值代替,结果按四舍五入保留整数);(3)从年龄段在〖25,35〗的“环保族”中采取分层抽样的方法抽取9人进行专访,并在这9人中选取2人作为记录员,求选取的2名记录员中至少有一人年龄在〖30,35〗中的概率.解:(1)由题意得:x==200,y==0.625,z=200×0.03×5×0.2=6,(2)根据频率分布直方图,估计这x人年龄的平均值为:22.5×0.3+27.5×0.2+32.5×0.2+37.5×0.15+42.5×0.15=30.75;(3)从年龄段在〖25,35〗的“环保族”中采取分层抽样的方法抽取9人进行专访,从〖25,30)中选:9×=5人,分别记为A,B,C,D,E,20 从〖30,35〗中选:9×=4人,分别记为a,b,c,d,在这9人中选取2人作为记录员,所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,a),(A,b),(A,c),(A,d),(B,C),(B,D),(B,E),(B,a),(B,b),(B,c),(B,d),(C,D),(C,E),(C,a),(C,b),(C,c),(C,d),(D,E),(D,a),(D,b),(D,c),(D,d),(E,a),(E,b),(E,c),(E,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共36 种,选取的2名记录员中至少有一人年龄在〖30,35〗包含的基本事件有:(A,a),(A,b),(A,c),(A,d),(B,a),(B,b),(B,c),(B,d),(C,a),(C,b),(C,c),(c,d),(D,a),(D,b),(D,c),(D,d),(E,a),(E,b),(E,c),(E,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共26种,因此,选取的2名记录员中至少有一人年龄在〖30,35〗中的概率=.22.(12分)如图,四棱柱1111ABCD A B C D -中,底面ABCD 为平行四边形,侧面11ADD A 为矩形,22AB AD ==,160D DB ∠=︒,1BD AA ==(1)证明:平面ABCD ⊥平面11BDD B ; (2)求三棱锥11D BCB -的体积.(1)证明:ABD ∆中,因为2AB =,1AD =,BD = 所以222AB AD BD =+,所以AD BD ⊥, 又侧面11ADD A 为矩形,所以1AD DD ⊥, 又1BDDD D =,BD ,1DD ⊂平面11BDD B ,所以AD ⊥平面11BDD B ,又AD ⊂平面ABCD ,所以平面ABCD ⊥平面11BDD B ;(2)解:因为//AD BC ,AD ⊥平面11BDD B ,所以BC ⊥平面11BDD B ,易得1BC =,11B D =,1B B =,1160D B B ∠=︒,所以△11BB D 的面积1112BB D S==,三棱锥11D BCB -的体积11111111133D BCB C BB D BB D V V SBC --==⋅==.。
2021-2022学年福建省福州市长乐第一中学高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知向量满足,,,则=()A. 3B. 5C. 6D. 7参考答案:C【分析】根据向量的模即可求出.【详解】∵,∴,即14=9+16+,∴=-11.∴=9+16+11=36,∴,故选:C.【点睛】本题考查了向量的模的计算,属于基础题.2. 已知O是三角形ABC所在平面内一定点,动点P满足,则P点轨迹一定通过三角形ABC的()A.内心B.外心C.垂心D.重心参考答案:A【考点】L%:三角形五心.【分析】由已知得AP是角BAC的平分线,由此求出P的轨迹一定通过三角形的内心.【解答】解:∵O是三角形ABC所在平面内一定点,动点P满足,∴与∠BAC的平分线共线,∴AP是角BAC的平分线,而三角形的内心为角平分线的交点,∴三角形的内心在AP上,即P的轨迹一定通过三角形的内心.故选:A.3. 设是单位向量,,则四边形是()梯形菱形矩形正方形参考答案:B4. 直线x+y﹣1=0的倾斜角为().B.C参考答案:B5. 以原点O及点A(5,2)为顶点作等腰直角三角形OAB,使A=90°,则的坐标为()A. B. 或 C. D. 或参考答案:B【分析】设出点的坐标,求出向量的坐标表示,利用,求出点的坐标,进而求出的坐标表示.【详解】设,,因为三角形OAB是等腰直角三角形,且,所以,即,解方程组得或所以或,故本题选B.【点睛】本题考查了向量坐标表示,考查了等腰三角形的性质,以及平面向量数量积的应用,向量模的计算公式.6. 下列各组函数中,表示同一函数的是()A.B.y=lgx2,y=2lgxC.D.参考答案:C【考点】判断两个函数是否为同一函数.【专题】计算题.【分析】分别求出四组函数的定义域、对应法则、值域;据函数的三要素:定义域、对应法则、值域都相同时为同一个函数选出答案.【解答】解:A、y=1的定义域为R,y=的定义域为x≠0,两函数的定义域不同,故不是同一函数;B、y=lgx2的定义域为x≠0,y=2lgx的定义域为x>0,两函数的定义域不同,故不是同一函数;C、y=x与y=有相同的定义域,值域与对应法则,故它们是同一函数;D、y=|x|的定义域为R,y=的定义域为x≥0,两函数的定义域不同,故不是同一函数,则选项C中的两函数表示同一函数.故选C.【点评】本题考查函数的三要素:定义域、对应法则、值域,只有三要素完全相同,才能判断两个函数是同一个函数,这是判定两个函数为同一函数的标准.7. 如果二次函数在区间上是减函数,则的取值范围是()A. B. C. D.参考答案:B8. 下列赋值语句中错误的是()A. N=N+1B. K=K*KC. C=A(B+D)D. C=A/B参考答案:CN=N+1中,符合赋值语句的表示,故A正确;K=K*K中,符合赋值语句的表示,故B正确;C=A(B+D)中,右边的表达式中,省略了运算符号“*”,故C错误;C=A/B中,符合赋值语句的表示,故D正确.故选:C.点睛:①赋值号左边只能是变量名字,而不能是表达式。
某某省某某市长安区第一中学2015-2016学年高一下学期期末考试数学一、选择题:共12题1.不等式的解集为A. B.C. D.【答案】C【解析】本题考查一元二次不等式的解法.,即,解得.即不等式的解集为.选C.2.数列,,,,,,,则是这个数列的A.第10项B.第11项C.第12项D.第21项【答案】B【解析】本题考查数列的通项.由题意得,令,解得.选B.3.在数列中,,,则的值为A.52B.51C.50D.49【答案】A【解析】本题考查等差数列的性质.由得,所以为等差数列,所以==,所以.选A.4.=A. B. C. D.【答案】A【解析】本题考查同角三角函数的诱导公式及两角和的正弦公式.====.选A.【备注】.5.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】本题考查三角函数的定义.由题意得所以=,=,所以=.选D.6.若数列是等差数列,且,则A. B. C. D.【答案】B【解析】本题考查等差数列的性质,诱导公式.因为是等差数列,所以=,又所以,,所以===.选B.【备注】若,等差数列中.7.设,若是与的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】本题考查等比数列性质,基本不等式.因为是与的等比中项,所以,即.所以===4(当且仅当时等号成立),即的最小值为4.选B.【备注】若,等比数列中.8.已知是等比数列,,则=A.16()B.16()C.)D.)【答案】C【解析】本题考查等比数列的通项与求和.由题意得的公比=,所以=,所以,令,则是以8为首项,为公比的等比数列,所以的前n项和=).选C.【备注】等比数列中,.9.在△中,已知,,若点在斜边上,,则的值为A.48 B.24 C.12 D.6【答案】B【解析】本题考查平面向量的线性运算和数量积.因为,,所以==,所以==+0=24.选B.【备注】.10.函数,,的部分图象如图所示,则A. B.C. D.【答案】D【解析】本题考查三角函数的性质和图象,解析式的求解.由图可得,,,即,即,所以,又过点,所以=2,由可得=.所以.选D.【备注】知图求式.11.已知向量,,且∥,则= A. B. C. D.【答案】C【解析】本题考查向量的坐标运算与线性运算,二倍角公式.因为∥,所以,即,即=-3,所以=====.选C.【备注】二倍角公式:,.12.设函数,若存在使得取得最值,且满足,则m的取值X围是A. B.C. D.【答案】C【解析】本题考查三角函数的性质与最值,一元二次不等式.由题意得,且=,解得,(),所以转化为,而,所以,即,解得或.选C.二、填空题:共6题13.不等式的解集是 .【答案】【解析】本题考查分式不等式,一元二次不等式.由题意得且,所以或.所以不等式的解集是.【备注】一元高次不等式的解法:穿针引线法.14.已知,,则的值为_______.【答案】3【解析】本题考查两角和与差的正切角公式.由题意得=== 3.【备注】=是解题的关键.15.已知向量a=,b=, 若m a+n b=(),则的值为______. 【答案】-3【解析】本题考查平面向量的坐标运算.由题意得===,即,解得,,所以.16.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得两船的俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距 m.【答案】【解析】本题考查解三角形的应用.画出图形,为炮台,为两船的位置;由题意得m,,,;在△中,=m.在Rt△中,,所以m;在△中,由余弦定理得=300.即,两条船相距m.【备注】余弦定理:.17.若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【答案】【解析】本题主要考查三角函数图象平移、函数奇偶性及三角运算.解法一f(x)=sin(2x+)的图象向右平移φ个单位得函数y=sin(2x+-2φ)的图象,由函数y=sin(2x+-2φ)的图象关于y轴对称可知sin(-2φ)=±1,即sin(2φ-)=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,又φ>0,所以φmin=.解法二由f(x)=sin(2x+)=cos(2x-)的图象向右平移φ个单位所得图象关于y轴对称可知2φ+=kπ,k∈Z,故φ=-,又φ>0,故φmin=.【备注】解题关键:解决三角函数的性质问题,一般化为标准型后结合三角函数的图象求解,注意正余弦函数的对称轴过曲线的最低点或最高点是解题的关键所在.18.已知分别为△的三个内角的对边,,且,则△面积的最大值为 . 【答案】【解析】本题考查正、余弦定理,三角形的面积公式.由正弦定理得=,又所以,即,所以=,所以.而,所以;所以≤=(当且仅当时等号成立).即△面积的最大值为.【备注】余弦定理:.三、解答题:共5题19.在△中,已知,,.(1)求的长;(2)求的值.【答案】(1)由余弦定理知,==,所以.(2)由正弦定理知,所以,因为,所以为锐角,则,因此【解析】本题考查二倍角公式,正、余弦定理.(1)由余弦定理知.(2)由正弦定理知,,因此.20.设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前n项和.【答案】(1)设q为等比数列{a n}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{a n}的通项为a n=2·2n-1=2n(n∈N*)(2)S n=+n×1+×2=2n+1+n2-2.【解析】本题考查等差、等比数列的通项与求和.(1)求得q=2,所以a n=2n(n∈N*);(2)分组求和得S n=2n+1+n2-2.21.已知向量,,函数,且的图象过点.(1)求的值;(2)将的图象向左平移个单位后得到函数的图象,若图象上各最高点到点的距离的最小值为,求的单调递增区间.【答案】(1)已知,过点,解得(2)由(1)知,左移个单位后得到,设的图象上符合题意的最高点为,,解得,,解得,,由得,的单调增区间为【解析】本题考查平面向量的数量积,三角函数的图像与性质,三角恒等变换.(1)由向量的数量积求得,过点,解得;(2),求得,,其单调增区间为.22.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,……,以后逐年递增0.2万元. 汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的总和平均摊到每一年的费用叫做年平均费用.设这种汽车使用x(x∈N*)年的维修总费用为g(x),年平均费用为f(x).(1)求出函数g(x),f(x)的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?【答案】(1)由题意,知使用x年的维修总费用为g(x)==0.1x+0.1x2,依题意,得f(x)=[10+0.9x+(0.1x+0.1x2)]=(10+x+0.1x2).(2)f(x)=++1≥2+1=3,当且仅当,即x=10时取等号.所以x=10时,y取得最小值3.所以这种汽车使用10年时,它的年平均费用最小,最小值是3万元.【解析】无23.把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表:设是位于这个三角形数表中从上往下数第行、从左往右数第个数.(1)若,求,的值;(2)已知函数,若记三角形数表中从上往下数第行各数的和为,求数列的前项和.【答案】(1)三角形数表中前m行共有个数,所以第m行最后一个数应当是所给奇数列中的第项.故第m行最后一个数是.因此,使得的m是不等式的最小正整数解.由得,, 于是,第45行第一个数是,(2)第n行最后一个数是,且有n个数,若将看成第n行第一个数,则第n行各数成公差为的等差数列,故..故.因为,两式相减得..【解析】本题考查数列的概念,数列的通项与求和.(1)找规律得第m行最后一个数是.可得,求出第45行第一个数是,(2)..错位相减可得.。
下学期期末考试 高一年级文科数学试题
一.选择题 (本大题共12小题,每小题5分,共60分) 1.不等式0)2(xx的解集为( )
A.}20|{xxx或 B.}02|{xx C. }20|{xx D.}20|{xxx或 2. 数列5791,,,,....81524的一个通项公式是( ) A. 1221(1)()nnnanNnn B.1221(1)()3nnnanNnn C. 1221(1)()2nnnanNnn D. 1221(1)()2nnnanNnn 3. 设,,abcR,且ab,则( ) A.acbc B.11ab C.22ab D.33ab 4. 在等差数列na中,210,aa是方程2270xx的两根,则6a等于 ( ). A.12 B.14 C.-72 D.-74 5. 3sincos3则sin2( ) A.23 B.29 C.29 D.23 6.在等比数列中,a1=98,an=13,q=23,则项数n为( ) A.3 B.4 C.5 D.6
7.已知不等式baxx3>0的解集为(1,3),那么abba23332=( ) A.3 B.13 C.-1 D.1 8.若sincos1sincos2,则tan2 ( ) A. 34 B.34 C.35 D.35 9. 在ABC中,角A、B的对边分别为a、b且2AB,4sin5B,则ab的值是( ) A.35 B.65 C.43 D.85 10. 已知数列na的通项公式1()2nnanNn,设na的前n项积为ns,则使132ns成立的自然数n ( ) A.有最大值62 B.有最小值63 C.有最大值62 D.有最小值31 11.已知71cos,1413)cos(,且20, ( )
A.4 B.6 C.3 D.125 12.已知数列na满足1(1)21,nnnaan则na的前60项和为( ) A.3690 B.3660 C.1845 D.1830 二、填空题:(本大题共4小题,每小题5分,共20分。) 13.不等式(3)(2)01xxx的解集为___________. 14.已知等差数列{an}的首项a1=20,公差d=-2,则前n项和Sn的最大值为________. 15.函数()fx=22sin2cos2xx的最小正周期是 . 16. 如图,从玩具飞机A上测得正前方的河流的两岸B,C的俯 角分别为67°,30°,此时气球的高是46 m,则河流的宽度BC约
等于________m.(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,3≈1.73) 三、解答题:本大题共6小题,满分70分。解答应写出文字说明,证明过程或演算步骤。 17. (本小题满分10分)当a为何值时,不等式22(1)(1)10axax的解集是全体实数?
18.(本小题满分12分) 已知280,0,1xyyx且,求: (1) xy的最小值;(2) xy的最小值.
19.( 本小题满分12分)已知等差数列na满足:37a,5726aa,na的前n项和为nS. (1) 求na及nS;
第16题图 (2) 求数列1nS的前n项和为nT. 20.(本小题满分12分)已知bcacb222. (1)求角A的大小;
(2)如果36cosB,2b,求ABC的面积.
21. (本小题满分12分)已知函数()sin()cos(2)fxxax,其中a∈R,(,)22 (1)当2,4a时,求()fx在区间0,上的最大值与最小值; (2)若()0,()12ff,求a,θ的值.
22.(本小题满分12分)设各项均为正数的等比数列na中,133510,40.aaaa 2lognnba (1)求数列nb的通项公式;
(2)若111,nnnnbccca,求证: 3nc; (3)是否存在正整数k,使得1111210nnnkbbbn对任意正整数n均成立?若存在,求出k的最大值,若不存在,说明理由.
高一年级文科数学试答案 题号 1 2 3 4 5 6 7 8 9 10 11 12 选项 A D D B A B B A B B C D 13 (1,1)(3,) 14. 110 15 .8 16.60 17若a=1,则原不等式为-1<0,恒成立;………….2分 .若a=-1,原不等式为2x-1<0,即x<12,不符合题目要求,舍去.………….4分
(2)当a2-1≠0,即a≠±1时,原不等式的解集是全体实数的条件是
a2
-1<0,
Δ=(a-1)2+4(a2-1)<0,…………6
分 解得-35<a<1. ………….9分 综上所述,当-35<a≤1时,原不等式的解集是全体实数.………….10分 18.解:(1)∵x>0,y>0, ∴xy=2x+8y≥216xy 即xy≥8xy,∴xy≥8, 即xy≥64. …………4分
当且仅当2x=8y 即x=16,y=4时,“=”成立.…………5分
∴xy的最小值为64…………6分 (2)∵x>0,y>0,且2x+8y-xy=0, ∴2x+8y=xy,即2y+8x=1.
∴x+y=(x+y)·(2y+8x)=10+2xy+8yx≥10+22xy·8yx=18…………10分 当且仅当2xy=8yx,即x=2y=12时“=”成立. ∴x+y的最小值为18. …………12分 19. (1)解得13a,2d,……….2分 所以32(1)21nann;………….3分
2(1)3222nnnSnnn.………….6分
(2)由(Ⅰ)可知,22nSnn,所以 所以123111111nnnTSSSSS 1111111111(1)232435112nnnn
111112212nn31114212nn.……….12分
20.解:(1)因为bcacb222,所以212cos222bcacbA,……………………3分 又因为,0A,所以3A………………………5分 (2)因为36cosB,,0B,所以33cos1sin2BB…………6分 由正弦定理BbAasinsin,得3sinsinBAba……………………………………7分 因为bcacb222,所以0522cc……………………………………8分 解得61c,因为0c,所以16c……………………………………10分
故△ABC的面积2323sin21AbcS…………………………………………12分 21.解:(1)当a=2,θ=π4时,
f(x)=sinx+π4+2cosx+π2=22()sin x+cos x-2sin x=22 cos x-22 sin x=sin π4-x,……………….3分
因为x∈[0,π],从而π4-x∈-3π4,π4,…………………4分 故f(x)在[0,π]上的最大值为22,最小值为-1………….6分
(2)由 fπ2=0,fπ=1 得
cos θ1-2asin θ=0,
2asin2 θ-sin θ-a=1. ………………7分.
又θ∈-π2,π2知cos θ≠0, 解得
a=-1,
θ=-π6.
………….12分
22.解:(1)设数列{an}的公比为q(q>0), 由题意有 a1+a1q2=10a1q2+a1q4=40, ∴a1=q=2,∴an=2n, ∴bn=n. …………3分.
(2)∵c1=1<3,cn+1-cn=n2n,…………4分. 当n≥2时,cn=(cn-cn-1)+(cn-1-cn-2)+…+(c2-c1)+c1=1+12+222+…+n-12n-1, ∴12cn=12+122+223+…+n-12n. 相减整理得:cn=1+1+12+…+12n-2-n-12n-1=3-n+12n-1<3, 故cn<3. …………7分. (3)令f(n)=1bn+1+1bn+2+…+1bn+n =1n+1+1n+2+…+12n ∵f(n+1)-f(n)=12n+1+12n+2-1n+1 =12n+1-12n+2>0, ∴f(n+1)>f(n). ∴数列{f(n)}单调递增,
∴f(n)min=f(1)=12.
由不等式恒成立得:k10<12, ∴k<5. 故存在正整数k,使不等式恒成立,k的最大值为4…………12分.