第六章-轴系扭转振动PPT课件
- 格式:ppt
- 大小:928.50 KB
- 文档页数:57
汽轮发电机组的轴系扭振电力系统的某些故障和运行方式,往往导致大型汽轮发电机组的轴系扭转振动,以致造成轴系某些部件或联轴器的疲劳损坏。
轴系扭振是指组成轴系的多个转子,如汽轮机的高、中、低压转子,发电机、励磁机转子等之间产生的相对扭转振动。
随着汽轮发电机组单机容量增大,轴系的功率密度亦相对增大,以及轴系长度的加长和截面积相对下降,整个轴系成为一个两端自由的弹性系统,并存在着各种不同振型的固有的轴系扭转振动频率。
同时随着大电网远距离输电使系统结构和输电技术愈趋复杂。
由于这两方面的原因,电力系统因故障或运行方式的改变所引起的电气系统与轴系机械系统扭振频率的耦合作用,将会导致大型汽轮发电机组的轴系扭转振动,严重威胁机组的安全运行。
产生轴系扭振的原因,归纳起来为两个方面:一是电气或机械扰动使机组输入与输出功率(转矩)失去平衡,或者出现电气谐振与轴系机械固有扭振频率相互重合而导致机电共振;二是大机组轴系自身所具有的扭振系统的特性不能满足电网运行的要求。
因此,无论产生的原因如何,从性质上又可将轴系扭振分为:短时间冲击性扭振和长时间机电耦合共振性扭振等两种情况。
从原则上讲,电力系统出现的各种较严重的电气扰动和切合操作都会引起大型汽轮发电机组轴系扭振,从而产生交变应力并导致轴系疲劳或损坏,只是其影响程度随运行条件、电气扰动和切合操作方式、频率(次数)等不同而异。
其中影响较大的可归纳为以下四个方面:1.电力系统故障与切合操作对轴系扭振的影响:通常的线路开关切合操作,特别是功率的突变和频繁的变化;手动、自动和非同期并网;输出线路上各种类型的短路和重合闸等都会激发轴系的扭振并造成疲劳损伤。
2.发电厂近距离短路和切除对轴系扭振的影响:发电厂近距离(包括发电机端)二相或三相短路并切除以及不同相位的并网,都会导致很高的轴系扭转机械应力。
例如在发电机发生三相短路时,短路处电压下降接近于零,于是在短路持续时间内,一方面与短路前有功负荷对应的同步电磁转矩接近于零,同时发电机因短路并以振荡形式出现的暂态电磁转距将激发起整个轴系的扭转振动。
第六章柴油机及推进轴系振动第六章柴油机及推进轴系的振动柴油机是往复运动机械,它采⽤曲柄连杆机构把活塞的往复运动转换成曲轴的回转运动。
当柴油机以恒定转速运转时,活塞做往复运动,连杆⼀边随活塞作往复运动⼀边绕活塞销(或⼗字头销)摆动,曲轴基本为匀速回转运动。
由于曲柄连杆机构这种复杂的运动特点,必然要产⽣周期性变化的不平衡⼒和⼒矩。
它们的存在不仅影响活塞、连杆和曲轴的强度,也影响连杆⼩端和⼤端轴承的负荷、润滑和磨损,同时还会使柴油机发⽣振动并引起船体振动,甚⾄会导致柴油机或船体发⽣故障或损坏。
为了改善这种不平衡⼒和⼒矩对柴油机本⾝造成的不良影响,必须采取⼀定的平衡补偿措施,把它们控制在⼀个限定的范围之内。
船舶推进轴系在实际运转中也会受到各种冲击和周期性的激振⼒(或⼒矩)的作⽤。
对于柴油机动⼒装置,主要有以下⼏种激振⼒: (1)柴油机⽓缸⽓体⼒、运动部件惯性⼒与重⼒等产⽣的作⽤在曲轴、曲柄销上的交变切向⼒和径向⼒; (2)螺旋桨在径向和周向都很不均匀的三维伴流场中运转时所受到的交变纵向(轴向)和横向推⼒和⼒矩; (3)轴系部件运转时所产⽣的激振⼒和⼒矩。
由于这些激振⼒和⼒矩的存在,将导致船舶推进轴系产⽣扭转振动、纵向振动和回旋(横向)振动, 造成轴系损坏或影响船舶的正常航⾏。
第⼀节活塞、连杆的运动及受⼒⼀、活塞的运动1.活塞的位移在柴油机中,由活塞(或活塞⼗字头组件)、连杆和曲轴组成的运动机构称为曲柄连杆机构,它的结构简图如图6-1所⽰。
图中B、A、O分别代表活塞销(或⼗字头销)和连杆⼩端、曲柄销和连杆⼤端、主轴颈和主轴承的位置。
BA为连杆,其长度为连杆⼩端中⼼到连杆⼤端中⼼的距离L。
OA为曲柄,其回转半径为主轴颈中⼼到曲柄销中⼼的距离R,等于活塞⾏程S的⼀半,即R=S/2。
B点沿着⽓缸中⼼线在上下⽌点O′和O″之间作往复运动,它与上⽌点O′间的距离x称活塞位移。
假设曲柄按顺时针⽅向转动,从图中的⼏何关系可以得出:x=L+R-(Rcosα+Lcosβ)=R(1-cosα)+L(1-cosβ) (6-1)运算并简化得活塞位移的近似公式:x≈R(1-cosα)+λR4(1-cos2α) (6-2)式中: α---曲轴转⾓;β---连杆摆⾓;λ---连杆⽐,它表⽰曲柄半径与连杆长度之⽐, 即λ=R/L, ⼀般λ=R/L=1/3~1/5。
电信号扰动下的轴系扭振摘要本文用一种改进的Riccati扭转传递矩阵结合Newmark-β方法研究非线性轴系的扭转振动响应。
首先,该系统被模化成一系列由弹簧和集中质量点组成的系统,从而建立一个由多段集中质量组成的模型。
第二,通过这种新发展起来的程序可以从系统的固有频率和扭振响应中消除累计误差。
这种增量矩阵法,联合结合了Newmark-β法改进的Riccati扭转传递矩阵法,进一步应用于解决非线性轴系扭转振动的动力学方程。
最后,将一种汽轮发电机组作为一个阐述的例子,另外仿真分析已被应用于分析典型电网扰动下的轴系扭振瞬时响应,比如三相短路,两相短路和异步并置。
实验结果验证了本方法的正确性并用于指导涡轮发电机轴的设计。
关键词:传递矩阵法;Newmark-β法;汽轮发电机轴;电学干扰;扭转振动1.引言转子动力学在很多工程领域起着很重要的作用,例如燃气轮机,蒸汽轮机,往复离心式压气机,机床主轴等。
由于对高功率转子系统需求的持续增长,计算临界转速和动态响应对于系统设计,识别,诊断和控制变得必不可少。
由于1970年和1971年发生于南加州Edison’sMohave电站的透平转子事故,业界的注意力集中在由传动行为导致的透平发电机组内的轴的扭转振动。
当代的大型透平发电机组单元轴系系统是一种高速共轴回转体。
它是由弹性联轴器连接,由透平转子,发电机和励磁机组成。
电力系统故障或操作条件的变化引起的机电暂态过程可能导致轴的扭转振动,而轴的扭转振动对于设计来说是非常重要的。
对于透平发电机轴系扭振的研究,如发生次同步谐振和高速重合,基本的是对固有频率和振动响应的计算的研究。
当前,有限元法和传递矩阵法是最流行的两种分析轴系扭振的方法。
有限元法(FEM)通过二阶微分方程构造出转子系统直接用于控制设计和评估,而传递矩阵法(TMM)解决频域内的动态问题。
TMM使用了一种匹配过程,即从系统一侧的边界条件开始沿着结构体连续的匹配到系统的另一端。