电源浪涌保护器的参数选择及线路保护
- 格式:doc
- 大小:173.00 KB
- 文档页数:5
浪涌保护器的主要技术参数摘要:一、浪涌保护器的基本概念二、浪涌保护器的主要技术参数1.额定电压2.额定电流3.最大持续电压4.脉冲电压5.响应时间6.冲击次数7.防护等级三、各技术参数的作用和选择原则四、浪涌保护器的应用领域五、如何选择合适的浪涌保护器正文:一、浪涌保护器的基本概念浪涌保护器,又称突波保护器,是一种用于保护电气设备、仪器仪表和通信设备等免受瞬时电压、电流冲击的电子元件。
它能有效地抑制电压峰值,降低电磁干扰,确保被保护设备的安全稳定运行。
二、浪涌保护器的主要技术参数1.额定电压:浪涌保护器所能承受的电压值,用户应根据被保护设备的电压等级选择合适的额定电压。
2.额定电流:浪涌保护器所能承受的电流值,应与被保护设备的电流需求相匹配。
3.最大持续电压:浪涌保护器能够长时间承受的电压值,一般要求大于等于额定电压。
4.脉冲电压:浪涌保护器能够承受的瞬时电压峰值,应根据被保护设备所承受的电压冲击类型和程度选择。
5.响应时间:浪涌保护器动作的时间,一般越快越好,能更快地切断异常电压,保护设备安全。
6.冲击次数:浪涌保护器在规定的试验条件下,能承受的电压冲击次数。
在选择时,应根据被保护设备所处的环境条件,选择具有足够冲击次数的浪涌保护器。
7.防护等级:浪涌保护器的防护能力,通常用IP等级表示。
防护等级越高,防护能力越强。
三、各技术参数的作用和选择原则1.额定电压和最大持续电压:应根据被保护设备的电压等级选择,确保浪涌保护器能正常工作。
2.额定电流和冲击次数:应与被保护设备的电流需求和环境条件相匹配,确保浪涌保护器能有效抑制电压峰值。
3.响应时间:越快越好,能迅速切断异常电压,保护设备安全。
4.防护等级:根据被保护设备所处的环境条件选择,确保设备不受外部物体和液体的侵害。
四、浪涌保护器的应用领域浪涌保护器广泛应用于电力系统、通信系统、家电产品、工业控制设备等领域,有效保护设备免受瞬时电压、电流冲击的影响。
浪涌保护器的主要技术参数
摘要:
1.浪涌保护器的定义和作用
2.浪涌保护器的主要技术参数
3.浪涌保护器的应用场景
4.浪涌保护器的选择和安装注意事项
正文:
浪涌保护器,又称电涌保护器(Surge Protective Device,简称SPD),是一种用于保护电子设备、仪器仪表和通讯线路安全的电子装置。
它能够在电气回路或通信线路受到外界干扰而产生尖峰电流或电压时,迅速导通分流,从而避免浪涌对回路其他设备器材造成损害。
浪涌保护器的主要技术参数包括:
1.额定电压:指浪涌保护器正常工作时所能承受的电压范围。
一般而言,浪涌保护器适用于交流50/60HZ,额定电压220V 至380V 的供电系统(或通信系统)。
2.额定放电电流:表示浪涌保护器在瞬间能够承受的最大冲击电流。
常见的额定放电电流有100kA、40kA 等不同规格,适用于不同场景的需求。
3.响应时间:指浪涌保护器从检测到浪涌到启动保护作用的时间。
响应时间越短,保护效果越好。
一般而言,浪涌保护器的响应时间在10/350us 至8/20us 之间。
4.保护级别:根据浪涌保护器对浪涌电流的抑制能力,分为1 级、2 级、
3 级等不同保护级别。
其中,1 级保护级别最高,能够有效抑制100kA 以上的浪涌电流;2 级保护级别次之,能够抑制40kA 至100kA 的浪涌电流;3 级保护级别最低,只能抑制40kA 以下的浪涌电流。
浪涌保护器的应用场景非常广泛,不仅适用于家庭住宅,还广泛应用于第三产业和工业领域的电涌保护。
在选购浪涌保护器时,需根据实际应用场景选择合适的额定电压、额定放电电流和保护级别。
一级二级三级浪涌保护器参数一级二级三级浪涌保护器参数是指电气设备的浪涌保护器可分为三级,即一级、二级、三级。
一级浪涌保护器具有最大的浪涌能量和抗扰度,用于定位和抑制大型浪涌影响和防止浪涌传播到后端设备。
二级浪涌保护器用于抑制中等强度的浪涌干扰,具有较高的抗扰度。
三级浪涌保护器有较低的浪涌保护能力,但可以有效抑制小功率的浪涌干扰。
1、一级浪涌保护器参数(1) 工作电压:一般情况下,一级浪涌保护器的工作电压为220V或380V,可根据具体情况选择合适的电压。
(2) 抗浪涌能量:一级浪涌保护器的抗浪涌能量主要取决于使用场合,如住宅区、工厂、机房等,一般要求抗浪涌能量应不小于50KJ。
(3) 吸收电流:一级浪涌保护器的吸收电流一般在2KA以上,可根据具体使用情况选择合适的吸收电流。
(4) 电流容量:一级浪涌保护器的电流容量一般在20KA以上,可根据具体使用情况选择合适的电流容量。
2、二级浪涌保护器参数(1) 工作电压:二级浪涌保护器的工作电压一般在110V-220V之间,可根据具体情况选择合适的电压。
(2) 抗浪涌能量:二级浪涌保护器的抗浪涌能量一般在10KJ以上,可根据具体使用情况选择合适的抗浪涌能量。
(3) 吸收电流:二级浪涌保护器的吸收电流一般在1KA以上,可根据具体使用情况选择合适的吸收电流。
(4) 电流容量:二级浪涌保护器的电流容量一般在10KA以上,可根据具体使用情况选择合适的电流容量。
3、三级浪涌保护器参数(1) 工作电压:三级浪涌保护器的工作电压一般介于110V和220V之间,可根据具体情况选择合适的电压。
(2) 抗浪涌能量:三级浪涌保护器的抗浪涌能量一般在5KJ以上,可根据具体使用情况选择合适的抗浪涌能量。
(3) 吸收电流:三级浪涌保护器的吸收电流一般在500mA以上,可根据具体使用情况选择合适的吸收电流。
(4) 电流容量:三级浪涌保护器的电流容量一般在5KA以上,可根据具体使用情况选择合适的电流容量。
灾害性的雷雨气候在气候性自然灾害中,雷电灾害的发生比洪水、地震、龙卷风更为频繁。
亚太地区是全世界雷雨气候发生比较频繁的地区。
在亚太地区,每年带有雷电灾害性的雷雨气候的平均发生次数为:中国190-260印尼、马来西亚180-260新加坡160-220泰国90-200菲律宾90-140印度50-150中国地域辽阔,雷电灾害性的雷雨气候主要分布在华南地区和长江流域。
过去,人们通常只关注陆地上的雷电灾害。
但随着海洋石油工业的发展,渤海、东海、南海、北部湾、台湾海峡发生的雷雨气候也开始对人类活动造成直接危害。
外部雷电防护和内部雷电防护为保护建筑物在遭雷电直接打击时避免损坏,人们利用避雷针、避雷网、空气端子等外部防雷设备将雷击电流按照预先设计的通路引至大地。
但是,即便有了完善的外部防雷措施,经常只有约50%的雷电能量直接进入大地。
其余约50%的雷电能量将以各种方式传入建筑物中的导体,如电缆和金属管道。
为实施内部雷电防护,一方面建筑物内的所有金属管道必须实现等电位接地,另一方面必须采用浪涌保护器保护建筑物内电缆所连接的电气和电子设备。
Pepperl+Fuchs公司致力于为工厂提供先进的浪涌保护器,保护工厂内的电气和电子设备,尤其是过程控制系统。
雷电通过电缆对室内电气和电子设备的危害雷电是如何通过电缆危害到建筑物内的电气和电子设备的呢?1)电阻耦合效应如右图所示,雷击导致附近的地电势急剧升高。
靠近雷击点的建筑物和远离雷击点的建筑物之间产生地电势差。
如果两座建筑物内的电气和电子设备之间有连接电缆,通常电缆的电阻又小于土壤的电阻,于是雷击能量就总是试图以浪涌电流的形式通过两个建筑物之间的电缆从高地电势区流向低地电势区。
从而损坏建筑物内的电气和电子设备。
2) 电感/电容耦合效应如右图所示,雷击将使建筑物外部防雷设备的导体中产生瞬间巨大的电流和电势。
如果外界的电线遭雷击,该电线上也会形成巨大的电势。
该电势和电流都会在建筑物内设备的电缆上感应出有害电压并进而产生浪涌电流。
浪涌保护器选择要点浪涌保护器是一种高效能的电路保护器,当它承受瞬态高压、高能量脉冲时,快速(10-9S)由原来的高阻抗变为低阻抗,并将瞬变高压干扰脉冲抑制到预定电压,从而有效地保护设备和敏感器件不受损坏,电路工作不受干扰。
(1)浪涌保护器从级别上分三个等级第一级可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,第一级保护时应为三相电压开关型电源防雷器,其雷电通流量不应低于60kA。
一般用于总配电。
第二级目的是进一步将通过第一级防雷器的残余浪涌电压的值限制到1500-2000V,对LPZ1-LPZ2实施等电位连接。
分配电柜线路输出的电源防雷器作为第二级保护时应为限压型电源防雷器,其雷电流容量不应低于20kA。
第三级目的是最终保护设备的手段,将残余浪涌电压的值降低到1000V以内。
作为第三级保护时应为串联式限压型电源防雷器,其雷电通流容量不应低于10kA。
一般用于终端配电设备。
不同的配电系统应该选择相应浪涌保护器,可分TN(TN-S,N-C,TN-C-s),IT,TT。
1)第一级保护目的是防止浪涌电压直接从LPZ0区传导进入LPZ1区,将数万至数十万伏的浪涌电压限制到2500-3000V。
入户电力变压器低压侧安装的电源防雷器作为第一级保护时应为三相电压开关型电源防雷器,其雷电通流量不应低于60kA。
该级电源防雷器应是连接在用户供电系统入口进线各相和大地之间的大容量电源防雷器。
一般要求该级电源防雷器具备每相100kA以上的最大冲击容量,要求的限制电压小于1500V,称之为CLASSI级电源防雷器。
这些电磁防雷器是专为承受雷电和感应雷击的大电流以及吸引高能量浪涌而设计的,可将大量的浪涌电流分流到大地。
它们仅提供限制电压(冲击电流流过电源防雷器时,线路上出现的最大电压称为限制电压)为中等级别的保护,因为CLASSI级保护器主要是对大浪涌电流进行吸收,仅靠它们是不能完全保护供电系统内部的敏感用电设备的。
浪涌保护器的主要技术参数摘要:一、浪涌保护器的基本概念二、浪涌保护器的主要技术参数1.额定电压2.额定电流3.最大持续电压4.脉冲电压5.响应时间6.插入损耗7.保护等级三、各技术参数的作用和选择方法四、浪涌保护器的应用场景五、总结正文:一、浪涌保护器的基本概念浪涌保护器,又称突波保护器,是一种用于保护电气设备、电子设备免受瞬时电压、电流干扰的防护装置。
它在电路中引入阻抗,当电压或电流超过设定值时,浪涌保护器动作,将多余的电压或电流导向地线,从而保护后级设备不受损坏。
二、浪涌保护器的主要技术参数1.额定电压:浪涌保护器的额定电压是指它能正常工作的电压范围。
在选择浪涌保护器时,应根据被保护设备的额定电压来选择,以确保其在正常工作电压范围内能有效保护设备。
2.额定电流:浪涌保护器的额定电流是指它能承受的最大电流。
在选择浪涌保护器时,应根据被保护设备的电流需求来选择,以确保其在正常工作电流范围内能有效保护设备。
3.最大持续电压:最大持续电压是指浪涌保护器能承受的最高电压。
在选择浪涌保护器时,应根据被保护设备的最大工作电压来选择,以确保其在电压波动时能有效保护设备。
4.脉冲电压:脉冲电压是指浪涌保护器能承受的瞬时电压。
在选择浪涌保护器时,应根据被保护设备可能遭受的电压冲击来选择,以确保其在遭受电压冲击时能有效保护设备。
5.响应时间:响应时间是指浪涌保护器在检测到电压或电流超过设定值时,动作的时间。
在选择浪涌保护器时,应根据被保护设备对响应时间的要求来选择,以确保其在瞬时电压、电流干扰发生时能迅速动作,保护设备。
6.插入损耗:插入损耗是指浪涌保护器对信号的衰减程度。
在选择浪涌保护器时,应根据被保护设备的信号传输要求来选择,以确保其在保护设备的同时,不影响信号的传输。
7.保护等级:保护等级是指浪涌保护器所能承受的电压、电流冲击能力。
在选择浪涌保护器时,应根据被保护设备所处的环境以及可能遭受的电压、电流冲击来选择,以确保其在恶劣环境下能有效保护设备。
浪涌保护器的选型要求摘要:本文通过介绍浪涌保护器的分类,从设计角度分析了浪涌保护器及其保护元件的选型要点和布置原则,给出浪涌保护器的正确使用方法。
关键词:浪涌保护器;选型;要求浪涌保护器作为一种新兴的防雷电保护器件,是弱电设备防雷的主要手段,也是内部防雷保护的主要措施,正在被越来越广泛的应用。
一、浪涌保护器的分类通常按工作原理,浪涌保护器分为电压开关型、限压型和混合型浪涌保护器。
1.1电压开关型浪涌保护器无电涌出现时为高阻抗,当突然出现电压电涌时变为低阻抗。
通常采用放电间隙、充气放电管、硅可控整流器或三段双向可控硅元件,做电压开关型电涌保护器的组件。
可疏导0.03μs的雷冲击电流,由于它的雷电泄放能量大,所以通常装在建筑物入口处。
但是其缺点是残压较高,一般可达2~4kV。
1.2限压型浪涌保护器无电涌出现时为高阻抗,随着电涌电流和电压的增加,阻抗连续变小。
通常采用压敏电阻、抑制二极管作限压型电涌保护器的组件。
可以用于疏导0.4μs的雷电冲击电流,虽然其雷电泄放能量小,但是过电压抑制能力好,用来限制因前级雷电流泄放后,在后级产生的过高电压。
1.3混合型将开关型和限压型原件组合在一起的一种SPD,随着施加的冲击电压特性不同,SPD有时会呈现开关型SPD特性,有时呈现限压型SPD特性,有时同时呈现两种特性。
电压开关型浪涌保护器为间隙放电型器件,其雷电能量泻放能力大,在线路上使用的主要作用是泻放雷电能量;限压型浪涌保护器为压敏电阻器件,其雷电能量泻放能力小,但其过电压抑制能力好,在线路上使用的主要作用是限制过电压。
因为,一般在建筑物入口处选用电压开关型浪涌保护器来泄放雷电能量,然后,在后级电路使用限压型浪涌保护器来限制因前级雷电能量泻放后,在后级线路产生的高过电压。
两种浪涌保护器需配合使用,方能保证配电线路中设备的安全。
二、浪涌保护器的选型安装浪涌保护器的安装位置如图1所示。
在任何两雷电防护区的交界处应装设浪涌保护器。
深圳市安普迅通信技术有限公司是专业的浪涌保护器(防雷器)生产厂商,主要的浪涌保护器(防雷器)系列有:AX电源防雷箱,AM电源防雷模块、AS信号浪涌保护器、AR天馈浪涌保护器、AJ监控系统三合一(二合一)集成浪涌保护器、防雷插座(排插),千兆网浪涌保护器,POE以太网供电浪涌保护器,并对外提供OEM等。
安普迅系列浪涌保护器技术力量雄厚、生产能力较强,产品经过严格检测把关,价格优惠,受到广大客户的信,安普迅人将再接再励,将安普迅至高的防雷技术和防雷精神推向世界!为了更全面的开拓市场,我公司长期诚征各地代理商、经销商,同时寻各地系统集成商、监控工程商及开关电源生产商合作。
望有此意向的企业和个人与我们联系,我们将提供给您优质的产品和服务!·2004年安普迅通过深圳市科技局高新技术企业认定;·2007年公司通过ISO9001:2000版质量体系认证。
公司本着“精于技术,优于质量”的原则。
始终把产品的质量放在首位,在研发、试验、试制、生产、检验、销售等阶段,严格按照标准进行质量控制;售后服务:·防雷产品通过信息产业部通信产品防雷性能质量监督检测中心的严格检测;·公司配备了完备的售后服务体系,秉承“售前技术优,售后服务优”的服务宗旨,坚持提供优质服务。
·安普迅旗下防雷和监控产品均办理了太平洋责任保险,防雷产品提供五年质保期,为出售的产品和相关系统提供更全面、有力的保障。
复合型电源防雷箱~复合型电源防雷箱适用范围防雷箱配备电源指示、防雷指示、劣化报警及指示、雷击计数器、防雷熔断丝等,SPD模块采用电压开关型模块和电压限制型模块(或一体化MOV)组成。
主要安装在配电房、配电柜、交流配电屏、开关箱和其它重要设备、容易遭受雷击设备的电源进线处,以保护设备免遭沿电源线路侵入的雷击过电压造成的损害;可广泛应用于通信、电力、交通、金融、铁路、民航等系统的主电源防护。
·复合型电源防雷箱广泛应用于通信、电力、厂矿、金融、民航、铁路等系统的主电源防雷击及过电压保护;·建筑物总配电屏,配电柜,配电箱,须安装第一级防雷设施的环境;·无人执守但须安装第一级带遥信指示的防雷设备的环境;需要有第一级防雷失效指示及报警指示及雷电泄放记录环境;·小面积但要求两级电涌保护的环境命名规则产品性能参数及特点性能特点· B+C级保护通流量大,残压极低,响应时间快;·采用最新灭弧技术,彻底避免火灾;;·采用温控保护电路,内置热保护;·自带远程告警干接点,便于远程监控;·配备雷电计数器,准确记录雷击次数;·带有电源状态指示灯,指示浪涌保护器工作状态;·核心元件采用国际知名品牌,性能优异;·结构严谨,工作稳定可靠。
五、电涌保护器的主要参数1、标称电压Un:被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。
2、额定电压Uc:能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。
3、额定放电电流Isn:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。
4、最大放电电流Imax:给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
5、电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。
6、响应时间tA:主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。
7、数据传输速率Vs:表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用防雷器的参考值,防雷保护器的数据传输速率取决于系统的传输方式。
8、插入损耗Ae:在给定频率下保护器插入前和插入后的电压比率。
9、回波损耗Ar:表示前沿波在保护设备(反射点)被反射的比例,是直接衡量保护设备同系统阻抗是否兼容的参数。
10、最大纵向放电电流:指每线对地施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
11、最大横向放电电流:指线与线之间施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
12、在线阻抗:指在标称电压Un下流经保护器的回路阻抗和感抗的和。
通常称为“系统阻抗”。
13、峰值放电电流:分两种:额定放电电流Isn和最大放电电流Imax。
14、漏电流:指在75或80标称电压Un下流经保护器的直流电流。
浪涌保护器选择要点1. 电气参数:浪涌保护器的主要功能是限制过电压,因此关键的性能参数是其额定电压(Uc)和放电电流(In)。
额定电压应与所保护设备的额定电压匹配,而放电电流应能够有效地抑制电压浪涌。
另外,还需考虑保护器的额定运行电流(Imax)和极限电压(Up),以确保其能够正常工作。
2.设备类型:不同类型的设备可能对浪涌保护器的要求不同。
例如,电力系统可能需要采用高压浪涌保护器,而计算机设备可能只需要较低压的保护。
了解所保护设备的类型和特点,选择适合的浪涌保护器,可以有效地提供保护。
3.保护级别:浪涌保护器一般分为几个级别,如C、D、B等等。
级别越高,保护能力越强。
根据所需保护的设备和环境,选择适当的保护级别。
一般来说,重要的设备或易受损坏的环境应选择高级别的保护。
4.安全性能:浪涌保护器不仅需要有效地限制电压浪涌,还需要具备一定的安全性能,以防止火灾等危险。
关注保护器的灭弧能力、自恢复能力和外壳材料,确保其满足相关的安全标准和要求。
5.可靠性和寿命:浪涌保护器作为一种长期使用的设备,其可靠性和寿命也是需要考虑的因素。
查看产品说明,了解其可靠性指标和使用寿命,选择具有高可靠性和长使用寿命的浪涌保护器。
6.安装方式:根据实际情况,选择合适的浪涌保护器安装方式,如导轨安装、插头式安装、板式安装等。
考虑保护器的安装空间和对设备及系统的影响,选择适合的安装方式。
7.价格和供应:最后,还需考虑浪涌保护器的价格和供应情况。
比较不同品牌和型号的浪涌保护器的价格和性能,选择性价比高的产品。
同时,还需考虑供应商的信誉和交货能力,确保能够及时供应所需的保护器。
综上所述,选择浪涌保护器时,需要考虑电气参数、设备类型、保护级别、安全性能、可靠性和寿命、安装方式、价格和供应等要素。
根据实际需求,权衡这些要素,选择适合的浪涌保护器,以保护电气设备免受过电压浪涌的影响。
浪涌保护器大小怎么选浪涌保护器如何选型在选择浪涌保护器的大小的时候,一般需要根据浪涌保护器的实际安装位置来进行选择,也就是根据电源来进行选择。
若浪涌保护器是被安装在变压器的低压侧面位置的话,那么就应该选择使用高于60KA的浪涌保护器,一般可以选择使用120KA或者是100KA,10/350US 型的浪涌保护器。
有关“浪涌保护器大小怎么选浪涌保护器如何选型”的详细说明。
1.浪涌保护器大小怎么选1、在选择浪涌保护器的大小的时候,一般需要根据浪涌保护器的实际安装位置来进行选择,也就是根据电源来进行选择。
若浪涌保护器是被安装在变压器的低压侧面位置的话,那么就应该选择使用高于60KA的浪涌保护器,一般可以选择使用120KA或者是100KA,10/350US 型的浪涌保护器。
2、若浪涌保护器是被安装在配电柜的进线侧面位置的话,那么就应该选择使用高于40KA的浪涌保护器,一般可以选择使用80KA或者是60KA,8/20US型的浪涌保护器。
若浪涌保护器是被安装在配电箱的进线侧面位置的话,那么就应该选择使用高于20KA的浪涌保护器,一般可以选择使用20KA或者是40KA,8/20型的的浪涌保护器。
3、家中若要安装空开的话,那么就是根据浪涌保护器的放电电流来选择空开大小的,一般情况下,浪涌保护器的放电电流若是60KA的话,则应该选择63A的空开,浪涌保护器的放电电流若是40KA的话,则应该选择40A的空开,浪涌保护器的放电电流若是20KA的话,则应该选择25A的空开。
4、市面上的浪涌保护器品牌有很多家,质量也参差不齐,建议大家一定要选择由大型的、知名的、正规的品牌所生产的浪涌保护器,这样产品质量和售后服务也会更有保障,千万不要为了贪便宜而选择劣质的浪涌保护器。
2.浪涌保护器如何选型1、在选型的时候,一般都是根据电源类型和安装位置来进行选择的,若浪涌保护器是安装在变压器到总电柜位置的话,那么用户就应该选择60KA及以上的浪涌保护器。
浪涌保护器(SPD)的相关参数和试验在建筑电气设计中,防范过电压及分泄雷电流需要采用到SPD,那么SPD是什么元器件,以及SPD有些什么参数,下面我们一起来了解一下吧。
浪涌保护器(SPD): 用于限制瞬态过电压和分泄电涌电流的器件。
SPD主要用在低压配电系统和信息系统中,用于对雷电过电压、操作过电压、雷击电磁脉冲和电磁干扰脉冲的防护。
如果是高压侧防范以上过电圧,则采用避雷器。
第三级防需箱ES-DM020(1)浪涌保护器(SPD)的主要参数:1) 最大持续运行电压(Uc):指可持续加于SPD 保护模式的最大均方根电压(有 效值)或直流电压。
它实际上是SPD 的额定电压。
Uc 值与SPD 产品的使用寿命、电压保护水平有关。
如果Uc 值选择偏高,虽然能 延长产品的使用寿命,但其残压也相应提高,对被保护对象是不利的。
2)标称放电电流(In): 流过电涌保护器8/20 y s 电流波的峰值电流。
该参数用于SPD 做1【级试验,也用于对SPD 做【级和I 【级试验的预处理。
在SPD 的相关标准中,规定了一系列的In 值,某一型号SPD 设计制造时的LI 标是要达 到某一等级,就选用In 系列中相应的In 值进行试验,试验合格后,该SPD 的 In 值就可以确定为选中的值。
_ L2-L3 -变压器主配电柜楼层分配电柜专用配电柜151J弓⑥劝©7第一级防宙箱ES-B1-40 60 80第二级防需箱ES-C1-20 ES-C2-15 20303)I I级试验中的最大放电电流(Imax):流过电涌保护器8/20 P s电流波的峰值电流。
该参数从定义上与标称放电电流(In)相同,但SPD标准在给出In系列值的同时, 也给出了Imax系列值,且同一等级中Imax>In。
某一SPD采用某一等级的In并通过了试验,并不能保证该SPD选用同一等级的Imax通过试验。
因此尽管In 和Imax 都是8/20 u s电流波的峰值,但是在试验时所采用的电流波的峰值和通过电流的次数是不一样的。
浪涌保护器规格型号及参数电压开关型SPD:常用的非线性元件有放电间隙、气体放电管等,它具有大通流容量(标称通流电流和最大通流电流)的特点,特别适用于易遭受直接雷击部位的雷电过电压保护(即L PZ0A区)。
有关“浪涌保护器规格型号及参数”的详细说明。
1.浪涌保护器规格型号1、电压开关型SPD:常用的非线性元件有放电间隙、气体放电管等,它具有大通流容量(标称通流电流和最大通流电流)的特点,特别适用于易遭受直接雷击部位的雷电过电压保护(即L PZ0A区)。
2、电压限制型SPD:常用的非线性元件有氧化锌压敏电阻、瞬态抑制二极管等,是大量常用的过电压保护器,适用于室内(即L PZ0B、L PZ1、L PZ2区)。
3、组合型SPD:由电压开关型元件和限压型元件混合使用,随着施加的冲击电压特性不同,SPD有时会呈现开关型SPD特性,有时呈现限压型SPD特性,有时同时呈现两种特性。
2.浪涌保护器参数参数一,浪涌保护器类型浪涌保护器的类型主要分为电压开关型、电压限制性和复合型三种。
开关型电源浪涌保护器是没有浪涌时具有高阻抗,有浪涌时能立即转变成低阻抗的浪涌保护器,其常用元件有放电间隙、气体放电管、闸流管和三端双向可控硅开关元件,也称为“短路型浪涌保护器”。
限压型浪涌保护器是没有浪涌时具有高阻抗,但是随着浪涌电流和电压的上升,其阻抗将持续减小,其常用的非线性元件是压敏电阻和抑制二极管,也称为“钳拉型浪涌保护器”复合型浪涌保护器由电压开关型和电压限制型元件组成的浪涌保护器,其特性随所加电压的特性可表现为电压开关型、电压限制性或者两者皆有。
参数二,标称放电电流(In)标称放电电流是指流过浪涌保护器(SPD)具有8/20波型的电流峰值。
钧和电子电源浪涌保护器的标称放电电流按照保护级别的不同而不同,详情可查看产品列表页。
参数三,冲击电流(Iimp)由电流峰值Ipeak、电荷量Q和比能量W/R确定,是10/350波型I级实验的浪涌保护器的分类。
浪涌保护器的主要技术参数浪涌保护器是一种用于保护电气设备免受过电压或浪涌电流侵害的设备。
它通过引导和吸收过电压或浪涌电流,将其导向地或其他安全的位置,以保护设备不受损坏。
浪涌保护器的主要技术参数有以下几个方面:1. 额定电压(Rated Voltage):浪涌保护器在正常工作情况下能够承受的最高电压。
这个参数非常重要,选择保护器时需要根据实际工作电压来确定。
2. 额定电流(Rated Current):浪涌保护器在正常工作情况下的额定电流。
它是指浪涌保护器能够承受的最大电流,超过这个电流值就可能导致浪涌保护器失效。
3. 浪涌放电电流(Surge Discharge Current):浪涌保护器能够承受的最大放电电流。
当过电压或浪涌电流侵入电路时,浪涌保护器会通过引导和吸收浪涌电流,将其导向地或其他安全位置,以保护设备。
4. 过电压保护等级(Voltage Protection Level):浪涌保护器在正常工作情况下对过电压的保护能力。
过电压保护等级越低,说明浪涌保护器对过电压的保护能力越高。
5. 响应时间(Response Time):浪涌保护器从侦测到过电压或浪涌电流到响应的时间。
这个时间越短越好,因为它能更快地保护设备免受过电压或浪涌电流侵害。
除了以上主要技术参数,浪涌保护器还有其他一些重要的特性,例如:1. 重复使用能力(Reusability):浪涌保护器在发生过电压或浪涌电流后,是否能够重复使用。
这对于长期保护设备非常重要,可以降低维护成本。
2. 安装方式(Installation Type):浪涌保护器可以有不同的安装方式,例如:插座式、导轨式等,根据需要选择合适的安装方式。
3. 环境适应性(Environmental Adaptability):浪涌保护器是否适应各种环境条件,例如温度、湿度等。
这是保护器正常工作的重要因素。
总之,了解浪涌保护器的主要技术参数对于正确选择和应用浪涌保护器至关重要。
电源浪涌保护器的参数选择及线路保护
摘要:对电源浪涌保护器的几个主要参数进行分析,提出在不同的供电接地系统中,选择和安装电源浪涌保护器时应注意的问题。
关键字:浪涌保护器, 电涌保护器, 过电压保护
浪涌保护器(Su rge p ro tect ive device, SPD) , 也称电涌保护器、避雷器等,它的作用是保证电子设备免受浪涌过电压(雷电过电压、操作过电压等) 的破坏,既不影响设备的正常工作,又将浪涌过电压限制在相应设备的耐压等级范围内,目的在于限制瞬态过电压和分走电涌电流,也是等电位连接的一种方法。
在实验中,以电压波形保持不变,升高电压,每个电压可以获得一个击穿时间,以电压为纵轴,时间为横轴,可以画出伏秒特性,由此得知,为了保证SPD 能够在全时域范围内保护设备不受浪涌过电压的破坏,它的冲击伏秒特性必须在用电器冲击伏秒特性的下方,这是选择SPD的原则,也是SPD生产厂家必须提供的保证。
来源:大比特半导体器件网
1 SPD 的分类,按使用非线性元件的特性来分
1.1 电压开关型SPD
常用的非线性元件有放电间隙、气体放电管等,它具有大通流容量(标称通流电流和最大通流电流) 的特点,特别适用于易遭受直接雷击部位的雷电过电压保护(即L PZ0A 区)。
来源:大比特半导体器件网
1.2 电压限制型SPD
常用的非线性元件有氧化锌压敏电阻、瞬态抑制二极管等,是大量常用的过电压保护器,一般适用于室内(即L PZ0B、L PZ1、L PZ2 区)。
1.3 组合型SPD
由电压开关型元件和限压型元件混合使用,随着施加的冲击电压特性不同,SPD 有时会呈现开关型SPD 特性,有时呈现限压型SPD 特性,有时同时呈现两种特性。
来源:大比特半导体器件网
2 表征SPD 的主要技术参数选择
2.1 保护模式
SPD 可连接在L (相线)、N (中性线)、PE (保护线) 间,如L 2L、L 2N、L 2PE、N 2PE, 这些连接方式与供电系统的接地型式有关。
2.2 最大持续工作电压Uc
可能持续加于SPD 两端的最大方均根电压或直流电压,其值等于SPD 本身的额定电压。
来源:大比特半导体器件网
IEC6036452534 中提出,在TT 系统中,当SPD 设在漏电流保护器(RCD) 的电源侧时,U c≥1.1U o; 当SPD 设在漏电流保护器的负荷侧时,U c≥1.5U o.
在TN 系统和IT 系统中,U c≥1.1U o.U c 的选择要考虑到当地电网的水平波动及用户用电的具体情况,不是一味取大值为好,因为U c 取大,整个压敏器件启动电压也高,浪涌电压将对设备产生危害。
国际标准有一系列的优选值,与当地电网水平有关。
来源:大比特半导体器件网
2.3 雷电通流量Imax
一般在L PZ0 与L PZ1 区交界处选用10/350u s波形、每相通流量≥10KA 的SPD 安装,在L PZ1 与L PZ2 区交界处选用8/2 0u s 波形,每相通流量≥5KA 的SPD 安装。
由于10/350u s 波形的能量比8/20u s 的大20 倍,其电流相应大5 倍,如果要用8/20u s 波形的SPD 代替,其雷电通流量相应要大5倍。
2.4 保护水平Up
该值应比在SPD 端子测得的最大限制电压大,与设备的耐压Uw 一致(1.2U p ≤Uw ) , 可以从一系列的参考值中选取(如0108、0109、……1、1.2、1.5、
1.8、2、……8、10KV 等)。
目前国标当中较好的U p有800V、900V.
2.5 漏电流
并联型SPD 要求漏电流≤30uA (公安部要求≤20uA ) , 串联型SPD 要求漏电流≤01.mA.来源:大比特半导体器件网
2.6 启动电压Uas
过去认为启动电压即标称压敏电压,实际上通过SPD 的电流可能远大于测试电流1mA , 这时不能不考虑已经抬高的残压对设备保护的影响。
从压敏电压到启动电压的时间(即SPD 的响应时间) 比较长,约为100n s.启动电压越高则残压也越高,越低则压敏电阻易老化。
其值不应大于被保护设备的绝缘水平。
2.7 残压Ures
是真正加在被保护设备端口的电压。
残压越低越好,应小于被保护设备耐冲击过电压额定值。
见表1:来源:大比特半导体器件网
表1 220/380V 三相系统各种设备耐冲击过电压额定值Uw
2.8 标称放电电流In
用来划分SPD 等级,具有8/20u s 或10/350u s 模拟雷电流冲击波的放电电流。
Imax= 2~ 3 In。
来源:大比特半导体器件网
2.9 持续工作电流Ic
在最大持续工作电压U c 下保护模式上流过的电流,实际上是各保护元件及与其并联的内部辅助电路流过的电流之和。
为避免过电流保护设备或其它保护设备(如RCD) 不必要动作,Ic 值的选择非常有用。
在正常状态下,Ic 应不会造成任何人身安全危害(非直接接触) 或设备故障(如RCD)。
一般情况下对RCD, Ic 应小于额定残压电流值( I△n) 的1/3.
2.10 以上是选择SPD 时所要考虑的几种主要的参数,可以通过下图来具体比较几种电压之间的关系:来源:大比特半导体器件网
图1 Up Un和Uc相关曲线
3 电源SPD 的线路安装
3.1 安装位置
按照IEC131221 (L PZ) 的概念,当电气线路穿过两防雷区交界处时要安装
浪涌保护器,根据设备的不同位置和耐压水平,可将保护级别分为三级或更多,但保护器必须很好的配合,以便按照它们耐能量的能力在各浪涌保护器之间分配
可接受的承受值和原始的闪电威胁值有效地减至需要保护的设备的耐电涌能力。
但由于工艺要求或其它原因,被保护设备的安装位置不会正好设在界面处而是设
在其附近,在这种情况下,当线路能承受所发生的电涌电压时,浪涌保护器可安
装在被保护设备处,而线路的金属保护层或屏蔽层宜首先于界面处做一次等电位
连接。
在实际的工作中,一般都将电源浪涌保护器设在总配电房、各楼层的配电
箱中及被保护设备前,均取得了较好的防护效果。
3.1.1 在L PZ0 区与L PZ1 区交界处,在从室外引来的线路上安装的SPD 应选用符合? 级分类试验(即通过SPD 的10?350u s 波形的雷电流幅值) 的产品。
通过对建筑物的防雷类别确定雷电流的幅值及雷电流直击在该建筑后在各种
管道、线路上的能量分配来确定其通流量的取值。
3.1.2 在L PZ1 区与L PZ2 区交界处,分配电盘处或U PS 前端宜安装第
二级SPD, 可选用经? 或? 级分类试验的产品。
其标称放电电流In 不宜小于
5KA(8?2 0u s)。
来源:大比特半导体器件网
31.13 在重要的终端设备或精密敏感设备处,宜安装第三级SPD, 可选用经? 或? 级分类试验的产品,其标称放电电流In 不宜小于3KA (8?20u s) , 同时
具有更短的响应时间。
3.2 间距与能量匹配问题
在安装SPD 时要考虑两级之间的能量匹配问题,在一般情况下,当在线路
上多处安装SPD 且无准确数据时,电压开关型SPD 与限压型SPD 之间的线路长
度不宜小于10 米,限压型SPD 之间的线路长度不宜小于5 米。
还应注意以下几点:来源:大比特半导体器件网
3.2.1 SPD 采用低- 高配置时,第二级SPD 几乎没有用处,而采用高- 低配置时,能前后配合分流。
来源:大比特半导体器件网
3.2.2 随着两极间距的缩短,前级分流作用下降,后级通过的电流和能量上升,当距离过近时,前级几乎不起作用。
此时,应在两级之间采取退耦措施,例如在两个SPD 之间安装一个电感阻抗器件,可以起到退耦作用。
3.3 安装方式:宜采用"V "型连接方式(凯文法)。
如下图所示
由上图可知,在设备两端的残压UL PE= U 1+U p , 由于连接导线较短,大大减少了电涌在导线上的压降(实验证明:1m 导线在20KA、8?20u s 波形冲击下产生的压降为1KV ) , 也使加在设备两端的电压降低,从而起到保护的作用。
3.4 SPD 的连接导线应尽可能短、直,两端的引线长度不宜超过015m , 使其感应电压尽可能低,减少残压,连接导体应符合相线采用黄、绿、红色,中性线用浅蓝色,保护线用绿/黄双色线的要求。
4 综述
如上所述,在选择220?3 80V 三相系统中的浪涌保护器时,首先要区分低压配电系统的型式,是IT、TT 还是TN , 然后对所处建筑物确定防雷分类、确定雷电流的能量分配及设备的耐压水平等方面综合考虑SPD 的参数取值,实地考查,扬长避短,选取最适当的SPD, 使被保护设备承受的浪涌减少至设备可接受的值(较低的保护水平)。