2 第二节 动量守恒定律 碰撞 爆炸 反冲
- 格式:doc
- 大小:1015.00 KB
- 文档页数:33
动量守恒的条件爆炸、反冲运动人船模型考点一动量守恒的条件考点二爆炸、反冲运动考点三人船模型考点四连续射击问题1.动量守恒定律内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
2.动量守恒定律常用表达式:m1v1+m2v2=m1v1′+m2v2′.1)p=p′:相互作用前系统的总动量p等于相互作用后的总动量p′.2)m1v1+m2v2=m1v1′+m2v2′:相互作用的两个物体组成的系统,作用前动量的矢量和等于作用后动量的矢量和.3)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反.4)Δp=0:系统总动量增量为零.考点一动量守恒的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
附:机械能守恒的条件:只有重力、系统内弹力做功.1.下列四幅图所反映的物理过程中,说法正确的是()A.甲图中子弹射入木块过程中,子弹和木块组成系统动量守恒,能量不守恒B.乙图中M、N两木块放在光滑水平面上,剪断束缚M、N的细线,在弹簧从压缩状态恢复原长过程中,M、N与弹簧组成的系统动量不守恒,机械能守恒C.丙图中细线断裂后,木球和铁球在水中运动的过程,两球组成的系统动量不守恒,机械能守恒D.丁图中木块沿光滑固定斜面下滑,木块和斜面组成的系统动量守恒,机械能守恒2.如图所反映的物理过程中,以物体A和物体B为一个系统符合系统机械能守恒且水平方向动量守恒的是()A.甲图中,在光滑水平面上,物块B以初速度v0滑上上表面粗糙的静止长木板AB.乙图中,在光滑水平面上,物块B以初速度v0滑下靠在墙边的表面光滑的斜面AC.丙图中,在光滑水平上面有两个带正电的小球A、B相距一定的距离,从静止开始释放D.丁图中,在光滑水平面上物体A以初速度v0滑上表面光滑的圆弧轨道B3.(多选)如图所示,A、B两物体质量之比为m A∶m B=3∶2,原来静止在足够长的平板小车C上,A、B间有一根被压缩的弹簧,地面光滑.当两物体被同时释放后,则( )A.若A、B与平板车上表面间的动摩擦因数相同,则A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,则A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,则A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,则A、B、C组成系统的动量守恒4. (2021·全国乙卷·T14)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。
动量守恒定律、碰撞、反冲现象知识点归纳总结一.知识总结归纳1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。
2. 动量守恒定律的条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。
当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。
即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。
(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。
(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。
3. 动量守恒定律应用中需注意:(1)矢量性:表达式m 1v 1+m 2v 2=2211v m v m '+'中守恒式两边不仅大小相等,且方向相同,等式两边的总动量是系统内所有物体动量的矢量和。
在一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。
(2)系统性:即动量守恒是某系统内各物体的总动量保持不变。
(3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。
(4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物).4. 碰撞过程是指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,所以通常可认为发生碰撞的物体系统动量守恒。
按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分,中学物理只研究正碰的情况;碰撞问题按性质分为三类。
(1)弹性碰撞——碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。
例如:钢球、玻璃球、微观粒子间的碰撞。
(2)一般碰撞——碰撞结束后,形变部分消失,碰撞前后系统的总动量相等,动能有部分损失.例如:木制品、橡皮泥球的碰撞。
碰撞与反冲【自主预习】1.如果碰撞过程中机械能守恒,这样的碰撞叫做2.如果碰撞过程中机械能不守恒,这样的碰撞叫做3.一个运动的球与一个静止的球碰撞,如果碰撞之前球的运动速度与两球心的连线在,碰撞之后两球的速度会沿着这条直线。
这种碰撞称为正碰,也叫碰撞。
4.一个运动的球与一个静止的球碰撞,如果之前球的运动速度与两球心的连线不在同一条直线上,碰撞之后两球的速度都会原来两球心的连线。
这种碰撞称为碰撞。
5.微观粒子相互接近时并不发生直接接触,因此微观粒子的碰撞又叫做6.弹性碰撞和非弹性碰撞从能量是否变化的角度,碰撞可分为两类:(1)弹性碰撞:碰撞过程中机械能守恒。
(2)非弹性碰撞:碰撞过程中机械能不守恒。
说明:碰撞后,若两物体以相同的速度运动,此时损失的机械能最大。
7.弹性碰撞的规律质量为m的物体,以速度v i与原来静止的物体m2发生完全弹性碰撞,设碰撞后它们的速度分别为v ‘ 1和v ‘ 2,碰撞前后的速度方向均在同一直线上。
由动量守恒定律得 mv i = mv ' 1 + mV 211 1 由机械能守恒定律得2mv 2= 2mv ‘ 1+2图 16 -4 - 1/ 2m 2v 2叫v小球的速度可能是(D . V 1 = V 2= 0, V 3=V o3所示。
现给盒子一初速度 v O ,此后,盒子运动求盒内物体的质量。
b < H 久 0 叫1A . V 1 = V 2 = V 3=p|V o 1B . V 1 = 0, V 2=V 3=^^V 0【例2】一个物体静置于光滑水平面上,外面扣一质量为 M 的盒子,如图 16-4-联立两方程解得, m- mV 1— m + m V 1,2m 2 = ----- V 1(2)推论①若m = m2,贝y v ' 1= 0, V 2= V 1,即质量相等的两物体发生弹性碰撞将交换 速度。
惠更斯早年的实验研究的就是这种情况。
②若mm ,贝y v ’ 1 = V 1, V 2= 2V 1,即质量极大的物体与质量极小的静止物体 发生弹性碰撞,前者速度不变,后者以前者速度的2倍被撞出去。
第2节动量守恒定律一、动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
[注1] 2.表达式:m1v1+m2v2=m1v1′+m2v2′。
3.适用条件(1)理想守恒:不受外力或所受外力的合力为0。
(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。
[注2](3)某一方向守恒:如果系统在某一方向上所受外力的合力为0,则系统在该方向上动量守恒。
二、碰撞、反冲、爆炸1.碰撞(1)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒。
(2)分类①弹性碰撞:碰撞后系统的总动能没有损失。
[注3]②非弹性碰撞:碰撞后系统的总动能有损失。
③完全非弹性碰撞:碰撞后合为一体,机械能损失最大。
2.爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒。
3.反冲 [注4](1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,如发射炮弹、火箭等。
(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力,动量守恒。
【注解释疑】[注1] 外力和内力是相对的,与研究对象的选取有关。
[注2] 外力的冲量在相互作用的时间内忽略不计。
[注3] 弹性碰撞是一种理想化的物理模型,在宏观世界中不存在。
[注4] 反冲运动和爆炸问题中,系统的机械能可以增大,这与碰撞问题是不同的。
[深化理解]1.动量守恒方程为矢量方程,列方程时必须选择正方向。
2.动量守恒方程中的速度必须是系统内各物体在同一时刻相对于同一参考系(一般选地面)的速度。
3.碰撞、爆炸、反冲均因作用时间极短,内力远大于外力满足动量守恒(或近似守恒),但系统动能的变化是不同的。
4.“人船”模型适用于初状态系统内物体均静止,物体运动时满足系统动量守恒或某个方向上系统动量守恒的情形。
[基础自测]一、判断题(1)只要系统合外力做功为零,系统动量就守恒。
(×)(2)系统动量不变是指系统的动量大小和方向都不变。
19.第二节动量守恒定律碰撞爆炸反冲一、动量守恒定律1.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.2.动量守恒定律的表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2.1.如图所示,小车与木箱紧挨着静止在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法中正确的是()A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量不相同提示:选C.当把男孩、小车与木箱看做整体时水平方向所受的合外力才为零,所以选项C正确.二、碰撞爆炸反冲1.碰撞(1)碰撞现象:物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.(2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.(3)分类动量是否守恒机械能是否守恒弹性碰撞守恒守恒非完全弹性碰撞守恒有损失完全非弹性碰撞守恒损失最大2.爆炸现象:爆炸过程中内力远大于外力,爆炸的各部分组成的系统总动量守恒.3.反冲运动(1)物体在内力作用下分裂为两个不同部分并且这两部分向相反方向运动的现象.(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理.2.(2015·高考福建卷)如图,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动提示:选D.选向右为正方向,则A的动量p A=m·2v0=2m v0,B的动量p B=-2m v0.碰前A、B的动量之和为零,根据动量守恒,碰后A、B的动量之和也应为零,可知四个选项中只有选项D符合题意.对动量守恒定律的理解和应用【知识提炼】1.动量守恒定律常用的四种表达形式(1)p=p′:即系统相互作用前的总动量p和相互作用后的总动量p′大小相等,方向相同.(2)Δp=p′-p=0:即系统总动量的增加量为零.(3)Δp1=-Δp2:即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量.(4)m1v1+m2v2=m1v′1+m2v′2,即相互作用前后系统内各物体的动量都在同一直线上时,作用前总动量与作用后总动量相等.2.动量守恒定律的“五性”矢量性动量守恒定律的表达式为矢量方程,解题应选取统一的正方向相对性各物体的速度必须是相对同一参考系的速度(没有特殊说明要选地球这个参考系).如果题设条件中各物体的速度不是相对同一参考系时,必须转换成相对同一参考系的速度同时性动量是一个瞬时量,表达式中的p1、p2……必须是系统中各物体在相互作用前同一时刻的动量,p′1、p′2……必须是系统中各物体在相互作用后同一时刻的动量,不同时刻的动量不能相加系统性研究的对象是相互作用的两个或多个物体组成的系统,而不是其中的一个物体,更不能题中有几个物体就选几个物体普适性动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统【典题例析】(2016·高考全国卷甲)如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10 m/s2.(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?[审题指导]在人与冰块分离、冰块与斜面体作用过程中水平方向都满足动量守恒条件,结合能量守恒可得出三者之间的速度关系.[解析](1)规定向右为速度正方向.冰块在斜面体上运动到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3,由水平方向动量守恒和机械能守恒定律得m2v20=(m2+m3)v①12m2v220=12(m2+m3)v2+m2gh②式中v20=-3 m/s为冰块推出时的速度,联立①②式并代入题给数据得m3=20 kg.③(2)设小孩推出冰块后的速度为v1,由动量守恒定律有m1v1+m2v20=0④代入数据得v1=1 m/s⑤设冰块与斜面体分离后的速度分别为v 2和v 3,由动量守恒和机械能守恒定律有 m 2v 20=m 2v 2+m 3v 3⑥12m 2v 220=12m 2v 22+12m 3v 23⑦ 联立③⑥⑦式并代入数据得v 2=1 m/s 由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩.[答案] (1)20 kg (2)见解析【跟进题组】考向1 动量守恒的条件判断1.(高考浙江自选模块)如图所示,甲木块的质量为m 1,以v 的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m 2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后( )A .甲木块的动量守恒B .乙木块的动量守恒C .甲、乙两木块所组成系统的动量守恒D .甲、乙两木块所组成系统的动能守恒解析:选C.两木块在光滑水平地面上相碰,且中间有弹簧,则碰撞过程系统的动量守恒,机械能也守恒,故选项A 、B 错误,选项C 正确.甲、乙两木块碰撞前、后动能总量不变,但碰撞过程中有弹性势能,故动能不守恒,只是机械能守恒,选项D 错误.考向2 爆炸模型分析2.(2017·河北邯郸摸底)如图,木块A 、B 的质量均为m ,放在一段粗糙程度相同的水平地面上,木块A 、B 间夹有一小块炸药(炸药的质量可以忽略不计).让A 、B 以初速度v 0一起从O 点滑出,滑行一段距离后到达P 点,速度变为v 02,此时炸药爆炸使木块A 、B 脱离,发现木块B 立即停在原位置,木块A 继续沿水平方向前进.已知O 、P 两点间的距离为s ,设炸药爆炸时释放的化学能全部转化为木块的动能,爆炸时间很短可以忽略不计,求:(1)木块与水平地面的动摩擦因数μ;(2)炸药爆炸时释放的化学能.解析:(1)设木块与地面间的动摩擦因数为μ,炸药爆炸释放的化学能为E 0.从O 滑到P ,对A 、B 由动能定理得-μ·2mgs =12·2m ⎝⎛⎭⎫v 022-12·2m v 20,解得μ=3v 208gs. (2)在P 点爆炸时,A 、B 动量守恒,有2m ·v 02=m v , 根据能量守恒有E 0+12·2m ·⎝⎛⎭⎫v 022=12m v 2,解得E 0=14m v 20. 答案:(1)3v 208gs (2)14m v 20考向3 “人船模型”分析3.如图所示,长为l ,质量为m 的小船停在静水中,一个质量为m ′的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,小船对地的位移是多少?解析:人和小船组成的系统在水平方向不受外力,动量守恒.假设某一时刻小船和人对地的速度分别为v 1、v 2,以人的速度方向为正方向,由于原来处于静止状态,因此0=m v 1-m ′v 2,即m ′v 2=m v 1由于相对运动过程中的任意时刻,人和小船的速度都满足上述关系,故他们在这一过程中平均速率也满足这一关系,即m ′ v -2=m v -1,等式两边同乘运动的时间t ,得 m ′ v -2t =m v -1t ,即m ′x 2=mx 1又因x 1+x 2=l ,因此有x 1=m ′lm ′+m . 答案:m ′l m ′+m考向4 “子弹打木块”模型分析4.如图所示,在光滑水平面上有一辆质量M =8 kg 的平板小车,车上有一个质量m =1.9 kg 的木块,木块距小车左端6 m(木块可视为质点),车与木块一起以v =1 m/s 的速度水平向右匀速行驶.一颗质量m 0=0.1 kg 的子弹以v 0=179 m/s 的初速度水平向左飞,瞬间击中木块并留在其中.如果木块刚好不从车上掉下,求木块与平板小车之间的动摩擦因数μ(g =10 m/s 2).解析:设子弹射入木块后的共同速度为v 1,以水平向左为正方向,则由动量守恒定律有m 0v 0-m v =(m +m 0)v 1① 代入数据解得v 1=8 m/s.它们恰好不从小车上掉下来,则它们相对平板车滑行s =6 m 时它们跟小车具有共同速度v 2,则由动量守恒定律有 (m +m 0)v 1-M v =(m +m 0+M )v 2②由能量守恒定律有Q =μ(m +m 0)gs =12(m +m 0)v 21+12M v 2-12(m +m 0+M )v 22③ 联立①②③并代入数据解得μ=0.54. 答案:0.541.应用动量守恒定律的解题步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程).(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒).(3)规定正方向,确定初末状态动量.(4)由动量守恒定律列出方程.(5)代入数据,求出结果,必要时讨论说明.2.爆炸现象的三个规律(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸前后系统的总动能增加.(3)位置不变:爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动.3.“人船模型”:若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m 1v 1=m 2v 2得m 1x 1=m 2x 2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相对作用而反向运动.(3)x 1、x 2均为沿动量方向相对于同一参考系的位移.对碰撞现象中规律的分析【知识提炼】1.碰撞遵守的规律(1)动量守恒,即p 1+p 2=p ′1+p ′2.(2)动能不增加,即E k1+E k2≥E ′k1+E ′k2或p 212m 1+p 222m 2≥p ′212m 1+p ′222m 2. (3)速度要合理①碰前两物体同向,则v 后>v 前;碰后,原来在前的物体速度一定增大,且v ′前≥v ′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.2.碰撞模型类型(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,有m 1v 1=m 1v ′1+m 2v ′2 12m 1v 21=12m 1v ′21+12m 2v ′22 解得v ′1=(m 1-m 2)v 1m 1+m 2,v ′2=2m 1v 1m 1+m 2结论:①当两球质量相等时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度.②当质量大的球碰质量小的球时,v ′1>0,v ′2>0,碰撞后两球都沿速度v 1的方向运动.③当质量小的球碰质量大的球时,v ′1<0,v ′2>0,碰撞后质量小的球被反弹回来.④撞前相对速度与撞后相对速度大小相等.(2)完全非弹性碰撞①撞后共速.②有动能损失,且损失最多.【典题例析】(2015·高考全国卷Ⅰ)如图,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.[审题指导] 由于是弹性碰撞,则同时满足动量守恒和机械能守恒,并且物体间碰后速度还要满足实际情况,即前面的速度大于后面的速度.[解析] A 向右运动与C 发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方向向右为正,开始时A 的速度为v 0,第一次碰撞后C 的速度为v C 1,A 的速度为v A 1.由动量守恒定律和机械能守恒定律得m v 0=m v A 1+M v C 1① 12m v 20=12m v 2A 1+12M v 2C 1②联立①②式得 v A 1=m -M m +M v 0③ v C 1=2m m +Mv 0④ 如果m >M ,第一次碰撞后,A 与C 速度同向,且A 的速度小于C 的速度,不可能与B 发生碰撞;如果m =M ,第一次碰撞后,A 停止,C 以A 碰前的速度向右运动,A 不可能与B 发生碰撞;所以只需考虑m <M 的情况.第一次碰撞后,A 反向运动与B 发生碰撞.设与B 发生碰撞后,A 的速度为v A 2,B 的速度为v B 1,同样有v A 2=m -M m +M v A 1=⎝ ⎛⎭⎪⎫m -M m +M 2v 0⑤ 根据题意,要求A 只与B 、C 各发生一次碰撞,应有 v A 2≤v C 1⑥联立④⑤⑥式得 m 2+4mM -M 2≥0 解得m ≥(5-2)M 另一解m ≤-(5+2)M 舍去.所以,m 和M 应满足的条件为 (5-2)M ≤m <M . [答案] (5-2)M ≤m <M动量与能量的综合在碰撞中的求解技巧(1)处理这类问题,关键是区分物体相互作用的情况,分清物体的运动过程,寻找各相邻运动过程的联系,弄清各物理过程所遵循的规律.(2)对于发生弹性碰撞的物体,其作用过程中系统机械能守恒,动量守恒;对于非弹性碰撞来说,系统的动量守恒但机械能不守恒,系统损失的机械能等于转化的内能.【跟进题组】考向1 碰撞的可能性问题分析1.两球A 、B 在光滑水平面上沿同一直线、同一方向运动,m A =1 kg ,m B =2 kg ,v A =6 m/s ,v B =2 m/s. 当A 追上B 并发生碰撞后,两球A 、B 速度的可能值是( )A .v ′A =5 m/s ,v ′B =2.5 m/s B .v ′A =2 m/s ,v ′B =4 m/sC .v ′A =-4 m/s ,v ′B =7 m/sD .v ′A =7 m/s ,v ′B =1.5 m/s解析:选B.虽然题中四个选项均满足动量守恒定律,但A 、D 两项中,碰后A 的速度v ′A 大于B 的速度v ′B ,必然要发生第二次碰撞,不符合实际;C 项中,两球碰后的总动能E ′k =12m A v ′2A +12m B v ′2B =57 J ,大于碰前的总动能E k =22 J ,违背了能量守恒定律;而B 项既符合实际情况,也不违背能量守恒定律,故B 项正确.考向2 弹性碰撞规律求解2.(2016·高考全国卷丙)如图,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m .两物块与地面间的动摩擦因数均相同.现使a 以初速度v 0向右滑动,此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞.重力加速度大小为g .求物块与地面间的动摩擦因数满足的条件.解析:设物块与地面间的动摩擦因数为μ.若要物块a 、b 能够发生碰撞,应有12m v 20>μmgl ① 即μ<v 202gl②设在a 、b 发生弹性碰撞前的瞬间,a 的速度大小为v 1,由能量守恒定律有12m v 20=12m v 21+μmgl ③ 设在a 、b 碰撞后的瞬间,a 、b 的速度大小分别为v ′1、v ′2,由动量守恒定律和能量守恒定律有m v 1=m v ′1+3m 4v ′2④ 12m v 21=12m v ′21+12⎝⎛⎭⎫3m 4v ′22⑤ 联立④⑤式解得v ′2=87v 1⑥由题意,b 没有与墙发生碰撞,由功能关系可知12⎝⎛⎭⎫3m 4v ′22≤μ3m 4gl ⑦ 联立③⑥⑦式,可得μ≥32v 20113gl⑧ 联立②⑧式,可得a 与b 发生弹性碰撞,但b 没有与墙发生碰撞的条件为 32v 20113gl ≤μ<v 202gl.考向3 非弹性碰撞的分析3.如图,光滑水平直轨道上有三个质量均为m 的物块A 、B 、C .B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以速度v 0朝B 运动,压缩弹簧;当A 、 B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短,求从A 开始压缩弹簧直至与弹簧分离的过程中,(1)整个系统损失的机械能; (2)弹簧被压缩到最短时的弹性势能.解析:A 、B 碰撞过程动量守恒,能量也守恒,而B 、C 相碰粘接在一块时,动量守恒.系统产生的内能则为损失的机械能.当A 、B 、C 速度相等时,弹性势能最大.(1)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得m v 0=2m v 1① 此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、C 组成的系统,由动量守恒定律和能量守恒定律得m v 1=2m v 2② 12m v 21=ΔE +12(2m )v 22③ 联立①②③式得ΔE =116m v 20.④ (2)由②式可知v 2<v 1,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此速度为v 3,此时弹簧被压缩至最短,其弹性势能为E p .由动量守恒定律和能量守恒定律得m v 0=3m v 3⑤ 12m v 20-ΔE =12(3m )v 23+E p ⑥ 联立④⑤⑥式得 E p =1348m v 20. 答案:(1)116m v 20 (2)1348m v 20动量守恒中的力学综合问题【知识提炼】1.动量守恒与其他知识综合问题往往是多过程问题,解决这类问题首先要弄清物理过程.2.其次弄清每一个物理过程遵从什么样的物理规律.3.最后根据物理规律对每一个过程列方程求解,找出各物理过程之间的联系是解决问题的关键.【典题例析】如图所示,光滑水平轨道上放置长板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为m A =2 kg 、m B =1 kg 、m C =2 kg.开始时C 静止,A 、B 一起以v 0=5 m/s 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 发生碰撞.求A 与C 碰撞后瞬间A 的速度大小.[审题指导] (1)A 、C 发生碰撞,B 与A 的相互作用可忽略,A 、C 系统动量守恒;(2)碰后A 、B 相互作用达到共同速度,A 、B 系统动量守恒;(3)A 、C 碰后,A 恰好不再与C 相碰,则A 、B 的共同速度与C 碰后速度相等.[解析] 因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量守恒定律得m A v 0=m A v A +m C v C ①A 与B 在摩擦力作用下达到共同速度,设共同速度为v AB ,由动量守恒定律得m A v A +m B v 0=(m A +m B )v AB ② A 与B 达到共同速度后恰好不再与C 发生碰撞,应满足v AB =v C ③联立①②③式,代入数据得v A =2 m/s. [答案] 2 m/s【跟进题组】考向1 多物体、多阶段运动的求解1.(2015·高考广东卷)如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5 m .物块A 以v 0=6 m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1 m .物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1 kg(重力加速度g 取10 m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ;(2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值;(3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式.解析:(1)物块A 由初始位置到Q 的过程,由动能定理得:-mg ×2R =12m v 2-12m v 20解得:v =4 m/s. 设在Q 点物块A 受到轨道的弹力为F ,受力分析如图所示由牛顿第二定律得:mg +F =m v 2R 解得:F =m v 2R-mg =22 N . (2)由机械能守恒定律知:物块A 与B 碰前的速度仍为v 0=6 m/s.A 与B 碰撞过程动量守恒,设碰后A 、B 的速度为v 共 m v 0=2m v 共 解得v 共=12v 0=3 m/s. 设A 与B 碰后一起运动到停止,在粗糙段运动的路程为s ,由动能定理得 -μ×2mgs =0-12×2m v 2共 解得:s =v 2共2g μ=4.5 m 故k =s L =4.50.1=45. (3)碰后AB 滑至第n 个(n <k )光滑段上的速度等于滑离第n 个(n <k )粗糙段的速度由动能定理得:-μ×2mgnL =12×2m v 2n -12×2m v 2共 解得:v n =v 2共-2μgnL =9-0.2n (n <45).答案:(1)4 m/s 22 N (2)45 (3)v n =9-0.2n (n <45)考向2 动量守恒中的临界问题2.(2017·河北石家庄检测)如图所示,甲车质量m 1=m ,在车上有质量M =2m 的人,甲车(连同车上的人)从足够长的斜坡上高h 处由静止滑下,到水平面上后继续向前滑动,此时质量m 2=2m 的乙车正以速度v 0迎面滑来,已知h =2v 20g,为了使两车不可能发生碰撞,当两车相距适当距离时,人从甲车跳上乙车,试求人跳离甲车的水平速度(相对地面)应满足什么条件?不计地面和斜坡的摩擦,小车和人均可看成质点.解析:设向左为正方向,甲车(包括人)滑下斜坡后速度为v 1,由机械能守恒定律有12(m 1+M )v 21=(m 1+M )gh ,解得v 1=2gh =2v 0设人跳出甲车的水平速度(相对地面)为v ,在人跳离甲车和人跳上乙车过程中各自动量守恒,设人跳离甲车和跳上乙车后,两车的速度分别为v ′1和v ′2,则人跳离甲车时:(M +m 1)v 1=M v +m 1v ′1人跳上乙车时:M v -m 2v 0=(M +m 2)v ′2 解得v ′1=6v 0-2v ,v ′2=12v -12v 0 两车不可能发生碰撞的临界条件是v ′1=±v ′2当v ′1=v ′2时,解得v =135v 0 当v ′1=-v ′2时,解得v =113v 0 故v 的取值范围为135v 0≤v ≤113v 0.1.动量守恒问题中常见的临界问题(1)滑块与小车的临界问题:滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.(2)两物体不相碰的临界问题:两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v 甲大于乙物体的速度v 乙,即v 甲>v 乙,而甲物体与乙物体不相碰的临界条件是v 甲=v 乙.(3)涉及弹簧的临界问题:对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.(4)涉及最大高度的临界问题:在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.2.求解动量守恒定律中的临界问题的关键(1)寻找临界状态:看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件:在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等.1.(高考重庆卷)一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,取重力加速度g =10 m/s 2.则下列图中两块弹片飞行的轨迹可能正确的是()解析:选B.弹丸爆炸瞬间爆炸力远大于外力,故爆炸瞬间动量守恒.因两弹片均水平飞出,飞行时间t = 2h g=1 s ,取向右为正,由水平速度v =x t知,选项A 中,v 甲=2.5 m/s ,v 乙=-0.5 m/s ;选项B 中,v 甲=2.5 m/s ,v 乙=0.5 m/s ;选项C 中,v 甲=1 m/s ,v 乙=2 m/s ;选项D 中,v 甲=-1 m/s ,v 乙=2 m/s.因爆炸瞬间动量守恒,故m v =m 甲v 甲+m 乙v 乙,其中m 甲=34m ,m 乙=14m ,v =2 m/s ,代入数值计算知选项B 正确. 2.(2015·高考天津卷)如图所示,在光滑水平面的左侧固定一竖直挡板,A 球在水平面上静止放置,B 球向左运动与A 球发生正碰,B 球碰撞前、后的速率之比为3∶1,A 球垂直撞向挡板,碰后原速率返回.两球刚好不发生第二次碰撞,A 、B 两球的质量之比为__________,A 、B 两球碰撞前、后的总动能之比为__________.解析:设碰前B 球的速度为v 0,A 碰墙后以原速率返回恰好不发生第二次碰撞,说明A 、B 两球碰撞后速度大小相等、方向相反,即分别为13v 0和-13v 0 根据动量守恒定律,得m B v 0=m B ⎝⎛⎭⎫-13v 0+m A ·13v 0 解得m A ∶m B =4∶1 A 、B 两球碰撞前、后的总动能之比为 12m B v 2012m A ⎝⎛⎭⎫13v 02+12m B ⎝⎛⎭⎫-13v 02=95. 3.如图所示,一辆质量为M =3 kg 的小车A 静止在光滑的水平面上,小车上有一质量为m =1 kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6 J ,小球与小车右壁距离为L ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:(1)小球脱离弹簧时小球和小车各自的速度大小;(2)在整个过程中,小车移动的距离.解析:(1)设小球脱离弹簧时小球和小车各自的速度大小分别为v 1、v 2,则m v 1-M v 2=0 12m v 21+12M v 22=E p 解得:v 1=3 m/s ,v 2=1 m/s.(2)设小车移动x 2距离,小球移动x 1距离,整个过程中,根据平均动量守恒(人船模型)得m x 1t =M x 2tx 1+x 2=L 解得:x 2=L 4. 答案:(1)3 m/s 1 m/s (2)L 44.(2017·广东东莞联考)如图所示,光滑水平面AB 与粗糙斜面BC 在B 处通过圆弧衔接,质量M =0.3 kg 的小木块静止在水平面上的A 点.现有一质量m =0.2 kg 的子弹以v 0=20 m/s 的初速度水平射入木块(但未穿出),它们一起沿AB 运动,并冲上BC .已知木块与斜面间的动摩擦因数μ=0.5,斜面倾角θ=45°,重力加速度g 取10 m/s 2,木块在B 处无机械能损失.试求:(1)子弹射入木块后的共同速度的大小; (2)子弹和木块能冲上斜面的最大高度.解析:(1)子弹射入木块的过程中,子弹与木块系统动量守恒,设向右为正方向,共同速度为v ,则m v 0=(m +M )v ,代入数据解得v =8 m/s.(2)子弹与木块以v 的初速度冲上斜面,到达最大高度时,瞬时速度为零,子弹和木块在斜面上受到的支持力N =(M +m )g cos θ, 受到的摩擦力f =μN =μ(M +m )g cos θ.对冲上斜面的过程应用动能定理,设最大高度为h ,有-(M +m )gh -f h sin θ=0-12(M +m )v 2, 联立并代入数据,解得h ≈2.13 m.答案:(1)8 m/s (2)2.13 m5.(2015·高考全国卷Ⅱ)两滑块a 、b 沿水平面上同一条直线运动,并发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x 随时间t 变化的图象如图所示.求:(1)滑块a 、b 的质量之比;(2)整个运动过程中,两滑块克服摩擦力做的功与因碰撞而损失的机械能之比.解析:(1)设a 、b 的质量分别为m 1、m 2,a 、b 碰撞前的速度为v 1、v 2.由题给图象得v 1=-2 m/s ① v 2=1 m/s ②a 、b 发生完全非弹性碰撞,碰撞后两滑块的共同速度为v .由题给图象得 v =23m/s ③由动量守恒定律得m 1v 1+m 2v 2=(m 1+m 2)v ④联立①②③④式得m 1∶m 2=1∶8.⑤(2)由能量守恒得,两滑块因碰撞而损失的机械能为ΔE =12m 1v 21+12m 2v 22-12(m 1+m 2)v 2⑥ 由图象可知,两滑块最后停止运动.由动能定理得,两滑块克服摩擦力所做的功为 W =12(m 1+m 2)v 2⑦ 联立⑥⑦式,并代入题给数据得 W ∶ΔE =1∶2. 答案:(1)1∶8 (2)1∶2。
第二节动量守恒定律碰撞爆炸反冲【基础梳理】提示:不受外力所受外力的矢量和为零m1v′1+m2v′2-Δp2所受合外力为零合力为零远大于守恒不增加守恒增加守恒可能增加【自我诊断】1.判一判(1)两物体相互作用时若系统不受外力,则两物体组成的系统动量守恒.()(2)动量守恒只适用于宏观低速.()(3)当系统动量不守恒时无法应用动量守恒定律解题.()(4)物体相互作用时动量守恒,但机械能不一定守恒.()(5)若在光滑水平面上两球相向运动,碰后均变为静止,则两球碰前的动量大小一定相等.()(6)飞船做圆周运动时,若想变轨通常需要向前或向后喷出气体,该过程中系统动量守恒.()提示:(1)√(2)×(3)×(4)√(5)√(6)√2.做一做(1)(2020·山东寿光模拟) 如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端,当两人同时相向运动时()A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大提示:选C.两人及小车组成的系统所受合外力为零,系统动量守恒,根据动量守恒定律得m A v A+m B v B+m车v车=0,若小车不动,则m A v A+m B v B=0,由于不知道A、B质量的关系,所以两人速率不一定相等,故A错误;若小车向左运动,则A、B的动量和必须向右,而A向右运动,B向左运动,所以A的动量一定比B的大,故B错误,C正确;若小车向右运动,则A、B的动量和必须向左,而A向右运动,B向左运动,所以A的动量一定比B 的小,故D错误.(2)(2020·山东恒台一中高三诊考) 如图所示,光滑水平面上,甲、乙两个球分别以大小为v1=1 m/s、v2=2 m/s 的速度做相向运动,碰撞后两球粘在一起以0.5 m/s 的速度向左运动,则甲、乙两球的质量之比为()A.1∶1B.1∶2C.1∶3D.2∶1提示:选A.设甲、乙两球的质量分别为m1、m2,乙球的速度方向为正方向,根据动量守恒:m2v2-m1v1=(m1+m2)v,即2m2-m1=(m1+m2)×0.5,解得m1∶m2=1∶1,A正确.对动量守恒定律的理解和应用【知识提炼】1.动量守恒的条件(1)理想守恒:系统不受外力或所受外力的矢量和为零,则系统动量守恒.(2)近似守恒:系统受到的外力矢量和不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)某一方向上守恒:系统在某个方向上所受外力矢量和为零时,系统在该方向上动量守恒.2.动量守恒定律常用的四种表达形式(1)p=p′:即系统相互作用前的总动量p和相互作用后的总动量p′大小相等,方向相同.(2)Δp=p′-p=0:即系统总动量的增加量为零.(3)Δp1=-Δp2:即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量.(4)m1v1+m2v2=m1v′1+m2v′2,即相互作用前后系统内各物体的动量都在同一直线上时,作用前总动量与作用后总动量相等.【典题例析】如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务.某时刻甲、乙都以大小为v0=2 m/s的速度相向运动,甲、乙和空间站在同一直线上且可视为质点.甲和他的装备总质量为M1=90 kg,乙和他的装备总质量为M2=135 kg,为了避免直接相撞,乙从自己的装备中取出一质量为m =45 kg的物体A推向甲,甲迅速接住A后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,速度为v1,且安全“飘”向空间站.(设甲、乙距离空间站足够远,本题中的速度均指相对空间站的速度)(1)乙要以多大的速度v(相对于空间站)将物体A推出?(2)设甲与物体A作用时间为t=0.5 s,求甲与A的相互作用力F的大小.[解析](1)以甲、乙、A三者组成的系统为研究对象,系统动量守恒,以乙运动的方向为正方向,则有M2v0-M1v0=(M1+M2)v1以乙和A组成的系统为研究对象,由动量守恒得M2v0=(M2-m)v1+m v代入数据联立解得v1=0.4 m/s,v=5.2 m/s.(2)以甲为研究对象,以甲接住A后运动的方向为正方向,由动量定理得Ft=M1v1-(-M1v0),代入数据解得F=432 N.[答案](1)5.2 m/s(2)432 N【迁移题组】迁移1动量守恒的条件判断1. (多选) (2020·甘肃天水高三期末)如图所示,木块B与水平面间的摩擦不计,子弹A 沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩弹簧至弹簧最短.将子弹射入木块到刚相对于木块静止的过程称为Ⅰ,此后木块压缩弹簧的过程称为Ⅱ,则()A.过程Ⅰ中,子弹、弹簧和木块所组成的系统机械能不守恒,动量也不守恒B.过程Ⅰ中,子弹和木块所组成的系统机械能不守恒,动量守恒C.过程Ⅱ中,子弹、弹簧和木块所组成的系统机械能守恒,动量也守恒D.过程Ⅱ中,子弹、弹簧和木块所组成的系统机械能守恒,动量不守恒解析:选BD.子弹射入木块到刚相对于木块静止的过程,子弹和木块(或子弹、弹簧和木块)组成的系统所受合外力为零,系统动量守恒,但要克服摩擦力做功,产生热量,系统机械能不守恒,A错误,B正确;过程Ⅱ中,子弹、弹簧和木块所组成的系统受到墙壁的作用力,外力之和不为零,则系统动量不守恒,但系统只有弹簧弹力做功,机械能守恒,C错误,D正确.迁移2某一方向上的动量守恒问题2.(2020·福建龙岩高三期末)如图所示,在光滑的水平冰面上放置一个光滑的曲面体,曲面体的右侧与冰面相切,一个坐在冰车上的小孩手扶一球静止在冰面上.已知小孩和冰车的总质量为m1=40 kg,球的质量为m2=10 kg,曲面体的质量为m3=10 kg.某时刻小孩将球以v0=4 m/s的水平速度向曲面体推出,推出后,球沿曲面体上升(球不会越过曲面体).求:(1)推出球后,小孩和冰车的速度大小v 1;(2)球在曲面体上升的最大高度h .解析:(1)以球、小孩和冰车组成的系统为研究对象,取水平向左为正方向,由动量守恒定律得:m 2v 0-m 1v 1=0,解得:小孩和冰车的速度大小v 1=1 m/s.(2)以球和曲面体组成的系统为研究对象,取水平向左为正方向,由水平方向动量守恒得:m 2v 0=(m 2+m 3)v 2,解得:球在最大高度处与曲面体的共同速度v 2=2 m/s ;球在曲面体上升的过程,由机械能守恒定律得:12m 2v 20=12(m 2+m 3)v 22+m 2gh 解得:球在曲面体上升的最大高度h =0.4 m.答案:(1)1 m/s (2)0.4 m迁移3 爆炸、反冲现象中的动量守恒3.如图所示,光滑水平面上有三个滑块A 、B 、C ,质量关系是m A =m C =m 、m B =m 2.开始时滑块B 、C 紧贴在一起,中间夹有少量炸药,处于静止状态,滑块A 以速度v 0正对B 向右运动,在A 与B 碰撞之前,引爆B 、C 间的炸药,炸药爆炸后B 与A 迎面碰撞,最终A 与B 粘在一起,以速率v 0向左运动.求:(1)炸药爆炸过程中炸药对C 的冲量;(2)炸药的化学能有多少转化为机械能.解析:(1)全过程,A 、B 、C 组成的系统动量守恒m A v 0=-(m A +m B )v 0+m C v C炸药对C 的冲量:I =m C v C -0,解得:I =52m v 0,方向向右. (2)炸药爆炸过程,B 和C 组成的系统动量守恒m C v C -m B v B =0据能量关系:ΔE =12m B v 2B +12m C m 2C ,解得: ΔE =758m v 20. 答案:见解析1碰撞现象中规律的分析【知识提炼】1.碰撞遵守的规律(1)动量守恒,即p 1+p 2=p ′1+p ′2.(2)动能不增加,即E k1+E k2≥E ′k1+E ′k2或p 212m 1+p 222m 2≥p ′212m 1+p ′222m 2. (3)速度要符合情景:如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v 后>v 前,否则无法实现碰撞.碰撞后,原来在前面的物体的速度一定增大,且原来在前面的物体速度大于或等于原来在后面的物体的速度,即v ′前≥v ′后,否则碰撞没有结束.如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.2.碰撞模型类型(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,有 m 1v 1=m 1v ′1+m 2v ′212m 1v 21=12m 1v ′21+12m 2v ′22 解得v ′1=(m 1-m 2)v 1m 1+m 2,v ′2=2m 1v 1m 1+m 2. 结论:①当两球质量相等时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度.②当质量大的球碰质量小的球时,v ′1>0,v ′2>0,碰撞后两球都沿速度v 1的方向运动. ③当质量小的球碰质量大的球时,v ′1<0,v ′2>0,碰撞后质量小的球被反弹回来. ④撞前相对速度与撞后相对速度大小相等.(2)完全非弹性碰撞①撞后共速.②有动能损失,且损失最多.【典题例析】如图所示,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间.A的质量为m,B、C的质量都为M,三者均处于静止状态.现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞.设物体间的碰撞都是弹性的.[解析] A 向右运动与C 发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方向向右为正,开始时A 的速度为v 0,第一次碰撞后C 的速度为v C 1,A 的速度为v A 1.由动量守恒定律和机械能守恒定律得m v 0=m v A 1+M v C 1①12m v 20=12m v 2A 1+12M v 2C 1② 联立①②式得v A 1=m -M m +Mv 0③ v C 1=2m m +Mv 0④ 如果m >M ,第一次碰撞后,A 与C 速度同向,且A 的速度小于C 的速度,不可能与B 发生碰撞;如果m =M ,第一次碰撞后,A 停止,C 以A 碰前的速度向右运动,A 不可能与B 发生碰撞;所以只需考虑m <M 的情况.第一次碰撞后,A 反向运动与B 发生碰撞.设与B 发生碰撞后,A 的速度为v A 2,B 的速度为v B 1,同样有v A 2=m -M m +M v A 1=⎝ ⎛⎭⎪⎫m -M m +M 2v 0⑤根据题意,要求A 只与B 、C 各发生一次碰撞,应有v A 2≤v C 1⑥联立④⑤⑥式得m 2+4mM -M 2≥0解得m ≥(5-2)M另一解m ≤-(5+2)M 舍去.所以,m 和M 应满足的条件为 (5-2)M ≤m <M .[答案] (5-2)M ≤m <M【迁移题组】迁移1 碰撞的可能性分析1.(2020·天津高三质检)甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p 1=5 kg ·m/s ,p 2=7 kg ·m/s ,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg ·m/s ,则两球质量m 1与m 2间的关系可能是 ( )A .m 1=m 2B .2m 1=m 2C .4m 1=m 2D .6m 1=m 2解析:选C.甲、乙两球在碰撞过程中动量守恒,所以有p 1+p 2=p 1′+p 2′,即p 1′=2 kg ·m/s.由于在碰撞过程中,不可能有其他形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加,所以有p 212m 1+p 222m 2≥p 1′22m 1+p 2′22m 2,所以有m 1≤2151m 2.因为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有p 1m 1>p 2m 2,即m 1<57m 2;同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即p 1′m 1≤p 2′m 2,所以m 1≥15m 2,C 正确. 迁移2 弹性碰撞规律求解2. 如图所示,在光滑的水平面上,质量为m 1的小球A 以速率v 0向右运动.在小球A 的前方O 点处有一质量为m 2的小球B 处于静止状态,Q 点处为一竖直的墙壁.小球A 与小球B 发生弹性正碰后小球A 与小球B 均向右运动.小球B 与墙壁碰撞后以原速率返回并与小球A 在P 点相遇,PQ =2PO ,则两小球质量之比m 1∶m 2为 ( )A .7∶5B .1∶3C .2∶1D .5∶3解析:选D.设A 、B 两个小球碰撞后的速度分别为v 1、v 2,由动量守恒定律有m 1v 0=m 1v 1+m 2v 2,发生弹性碰撞,不损失动能,故根据能量守恒定律有12m 1v 20=12m 1v 21+12m 2v 22,两个小球碰撞后到再次相遇,其速率不变,由运动学规律有v 1∶v 2=PO ∶(PO +2PQ )=1∶5,联立三式可得m 1∶m 2=5∶3,D 正确.迁移3 非弹性碰撞的分析3.(多选)(2020·宁夏银川模拟)A 、B 两球沿一直线运动并发生正碰,如图所示为两球碰撞前、后的位移随时间变化的图象,a 、b 分别为A 、B 两球碰前的位移随时间变化的图象,c 为碰撞后两球共同运动的位移随时间变化的图象,若A 球质量是m =2 kg ,则由图判断下列结论正确的是 ( )A .碰撞前、后A 球的动量变化量为4 kg ·m/sB .碰撞时A 球对B 球所施的冲量为-4 N ·sC .A 、B 两球碰撞前的总动量为3 kg ·m/sD .碰撞中A 、B 两球组成的系统损失的动能为10 J解析:选ABD.根据题图可知,碰前A 球的速度v A =-3 m/s ,碰前B 球的速度v B =2 m/s ,碰后A 、B 两球共同的速度v =-1 m/s ,故碰撞前、后A 球的动量变化量为Δp A =m v -m v A =4 kg ·m/s ,A 正确;A 球的动量变化量为4 kg ·m/s ,碰撞过程中动量守恒,B 球的动量变化量为-4 kg ·m/s ,根据动量定理,碰撞过程中A 球对B 球所施的冲量为-4 N ·s ,B 正确;由于碰撞过程中动量守恒,有m v A +m B v B =(m +m B )v ,解得m B =43kg ,故碰撞过程中A 、B 两球组成的系统损失的动能为ΔE k =12m v 2A +12m B v 2B -12(m +m B )v 2=10 J ,D 正确;A 、B 两球碰撞前的总动量为p =m v A +m B v B =(m +m B )v =-103kg ·m/s ,C 错误.碰撞问题的解题策略(1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解.(2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足:v ′1=m 1-m 2m 1+m 2v 1;v ′2=2m 1m 1+m 2v 1. (3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度.当m 1≫m 2,且v 2=0时,碰后质量大的速率不变,质量小的速率为2v 1.当m 1≪m 2,且v 2=0时,碰后质量小的球原速率反弹.动量守恒的常见模型【知识提炼】1.“人船”模型(1)两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒,在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船”模型问题.(2)“人船”模型的特点①两物体满足动量守恒定律:m 1v 1-m 2v 2=0.②运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1. ③应用此关系时要注意一个问题:公式v 1、v 2和x 一般都是相对地面而言的.2.“子弹打木块”模型(1)木块放在光滑水平面上,子弹水平打进木块,系统所受的合外力为零,因此动量守恒.(2)两者发生的相对位移为子弹射入的深度x 相.(3)根据能量守恒定律,系统损失的动能等于系统增加的内能.(4)系统产生的内能Q =F f ·x 相,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.(5)当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k =F f ·L (L 为木块的长度).3.“弹簧类”模型对两个(或两个以上)物体与弹簧组成的系统,在能量方面,由于发生弹性形变的弹簧会具有弹性势能,系统的总动能将发生变化.若系统除重力和系统内弹力以外的力不做功,系统机械能守恒.若还有其他外力做功,这些力做功之和等于系统机械能改变量.做功之和为正,系统总机械能增加,反之减少.在相互作用过程中,弹簧两端的物体把弹簧拉伸至最长(或压缩至最短)时,两端的物体具有相同的速度,弹性势能最大.系统内每个物体除受弹簧弹力外所受其他外力的合力为零,当弹簧为自然长度时,系统内弹簧某一端的物体具有最大速度.【典题例析】如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)[解析]设乙船上的人抛出货物的最小速度大小为v min,抛出货物后船的速度为v1,甲船上的人接到货物后船的速度为v2,以v0方向为正方向,先选乙船、人和货物为研究系统,由动量守恒定律得12m v0=11m v1-m v min①再选甲船、人和货物为研究系统,由动量守恒定律得10m×2v0-m v min=11m v2②为避免两船相撞应满足v 1=v 2③联立①②③式得v min =4v 0.[答案] 4v 0【迁移题组】迁移1 “人船”模型1.(2020·河南淮阳中学模拟)有一条捕鱼小船停靠在湖边码头,小船又窄又长,一位同学想用一个卷尺测量它的质量.他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,而后轻轻下船,用卷尺测出船后退的距离d 和船长L .已知他自身的质量为m ,则船的质量为 ( )A.m (L +d )dB.m (L -d )dC.mL dD.m (L +d )L解析:选B.画出如图所示的草图,设人走动时船的速度大小为v ,人的速度大小为v ′,船的质量为M ,人从船尾走到船头所用时间为t .则v =d t ,v ′=L -d t;人和船组成的系统在水平方向上动量守恒,取船的速度方向为正方向,根据动量守恒定律得M v -m v ′=0,解得船的质量M =m (L -d )d,B 正确.迁移2 “子弹打木块”模型2.(2020·河南天一大联考) 如图所示,质量为M 的长木块放在水平面上,子弹沿水平方向射入木块并留在其中,测出木块在水平面上滑行的距离为s .已知木块与水平面间的动摩擦因数为μ,子弹的质量为m ,重力加速度为g ,空气阻力可忽略不计,则由此可得子弹射入木块前的速度大小为 ( )A.m +M m 2μgsB.M -m m2μgs C.m m +M μgs D.m M -mμgs 解析:选A.子弹击中木块过程,系统内力远大于外力,系统动量守恒,以向右为正方向,由动量守恒定律得:m v 1=(M +m )v ,解得:v =m v 1M +m ;子弹击中木块后做匀减速直线运动,对子弹与木块组成的系统,由动能定理得:-μ(M +m )gs =0-12(M +m )v 2,解得:v 1=M +m m·2μgs ;故A 正确,B 、C 、D 错误. 迁移3 “弹簧类”模型3.如图所示,质量M =4 kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5 m ,这段滑板与木块A (可视为质点)之间动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.木块A 以速度v 0=10 m/s 由滑板B 左端开始沿滑板B 上表面向右运动.已知木块A 的质量m =1 kg ,g 取10 m/s 2.求:(1)弹簧被压缩到最短时木板A的速度大小;(2)木块A压缩弹簧过程中弹簧的最大弹性势能.解析:(1)弹簧被压缩到最短时,木块A与滑板B具有相同的速度,设为v,从木块A 开始沿滑板B上表面向右运动至弹簧被压缩到最短的过程中,整体动量守恒,则m v0=(M+m)v解得v=mM+mv0代入数据得木块A的速度v=2 m/s.(2)在木块A压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大,由能量关系知,最大弹性势能为E pm=12m v2-12(m+M)v2-μmgL代入数据解得E pm=39 J.答案:(1)2 m/s(2)39 J动量守恒中的临界极值问题【对点训练】1. 如图所示,一质量M=2 kg的带有弧形轨道的平台置于足够长的水平轨道上,弧形轨道与水平轨道平滑连接,水平轨道上静置一小球B.从弧形轨道上距离水平轨道高h=0.3 m 处由静止释放一质量m A=1 kg的小球A,小球A沿轨道下滑后与小球B发生弹性正碰,碰后小球A被弹回,且恰好追不上平台.已知所有接触面均光滑,重力加速度为g.求小球B 的质量.(取重力加速度g=10 m/s2)解析:设小球A下滑到水平轨道上时的速度大小为v1,平台水平速度大小为v,由动量守恒定律有0=m A v1-M v由能量守恒定律有m A gh=12m A v 21+12M v2解得v1=2 m/s,v=1 m/s小球A、B碰后运动方向相反,设小球A、B的速度大小分别为v1′和v2.由于碰后小球A 被弹回,且恰好追不上平台,则此时小球A的速度大小等于平台的速度大小,有v1′=1 m/s由动量守恒定律得m A v1=-m A v1′+m B v2由能量守恒定律有12m A v 21=12m A v′21+12m B v22解得m B=3 kg.答案:3 kg2. (2020·河南郑州模拟)如图所示,光滑水平地面上有一小车,车上有固定的光滑斜面和连有轻弹簧的挡板,弹簧处于原长状态,自由端恰在C点,小车(包括光滑斜面和连有弹簧的挡板)总质量为M=2 kg.物块从斜面上A点由静止滑下,经过B点时无能量损失.已知物块的质量m=1 kg,A点到B点的竖直高度为h=1.8 m,BC的长度为L=3 m,BD段光滑.g 取10 m/s2.求在运动过程中:(1)弹簧弹性势能的最大值;(2)物块第二次到达C 点的速度.解析:(1)物块由A 点到B 点的过程中,由动能定理得mgh =12m v 2B-0,代入数据解得v B =6 m/s.物块由B 点运动到将弹簧压缩到最短的过程中,系统动量守恒,取v B 的方向为正方向,m v B =(M +m )v ,弹簧压缩到最短时弹簧的弹性势能最大,由能量守恒可得E pmax =12m v 2B-12(M +m )v 2,由以上两式可得E pmax =12 J. (2)物块由B 点运动到第二次到达C 点的过程中,系统动量守恒,取v B 方向为正方向,则有m v B =m v C +M v ′,物块由B 点运动到第二次到达C 点的整个过程中,根据机械能守恒,有12m v 2B =12m v 2C +12M v ′2,联立以上两式并结合题意可解得v C =-2 m/s ,即物块第二次到达C 点的速度大小为2 m/s ,方向水平向左.答案:见解析(建议用时:40分钟)一、单项选择题1.如图所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后()A.甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的动能守恒解析:选C.两木块在光滑水平地面上相碰,且中间有弹簧,则碰撞过程系统的动量守恒,机械能也守恒,故A、B错误,C正确;甲、乙两木块碰撞前、后动能总量不变,但碰撞过程中有弹性势能,故动能不守恒,只是机械能守恒,D错误.2.(2020·福建泉州高三质检)“爆竹声中一岁除,春风送暖入屠苏”,爆竹声响是辞旧迎新的标志,是喜庆心情的流露.有一个质量为3m 的爆竹斜向上抛出,到达最高点时速度大小为v 0、方向水平向东,在最高点爆炸成质量不等的两块,其中一块质量为2m ,速度大小为v ,方向水平向东,则另一块的速度为 ( )A .3v 0-vB .2v 0-3vC .3v 0-2vD .2v 0+v解析:选C.取水平向东为正方向,爆炸过程系统动量守恒,3m v 0=2m v +m v x ,可得v x =3v 0-2v ,C 正确.3.(2017·高考全国卷Ⅰ)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略) ( )A .30 kg ·m/sB .5.7×102 kg ·m/sC .6.0×102 kg ·m/sD .6.3×102 kg ·m/s解析:选A.燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p ,根据动量守恒定律,可得p -m v 0=0,解得p =m v 0=0.050 kg ×600 m/s =30 kg ·m/s ,A 正确.4. 如图所示,在光滑的水平面上有三个完全相同的小球,它们排成一条直线,小球2、3静止,并靠在一起,球1以速度v 0射向它们,设碰撞中不损失机械能,则碰后三个小球的速度值是 ( )A .v 1=v 2=v 3=13v 0B .v 1=0,v 2=v 3=12v 0 C .v 1=0,v 2=v 3=12v 0 D .v 1=v 2=0,v 3=v 0解析:选D.由题设条件,三球在碰撞过程中总动量和总动能守恒.若各球质量为m ,而碰撞前系统总动量为m v 0,总动能为12m v 20.A 、B 中的数据都违反了动量守恒定律,故不可能.假如C 正确,则碰后总动量为m v 0,但总动能为14m v 20,这显然违反了机械能守恒定律,故也不可能.故D 正确,则既满足动量守恒定律,也满足机械能守恒定律.5.(2019·高考江苏卷)质量为M 的小孩站在质量为m 的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v ,此时滑板的速度大小为 ( )A.m Mv B.M m v C.m m +M v D.M m +Mv 解析:选B.对小孩和滑板组成的系统,由动量守恒定律有0=M v -m v ′,解得滑板的速度大小v ′=M v m,B 正确. 6. 如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是 ( )A.mh M +mB.Mh M +mC.mh (M +m )tan αD.Mh (M +m )tan α解析:选C.m 与M 组成的系统在水平方向上动量守恒,设m 在水平方向上对地位移为x 1,M 在水平方向上对地位移为x 2,因此有0=mx 1-Mx 2①,且x 1+x 2=h tan α②,由①②式可得x 2=mh (M +m )tan α,故选C.7. 如图所示,小车(包括固定在小车上的杆)的质量为M,质量为m的小球通过长度为L 的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上.现把小球从与O点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是()A.2LMM+m B.2Lm M+mC.MLM+m D.mL M+m解析:选B.分析可知小球在下摆过程中,小车向左加速,当小球从最低点向上摆动过程中,小车向左减速,当小球摆到右边且与O点等高时,小车的速度减为零,此时小车向左的位移达到最大,小球相对于小车的位移为2L.小球和小车组成的系统在水平方向上动量守恒,设小球和小车在水平方向上的速度大小分别为v1、v2,有m v1=M v2,故ms1=Ms2,s1+s2=2L,其中s1代表小球的水平位移大小,s2代表小车的水平位移大小,因此s2=2LmM+m,B正确.8. 如图所示,质量相等的A、B两个球,原来在光滑水平面上沿同一直线相向做匀速直线运动,A球的速度是6 m/s,B球的速度是-2 m/s,A、B两球发生对心碰撞.对于该碰撞之后的A、B两球的速度可能值,某实验小组的同学们做了很多种猜测,下面的猜测结果一定无法实现的是()。