函数一致连续性的判定及性质
- 格式:pdf
- 大小:278.73 KB
- 文档页数:11
函数一致连续性的判定及性质摘要: 在函数的众多性质中,函数的一致连续性是非常重要的一个,它刻划出了函数在一个区间上的全局性,是理解数学中其它知识的基础,对这一性质的深刻理解与掌握能够很好的促进数学分析的学习,研究函数一致连续性必然要研究一致连续性的判定定理及性质,这有利于描绘函数的图像和进一步了解函数的性质。
本文简要概括了一元函数的一致连续性概念及连续与一致连续的联系与差别,并深入分析了函数一致连续的判定、性质及应用。
关键词: 一致连续性连续函数非一致连续极限可导The Judgemental Theorems and Properties of UniformContinuity for FunctionsAbstract The uniform continuity of function is a very important concept in the mathematical analysis course,it skins out the overall importance of function on an interval and it is a foundation in understanding other knowledge associated with mathematics . Deep understanding and mastering of this nature can promote us learning about mthematical analysis. Studying the judgemental theorems and properties of uniform continuity for function are useful for researching the uniform continuity of function ,and this helps us to depict the images of function and further understand the nature of the function. The paper summarizes the uniform continuity concept of the unary function and the difference between continuous function and uniformly continuous function, at the same time,it analysizes the determination, properties and application of uniformly continuous function in depth.Keywords consistent continuity continuous function non-uniform limit differentiable1 引言一致连续是数学分析上册第四章第2节所学到的一个概念,它能够帮助我们理解和解决很多问题。
函数的一致收敛性与一致连续性函数的一致收敛性和一致连续性是数学分析中重要的概念,它们对于函数的性质和性质的分析具有重要的作用。
本文将从定义、性质以及与其他概念之间的联系等多个方面对函数的一致收敛性和一致连续性进行探讨。
一、一致收敛性的定义与性质函数序列的一致收敛性是指对于给定函数序列{fn(x)},当自变量x趋向于某个值a时,函数值fn(x)的极限也趋向于某个值f(x),且这种趋向对序列中的每一个函数都成立。
更正式地说,对于任意ε>0,存在正整数N,使得当n>N时,对于所有的x,有|fn(x)-f(x)|<ε成立。
函数序列的一致收敛性具有以下性质:1. 一致收敛性是逐点收敛性的强化。
如果函数序列一致收敛于f(x),那么它也是逐点收敛的,即对于每个x,极限lim(n→∞)fn(x)=f(x)成立。
2. 一致收敛性是逐点收敛性的逆命题不成立的。
即逐点收敛的函数序列未必一致收敛。
3. 一致收敛性的极限函数是唯一的。
一致收敛序列的极限函数f(x)是唯一的,即若序列{fn(x)}和{gn(x)}一致收敛于f(x),则它们极限相等。
4. 一致收敛的函数序列在有界集上一致有界。
若函数序列{fn(x)}一致收敛于f(x),且对于每个x∈A,函数值fn(x)都有界,则极限函数f(x)在A上有界。
5. 一致收敛的函数序列在有界集上一致可积。
若函数序列{fn(x)}一致收敛于f(x),且对于每个x∈A,函数值fn(x)都可积,则极限函数f(x)在A上可积。
二、一致连续性的定义与性质函数的一致连续性是指对于给定函数f(x),当自变量x取值在某个区间上时,函数的变化量可以任意小,并且这种性质对区间上的所有点都成立。
更正式地说,对于任意ε>0,存在Δ>0,使得当|x1-x2|<Δ时,对于所有的x1和x2,有|f(x1)-f(x2)|<ε成立。
函数的一致连续性具有以下性质:1. 一致连续性是局部性质。
论函数的一致连续摘要:在数学分析中,关于函数一致连续问题的理解与应用是理解数学中其他知识的基础,但目前各种教材对这类问题提出和得不够,广大数学爱好者很难对其有全面清晰的认识.为了加深对一致连续问题的认识,本文从一致连续的概念出发,总结了一致连续的条件、运算性质。
关键词:函数一致连续概念条件运算性质1.一致连续及其相关概念定义1设f(某)在区间I上有定义,称函数f(某)在区间I上连续是指,某∈I,ε>0,δ>0,当某∈I且某-某<δ时,有f(某)-f (某)<ε.定义2设f(某)在区间I上有定义,称函数f(某)在区间I上一致连续是指,对ε>0,δ>0(其中δ与ε对应而与某,y无关),使得对区间I上任意两点某,y,只要某-y<δ,就有f(某)-f(y)<ε.定义3设f(某)在区间I有定义,称函数f(某)在区间I上不一致连续是指,至少一个ε>0,对δ>0,都可以找到某′,某″∈I,满足|某′-某″|<δ,但|f(某′)-f(某″)|≥ε.评注1:比较函数在区间上的连续性与一致连续性的定义知,连续性的δ不仅与ε有关,而且与某有关,即对于不同的某,一般说来δ是不同的.这表明只要函数在区间上的每一点处都连续,函数就在这一区间上连续.而一致连续的δ仅与ε有关,与某无关,即对于不同的某,δ是相同的,这表明函数在区间上的一致连续性,不仅要求函数在这一区间上的每一点处都连续,而且要求函数在这一区间上的连续是处处一致的.在区间I上一致连续的函数在该区间I上一定是连续的,反之,在I上连续的函数在该I上不一定是一致连续的.评注2:一致连续的实质,就是当这个区间的任意两个彼此充分靠近的点上的值之差(就绝对值来说)可以任意小.用定义证明f(某)在I上一致连续,通常的方法是设法证明f(某)在I上满足Lipchitz条件|f(某′)-f(某″)|≤L|某′-某″|,某′,某″∈I,其中L为某一常数,此条件必成立.特别地,若(某)在I上是有界函数,则f(某)在I上Lipchitz条件成立.2.一致连续的条件及有关结论2.1一致连续的条件定理1(G•康托定理)若函数f(某)在区间[a,b]上连续,则它在这个区间上也是一致连续的.证明要证的是对于任意给定了的ε>0,可以分区间[a,b]成有限多个小段,使得f(某)在每一小段上任意两点的函数值之差都小于ε,以下用反证法证之,若上述事实不成立,则至少对于某一个某>0而言,区间[a,b]不能按上述要求分成有限多个小段.将[a,b]二等分为[a,c]、[c,b],则二者之中至少有一个不能按上述要求分为有限多个小段,把它记为[a,b].再将[a,b]二等分为[a,b]、[c,b],依同样的方法取定其一,记为[a,b].如此继续下去,就得到一个闭区间套[a,b],n=1,2,…,由区间套定理知,唯一的点c属于所有这些闭区间.因为c∈[a,b],所以f(某)在点某=c连续,于是可找到δ>0,使|某-c|<δ(某∈[a,b])时,|f(某)-f(c)|<ε/2.注意到c==我们可取充分大的k,使|a-c|<δ,|b-c|<δ,从而对于[a,b]上任意点某,都有|某-c|<δ,因此,对于[a,b]上的任意两点某,某都有|f(某)-f(某)|≤|f(某)-f(c)+f(c)-f(某)|<+=ε.这表明[a,b]能按要求那样分为有限多个小段(其实在整个[a,b]上任意两点的函数值之差已小于ε了),这是和区间[a,b]的定义矛盾的,这个矛盾表明我们在开始时所作的反证假设是不正确的,从而定理的结论正确.评注3:定理1对开区间不成立.例如函数f(某)=在(0,1)的每一个点都连续,但在该区间并不一致连续.事实上,对于任意小的δ>0,令某=δ,某=2δ,则|某-某|=δ,而|f(某)-f(某)|=-=,这时|某-某|可以任意小,但|f(某)-f(某)|可以任意大.函数f(某)=tan某在(-,)也有类似的情形.以上两例讨论的都是无界函数,而in在(0,1)内的每一点都连续,且显然在这个区间内有界,然而它也没有一致连续性,因为有任意小(因而也就彼此任意接近)的数某与某存在,使in=1,in=-1.定理2f(某)在区间I上一致连续的充要条件是在区间I上满足(某-y)=0的任意两数列{某}、{y},必有[f(某)-f(y)]=0.证明:必要性.若f(某)在I上一致连续,由一致连续性的定义,坌ε>0,埚δ>0,当|某-y|<δ时,|f(某)-f(y)|<ε,即任两数列{某}、{y},当n→∞时,|某-y|→0,则必有|f(某)-f(y)|→0.充分性.用反证法,若两数列{某}、{y},当n→∞时,|某-y|→0,|f(某)-f(y)|→0而f(某)在I上不一致连续,那么一定埚ε>0,对坌δ>0,存在某,y,当|某-y|<δ时,|f(某)-f(y)|≥ε0,取δ→0,我们得到两数列{某}、{y},当n→∞时,某-y→0,但|f(某)-f(y)|≥ε,这与假设[f(某)-f(y)]=0矛盾.评注4:定理2所述的必要性常被用来判定一个函数是不是一致连续的.例如,函数f(某)=in,在区间(0,1)上是连续的且有界,但在此区间上并非一致连续.事实上,当某≠0时,由基本初等函数在其有定义的区间上连续知,f(某)是连续的,同时,由于|f(某)|≤1,因而它也是有界的.现考虑(0,1)上的两串数列某=,某′=,则当0<ε<1时,不论δ>0取得多么小,只要n充分大,总可以使|某-某′|=<δ,但是|f(某)-f(某′)|=1>ε,因而f(某)在(0,1)上并非一致连续.定理3设f(某)在有限区间I上有定义,那么f(某)在I上一致连续的充要条件是对任意柯西(Cauchy)列{某}I,{f(某)}R′也是Cauchy列.证明:必要性.因f(某)一致连续,即对ε>0,δ>0,对某′,某″∈I,只要|某′-某″|<δ,就有|f(某′)-f(某″)|<ε.设{某}I为Cauchy列,于是对上面的δ>0,必N>0,使当n,m>N时,有|f(某)-f(某)|<ε,即{f(某)}是Cauchy列.充分性.若不然,必ε>0,某′,某″∈I,虽然某′-某″<,但是|f(某′)-f(某″)|≥ε,由{某′}有界知,存在收剑子列{某′},从而{某″}也收剑于同一点,显然某″,某″,某″,…,是Cauchy列,但是f(某″),f(某″),f(某″),…,不是Cauchy列,此为矛盾,故f(某)在I上一致连续.定理4设f(某)在有限区间(a,b)上连续,则f(某)在(a,b)上一致连续的充要条件是f(a+0)、f(b-0)存在且有限.证明:充分性.令F(某)=f(a+0)(某=a),f(某)(某∈(a,b)),f(b-0)(某=b),则F(某)∈C[a,b],因此F(某)在[a,b]上一致连续,从而f(某)在(a,b)上一致连续.必要性.已知f(某)在(a,b)上一致连续,所以对于ε>0,δ>0,当某′,某″∈(a,b)且|某′-某″|<δ时,|f(某′)-f (某″)|<ε成立.对端点a,当某′,某″满足0<某′-a<,0<某″-a<时,就有|某′-某″|≤|某′-a|+|某″-a|<δ,于是|f(某′)-f(某″)|<ε.由Cauchy收敛准则,f(a+0)存在且有限,同理可证f(b-0)存在且有限.评注5:(1)当(a,b)为无穷区间,本例中条件是f(某)在(a,b)上一致连续条件充分但不必要.例如f(某)=某,Φ(某)=in某,某∈(-∞,+∞)及g(某)=,某∈(0,+∞)均为所给区间上的一致连续函数,但f(-∞)=-∞,f(+∞)=g(+∞)=+∞,Φ(+∞)和Φ(-∞)不存在.(2)定理提供了一个判断函数一致连续性简单而有效的方法.例如,研究下列函数在所示区间上的一致连续性.(i)f(某)=(0<某<π);(ii)f(某)=eco(0<某<1).解:(i)因为=1,=0,所以f(某)在(0,π)内一致连续.(ii)因为co某不存在,所以f(某)在(0,1)内不一致连续.(3)由定理知,若f(某)∈C(a,b),则f(某)可连续延拓到[a,b]上的充要条件是f(某)在(a,b)上一致连续.定理5f(某)在区间I上一致连续的充要条件是,对ε>0及某,y∈I,总正数N,使|f(某)-f(y)|>N|某-y|(1).恒有|f(某)-f (y)|<ε(2).证明:因为f(某)在I上一致连续的定义等价于:对坌ε>0,埚δ>0,使得对于坌某,y∈I,如果|f(某)-f(y)|≥ε(3),就有|某-y|≥δ.而题设条件为对ε>0,N>0,对某,y∈I,当不等式(3)成立时,|f(某)-f(y)|≤N|某-y|(4)充分性.若题设中条件成立,则由(4)式得|某-y|≥|f(某)-f(y)|,再由(3)式得|某-y|≥,所以对给定的ε>0,只要取δ=,当某,y∈I,且满足(3)时,就有|某-y|≥δ成立.必要性.若f(某)在I上一致连续,则对任给的ε>0,存在δ>0,使当某,y∈I,且满足不等式(3)时,就有不等式|某-y|≥δ成立,故整数k,使得kδ≤|某-y|≤(k+1)δ.(5)不妨设某<y,将[某,y]分成k+1等分,记某-1(i=1,…,k+1)为其分点,由(5)式知|某-某|=||<δ,故|f(某)-f(某)|<ε,i=1,2,…,k+1,||≤|f(某)-f(某)|/kδ<<令N=[]+1,则当I中的点某,y使(3)式成立时,必有(4)式成立,从而(1)式成立时,有(2)式成立.评注6:本定理的证明是灵活运用一致连续定义的典范,它在理论研究上具有一定的意义.2.2一致连续函数的运算性质一致连续函数有一系列的运算性质,归结如下几个命题.命题1:设Φ(某)与ψ(某)在区间I上一致连续,则αΦ(某)+βψ(某)在I上一致连续(α,β为任意常数).命题2:设Φ(某),ψ(某)在有限区间I上一致连续,那么ψ(某)ψ(某)在I上也一致连续.命题3:设Φ(某),ψ(某)在无限区间I上一致连续且有界,那么Φ(某)ψ(某)在I上也一致连续.其中“有界”的条件不可少,例如f(某)=某在(-∞,+∞)上一致连续,但无界,而f(某)•f(某)=某在(-∞,+∞)上不一致连续.命题4设Φ(某)在区间I上一致连续且infF(某)>0,那么在I 上也一致连续.最后应指出,一致连续函数的反函数,一般说来,不再一致连续,例如f(某)=在(0,+∞)上一致连续而它的反函数f(某)=某在(0,+∞)内不一致连续,但可以证明在有限区间上,结论为真.。
基本初等函数的一致连续性
基本初等函数的一致连续性是指初等函数的头尾之间的连续性。
一致
连续性主要指的是函数的变化不突然,是连续的,也就是变化之间相
互交织。
在数学上,它可以定义如下:
1. 函数的连续性:函数的连续性指的是在取值之间无缝衔接的能力,
当一个函数在每个交点衔接一条完整的曲线,不存在突然变化的情况时,它就是连续的。
函数的连续性可以判断一个函数是否连续。
2. 函数的一致性:函数的一致性指的是函数在整个域上的变化行为,
它表明函数在整个域内是持续增减或单调递增/减,没有任何折点或跳动。
3. 基本初等函数的一致连续性:它指的是初等函数的头尾之间的连续性。
只有按照连续性的要求,函数的值能够按照某种唯一的预定的方
式缓慢变化,函数才能被称为一致连续的。
4. 一致连续性有助于确定基本初等函数的有限个实际值导致函数值变化:用唯一方式按照连续性标准缓慢变化,并且维持该函数的稳定性。
5. 一致连续性有助于理解一些抽象的函数的性质:萃取出特定的特征,满足一定的数学规律,用符号进行描述或表示,让抽象的函数变得更
加容易掌握。
6. 一致性的重要性:一致性对于函数的连续性是至关重要的,它定义了基本初等函数的变化和行为,它决定了函数是否有可能到达期望的极限,从而使极限理论变得有意义,从抽象函数获取有用的信息。
另外,一致性也是几何概念的基础,可以说它是数学在极限理论中的一种传播工具,一致性决定了数学操作的有效性。
函数的一致连续性及其应用本文以函数的连续性为基础,一致连续性的定义为出发点,重点深入分析函数的一致连续性.教材一般只给出定义来判断函数是否一致连续,这对一些函数来说是比较复杂且难以解决的.因此本文主要对一元函数在各种区间上讨论函数的一致连续性的判断条件和方法,以及一些性质和应用,能够在教材的基础上更加全面地了解函数的一致连续性.1.2预备知识为了便于理解,现将本文涉及的一些相关定义和定理罗列如下.定义1.2.1[1]设函数在某上有定义,若,(1-1)则称函数在点连续,若函数在区间上的每一点都连续,则称在上连续.定义1.2.2[2]若函数在区间上有定义,称(1-2)为在区间上的连续模.定义1.3.1[1]设为定义在区间上的函数.若对任给的,存在,使得对任何,只要,就有,(1-3)则称函数在区间上一致连续.注:函数在区间上一致连续表明无论两点,在中处于什么位置,只要它们的距离小于,而这只与有关,就可以使.这个定义是教材中最常用的定义,根据定义还能扩展推理得到更多判断函数一致连续的条件和方法,这些本文后面会逐渐说明.由此,还可以得到函数在区间不一致连续的定义:,对,存在,使得当时,有.(1-4)引理1.2.1[3]有限区间上的一致连续函数必有界.引理1.2.2[1]设区间的右端点为,区间的左端点也为,若分别在和上一致连续,则在上也一致连续.2函数一致连续性的判断条件(1)引理2.1[1]函数在上一致连续的充要条件为:对任何数列,若,(2-1)则.(2-2)类似用归结原则来判断函数的连续性,这里通过数列来判断函数的一致连续性,但是直接用来证明函数的一致连续可能会很麻烦,因为这要验证任意的数列,因此一般用来证明函数的不一致连续比较方便,而这又与数列有关,可适用于含有三角函数和幂函数的函数.例2.1证明函数在上不一致连续.证:令,(2-3)则.(2-4)但是,(2-5)在上不一致连续.例2.2判断函数在上的一致连续性.解:令,(2-6)则.(2-7)而,(2-8)在上的不一致连续.从这两个简单的例子可以知道应用(1)中的结论是非常方便快捷的,如果用定义来判断函数的一致连续性还需要进行推理化简得到定义的形式,甚至有时候根本无法化简.由此可知定义无法满足解决函数一致连续性的需求,还需总结更多的判断函数一致连续性的条件和方法.(2)函数在上一致连续的充要条件为【2】:.证:若在上一致连续,则对当时,有,所以,(2-9)从而当时,有,(2-10)所以.(2-11)若,则对,有,(2-12)所以,(2-13)因此当时,有,(2-14)在上一致连续.这里可以通过连续模的极限来判断函数的一致连续性,其实也是从定义出发,观察函数的图像的陡峭程度来进行描述,但是这个往往用得比较少.(1)和(2)适用于函数所在定义域的所有区间,而在一些特殊区间还要进行如下讨论.(3)一致连续性定理:若函数在闭区间上连续,则在上一致连续【1】.这个定理也叫康托尔定理,其实从函数一致连续的定义可以知道如果一个函数在区间上一致连续,那么它肯定在上连续.这个定理直接就将闭区间上的函数的连续性和一致连续性联系起来,说明了只有在闭区间上的连续函数才必定一致连续.但是如果不在闭区间上时,那么通过分析这个定理可以知道要判断在有限开区间上的函数是否一致连续,还需要分析函数在区间端点连续性.所以可以得到以下结论:(4)函数在上一致连续的充要条件为:在上连续,存在且有限.证:在上一致连续,在上连续,且对,当时,有.当时,由柯西收敛准则知存在且有限.同理当时,知存在且有限.构造函数(2-15)则在上连续,根据(3)中一致连续定理知在上一致连续,在上也一致连续,在上一致连续.例2.3证明在上一致连续.证:由在上连续,知,(2-16)在上一致连续.这些只是在函数一致连续性有限区间上的讨论,还可以类似进一步在无限区间中展开讨论.(5)若函数在上连续,,存在且有限,则函数在上一致连续.但是反之是不成立的,比如在上是一致连续的,但是是不存在的.所以在无限区间上的时候要注意这个问题.通过以上讨论,也可以用类似方法判断连续函数在,,,,,上的一致连续性,具体内容不再一一重复.总之,(3)-(5)判断函数一致连续性的条件是函数在区间上连续并且在区间端点的极限要存在,都应用到了函数的连续性,这也说明了一致连续和连续有着非常密切的关系.从而根据(3)-(5)还能得到以下结论:(6)若函数在区间上单调有界且连续,则在上一致连续.证明:由在区间上单调有界,则对,存在,而且连续,根据(3)-(5)的结论可知在上一致连续.2.4判断是否一致,是否连续?解:对,有,(2-17)在上连续,又因为,(2-18)在上一致连续.3函数一致连续性的判断方法3.1函数一致连续性在一般区间的判断方法(1)定义法.一般根据函数一致连续性的定义都能判断一个函数是否一致连续,很多证明方法都是从定义出发的,这也是最常用的方法,而根据函数一致连续性的定义,还能将其扩展得到以下结论:若函数在区间上满足利普希茨条件:.(3-1)其中是是常数,则在上一致连续.证:对则当时,有,(3-2)所以在上一致连续.由证明过程可知函数化成利普希茨条件的形式其实是对函数一致连续性定义的直接应用,这将定义具体化,提供了解题思路.例3.1设,证明在上一致连续.证:对,有.取,那么根据(1)就知在上一致连续.(2)导函数有界法.根据导函数有界,可以间接地得到(1)中的结论.有时候一个函数太复杂,有时候无法将题目直接化简成(1)中利普希茨条件的形式,也就是说用定义无法简单地证明这个函数一致连续.这时可以从导函数入手.当导函数比较简单时,只要知道这个函数的导函数有界,就能判断这个函数是否一致连续.也就得到以下结论:若函数在区间上可导,且在上有界,则在上一致连续.证明:因为在上有界,所以,使,(3-3)又因为在可导,由拉格朗日中值定理,知对,有,(3-4)所以.(3-5)所以根据(1)可知在一致连续.3.2函数一致连续性的比较判别法(1)定理3.2.1【4】函数,若,其中是常数,且,则函数具有相同的一致连续性.这个方法是通过构造一个函数,通过两个函数的比较以及所构造的函数是否一致连续来判断原函数是否一致连续.它比较灵活,表面看好像大多函数都能通过这个方法判断一致连续性,特别是一些复杂的函数,但是前提是要知道所构造函数的一致连续性并且两个函数比较之后的极限要存在,而通常基本初等函数的一致连续性是比较好判断的.因此如果题目中的函数含有基本初等函数,则可以考虑这种方法.函数在不同的区间上时,还可以类似得到以下的结论:(2)函数,若,其中是常数,且,则函数具有相同的一致连续性.(3)函数,若,其中是常数,且,则函数具有相同的一致连续性.(4)函数,若,,其中是常数,且,则函数具有相同的一致连续性.例3.2.1证明函数在上一致连续.证明:令,(3-6)则,(3-7)取,则有.(3-8)在上一致连续,在上一致连续.3.3函数一致连续性的比值判别法(1)设函数,且函数满足1);2)可导,且;3),其中是常数,且,则函数具有相同的一致连续性.证明:根据洛必达法则,知,(3-9)设在上一致连续,则对当时,有,(3-10)因为,(3-11)所以对,使,(3-12)由柯西微分中值定理知,,使,(3-12)所以,(3-13)所以对,有,(3-14)从而有,(3-15)所以,(3-16),有,(3-17)因此,在上一致连续.在上连续,在上一致连续.在上一致连续.同理还可证明若在上一致连续,则在上一致连续.如果一个函数是无穷大量并且可导,那么可以通过构造一个已知一致连续性的无穷大量的可导的函数,通过两个导函数的比值关系,其实也是这两个函数的比值,将两者的一致连续性联系起来,这样就能判断了,这与比较判别法类似,都是构造函数,只是条件不一样.由(1)知函数在不同的区间上时,还可以类似得到以下的结论:(2)设函数,且函数满足1);2)可导,且;3),其中是常数,且,则函数具有相同的一致连续性.(3)设函数,且函数满足1);2)可导,且;3),其中常数,且,则函数具有相同的一致连续性.(4)设函数,且函数满足1);2)可导,且;3),其中是常数,且,则函数具有相同的一致连续性.(5)设函数,且函数满足1);2)可导,且;3),其中是常数,且,则函数具有相同的一致连续性.(6)设函数,且函数满足1),;2)可导,且;3),其中是非零常数,则函数具有相同的一致连续性.3.3确定上的函数是否一致和连续?解:在上不一致连续.令,(3-18)则.(3-19)又因为在上连续,且,(3-20)而在上不一致连续,在上不一致连续.无论是在有限区间还是无限区间,比较判别法和比值判别方法都可以适用.4函数一致连续性的性质函数的连续性满足四则运算,一致连续性也如此.(1)若函数在上一致连续,则在上一致连续.证明:在上一致连续,对,当时,有,(4-1)又在上一致连续,当时,有,(4-2)故对,取,则对,当时,有,在上一致连续.(2)若函数在上一致连续,则,在上一致连续.(3)若函数在上一致连续且有界,则在上一致连续.(4)若函数在上一致连续,函数在上一致连续且,则在上一致连续.例4.1设函数在上一致连续,证明在上也一致连续.证:在上一致连续,令,则在上连续,在上一致连续.又在上有界,在上一致连续,在上一致连续.因此在上一致连续.5两种函数的一致连续性5.1周期函数的一致连续性如果函数的周期为,在上有定义且连续,则函数在上一致连续.证:在上连续,在上连续.根据一致连续性定理知在上一致连续,对,当时,有.令,当时,存在正整数,使,(5-1),(5-2)所以.(5-3)故在上一致连续.这个针对周期函数的一致连续性,将连续和一致连续的关系连在一起.有些函数是周期函数,如三角函数等,但是如果直接用定义或者其他方法来证明它是一致连续的,有时候很难化简得到结果或是无从下手,此时就可以通过连续性来判断一致连续性,从而得到结论.例5.1.1证明函数在上一致连续.证:是以为周期的周期函数,并且在上连续,根据周期性知在上连续,因此在上一致连续.例5.1.2证明在上一致连续.证:因为,(5-4)的周期为,即是周期函数.由上题知,(5-5)在上连续,所以在上连续,故在上一致连续.5.2幂函数的一致连续性(1)函数在上是一致连续的.证:当时,根据例4.1的证明过程知在上一致连续;当时,知,(5-6)根据一致连续性的定义,对当时,有,(5-7)所以在上一致连续.(2)对任意的,函数在上一致连续,在上不一致连续,也就是在上不一致连续.证明:在上连续,在上一致连续.,当时,根据拉格朗日中值定理知,存在介于之间,使,(5-8),使,(5-9)所以,(5-10)则有.(5-11)在上不一致连续,在上不一致连续.例2.2中可以直接用(2)的结论来说明在上是不一致连续的.。
1 引言1.1 函数连续性定义 设函数()f x 在点0x 的某一邻域内有定义,如果当自变量的增量趋于零时,对应的函数的增量()()00y f x x f x ∆=+∆-也趋于零,那么就称函数()f x 在点0x 连续。
设0x x x =+∆则0x ∆→就是0x x →,()()()()000y f x x f x f x f x ∆=+∆-=- 即 ()()0f x f x y =+∆可见0y ∆→就是()()0f x f x →因此(1)式与0lim x x →()f x =()0f x 相当。
所以,函数()f x 在点0x 连续的定义又可叙述如下设函数()f x 在点0x 的某一邻域内有定义,如果函数()f x 当0x x →时的极限存在,且等于它在点0x 处的函数值()0f x 即那么就称函数()f x 在点0x 连续。
由函数()f x 当0x x →时的极限的定义可知,上述定义也可用“ε-δ”语言表达如下:设函数()y f x =在0x 的某一邻域内有定义,如果对于任意给定的正数ε,总存在着正数δ,使得对于适合不等式0x x δ-<的一切x 对应的函数值()f x 都满足不等式()()0f x f x -<ε那么就称函数()f x 在点0x 连续。
1.2 函数一致连续性定义定义 设函数()f x 在区间I 有定义,若∃ε> 0 , ∀ δ> 0 , ∃1x ,2x ∈I | 1x -2x | <δ,有|()()12f x f x - | <ε, 称函数()f x 在I 一致连续。
[1]对函数的一致连续性概念的掌握,应注意以下三个方面的问题: (1) 要注意函数在区间的连续性与一致连续性的区别和联系。
比较函数在区间的连续性和一致连续性定义可知:前者的δ不仅与ε有关,而且还与点0x 有关,即对于不同的0x 一般来说δ是不同的,这表明只要函数在区间内每一点都连续,函数就在区间连续;后者的δ仅与ε有关,与0x 无关,即对不同的0x ,δ是相同的。
函数的一致连续性函数的一致连续性是数学分析中的一个重要概念,它反映了函数在定义域内的整体的性质和变化情况。
本文将从一致连续性的定义、性质、应用等方面进行详细阐述。
一、一致连续性的定义一致连续性是一种特殊的连续性,它描述了在任意给定的公差范围内,函数值与自变量之间的变化情况。
具体来说,如果对于任意给定的正数ε,都存在一个正数δ,使得当丨x₂-x₁丨<δ时,有丨f(x₂)-f(x₁)丨<ε,则称函数f在区间I上是一致连续的。
二、一致连续性的性质1.一致连续函数的一致连续区间如果函数f在区间I上是一致连续的,那么对于任意给定的正数ε和负数ε,都存在一个正数δ,使得当丨x₂-x₁丨<δ时,有丨f(x₂)-f(x₁)丨<max{ε, -ε}。
因此,一致连续函数的定义域内存在一个一致连续区间。
2.一致连续函数的性质一致连续函数具有以下性质:(1) 如果函数f在区间I上是一致连续的,则f在I上也是连续的。
这是因为当x从左侧逼近于某个点x₀时,一致连续性保证了f(x)与f(x₀)之间的差的绝对值小于任意给定的正数ε。
(2) 如果两个函数f和g在区间I上是一致连续的,那么它们的和、差、积也在这个区间上是一致连续的。
这个性质可以由绝对值不等式的性质得到。
(3) 如果函数f在区间I上是一致连续的,那么对于任意给定的正数M和负数m,都存在一个正数δ,使得当丨x₂-x₁丨<δ时,有max{f(x₁), f(x₂)}<M和min{f(x₁), f(x₂)}>m。
这个性质说明了函数值的变化范围可以被任意给定的上下界所限制。
三、一致连续性的应用1.微分方程的解的性质一致连续性在微分方程的求解中有着重要的应用。
例如,如果微分方程描述的是一个物理系统在一组时间段上的状态变化,那么解的一致连续性就保证了系统状态的平滑变化,避免了突变和跳跃。
2.函数的逼近和级数求和一致连续性也是函数逼近和级数求和中的一个重要概念。
函数的极限与一致连续性函数是数学中的重要概念之一,而函数的极限和一致连续性是函数分析中的基本概念。
本文将介绍函数的极限和一致连续性的定义、性质以及它们在数学和实际问题中的应用。
一、函数的极限函数的极限是函数分析中一个重要的概念,它描述了当自变量趋于某个特定值时,函数的取值的趋势。
以下是函数的极限的定义:定义1:设函数f(x)在无穷邻域U(x)内有定义,如果存在常数A,对于任意小的ε>0,存在与x无关的正数δ>0,使得当0<|x-x0|<δ时,有|f(x)-A|<ε,那么称函数f(x)当x趋于x0时的极限为A,记为lim┬(x→x₀)f(x)=A。
其中,ε代表误差的允许范围,δ代表自变量x与x0的距离。
函数的极限存在的条件是对于任意给定的ε,总存在一个δ,使得当自变量x与x0的距离小于δ时,函数的取值与极限A的差的绝对值小于ε。
函数的极限具有一些重要的性质,如极限的唯一性、加减乘除运算等。
在数学中,函数的极限的计算和性质是许多数学分析和微积分的重要基础。
二、函数的一致连续性函数的一致连续性是指函数在定义域上的每一点都满足连续性的性质。
以下是函数的一致连续性的定义:定义2:设函数f(x)在定义域I上有定义,对于任意给定的ε>0,存在与ε无关的正数δ>0,使得当任意两个自变量x1和x2满足|x1-x2|<δ时,总有|f(x1)-f(x2)|<ε,那么称函数f(x)在定义域I上一致连续。
可以看出,函数的一致连续性与函数在每一点的连续性不同,它要求函数的连续性在整个定义域上都成立。
函数的一致连续性保证了函数的取值在定义域上的小波动不会造成函数取值的大波动。
函数的极限和一致连续性在数学分析、微积分以及实际问题的求解中有着广泛的应用。
三、极限与连续性的应用1. 极限的应用在微积分中,函数的极限是导数和积分的基本概念。
导数表示函数变化的速率,而极限则用来计算函数的导数。
函数一致连续的判别方法及其应用
一、连续函数的判别方法
1、求导法
连续函数仅当它的导函数在函数的整个定义域上定义时,它才会是连
续的。
因此,当讨论一个函数时,我们可以求导函数,并确保它在整个定
义域上定义时,函数就是连续的。
2、间断点法
另一种判断函数是否连续的方法是检查函数是否有间断点。
如果函数
没有任何间断点,那么它就是连续的。
间断点是指在函数的定义域中,函
数在其中一点出现无限的变化,因此函数在该点处是不连续的。
3、图像法
还有一种判断函数是否连续的方法叫做图像法。
当绘制函数的图像时,当它的图像是不间断的,全连接的,没有任何断点的,那么它就是连续的。
二、连续函数的应用
连续函数有着广泛的应用,下面介绍几个常见的应用:
1、概率论和统计学
在概率论和统计学中,连续函数常常用于描述概率分布,比如正态分布、卡方分布等。
此外,连续函数也被用于描述观测量和误差的统计特性。
2、图像处理
在图像处理中,连续函数经常用于描述图像灰度变换,它可以改变图
像中特定范围像素的灰度值。
此外,连续函数也可以用于描述图像滤波器,滤波器可以抑制或强调图像中低频成分的噪声。
3、几何学。
函数的一致连续性一致连续性是数学分析中的一个重要概念,它不仅在微积分中有着广泛的应用,而且在函数论和拓扑学等领域也扮演着关键的角色。
本文将对一致连续性的定义、性质及其与普通连续性的关系进行深入探讨,并通过例子说明其在实际中的应用。
一致连续性的定义传统的连续性涉及到函数在某一点的邻域内的行为,而一致连续性则进一步扩展了这一概念。
设 ( f: A ) 是定义在集合 ( A ) 上的一个函数。
如果对任意的 ( > 0 ),存在一个 ( > 0 ),使得对于所有的 ( x, y A ),只要满足 ( |x - y| < ),就有 ( |f(x) -f(y)| < ),那么我们称函数 ( f ) 是在 ( A ) 上一致连续的。
这种定义与普通的连续性不同,普通的连续性要求在特定点附近都能找到适合的 ( ) 值,而一致连续性则要求这个 ( ) 值能够适用于整个区间或集合。
这种“整体”性质使得一致连续性在分析中极具吸引力。
一致连续性的性质性质一:一致连续性的充要条件一致连续性最重要的一个性质是其与有界闭集上连续性的关系。
即如果函数 ( f: [a, b] ) 在区间上是连续的,并且该区间是有界闭集,那么函数 ( f ) 是一致连续的。
这一性质也可以称为“海涅-博尔查诺定理”的一种表现。
性质二:复合函数的一致连续性如果 ( f: A B ) 和 ( g: B C ) 都是显式一致连续的函数,那么复合函数 ( g(f(x)) ) 也是一致连续的。
这为我们提供了在处理复杂问题时的一种手段,可以将多个容易处理的一致连续函数组合起来。
性质三:一致连续函数的有限性如果一组函数 ( f_n: A_n B_n ) 是一致连续的,并且它们都定义在相同的集合上,则它们的一致收敛也将保持一致性,即如果( f_n(x) f(x) )(对所有 ( x A_n )),那么 ( f(x) ) 同样是一致连续的。
一致连续性与普通连续性的关系虽然所有的一致连续函数都是普通连续函数,但并非所有普通连续函数都是一致连续函数。
毕业论文文献综述数学与应用数学函数一致连续性的定义与性质一、前言部分函数一致连续是从函数连续的概念派生出来的,函数的一致连续性是函数的重要特征,它标志着一个连续函数的变化速度有无“突变”。
对于函数一致连续来说,不仅要求函数在区间上的每一点保持连续,还进一步要求它在区间上所有点邻近有大体上均匀的变化趋势。
是指存在一个微小变化的界限,如果函数定义域内的任意两点间的距离不超过这个界限,则这两点对应的函数值之差就能达到任意小.连续与一致连续是建立在函数极限概念的基础之上,用以刻划函数的变化情况和研究函数性质的两个基本的数学分析概念.通常人们说的连续是指不间断,其对立面就是间断.而数学上函数连续与间断的概念,也正是函数在变化过程中渐变与突变的一种反映.因此从几何直观来看,连续函数的特点就在于它的图象是一条连续不斯的曲线;而从分析的角度来看,函数()f x 在一点0x 处连续,包含着以下三层意思:(1)()f x 在0x 处有定义,即()0f x 是一个确定的常数;(2)()f x 在0x 处有极限,即()0lim x x f x →存在; (3)()f x 在0x 处的函数值与极限值相等,即()()00lim x x f x f x →=. 如果以上任何一个条件被破坏,()f x 在点0x 处就不连续了,这时0x 叫做()f x 的间断点.这就是说:如果函数()f x 在点0x 及其附近有定义,而且()()00lim x x f x f x →=,就说()f x 在点0x 处连续.其实函数在变化过程中,并没有仅仅在一点连续的情形,较常见的是函数在区间上连续的概念.定义1 若函数f 在区间I 上的每一点都连续,则称f 为I 上的连续函数(见文献[1][2][3]).根据定义1可知,如果函数()f x 在区间I 上连续,则对于事先任意给定的正数ε,就I上的每一点0x 来说,都可以分别找到相应的正数δ,使得对于I 上的点,只要0x x δ-p ,就有()()0f x f x ε-p .其中δ的大小不仅与给定的ε有关,而且与点0x 的位置有关.对于同一个ε,当0x 在I 上变动时,一般来说δ的大小也将随着改变,即δ是依赖于0x 的.如果δ的大小只与给定的ε有关,而与点0x 在I 上的位置无关,也即是说,对于给定的正数ε,存在这样一个正数δ,它适用于区间I 上所有的点0x ,那么这时()f x 就在I 上一致连续.定义2 函数()f x 定义在区间I 上,如果对于事先任意给定的正数ε,总可以找到这样一个正数δ,对I 上任意两点1x ,2x ,只要12x x δ-p ,就有()()12f x f x ε-p ,那么就说函数()f x 在区间I 上一致连续(见文献[2][3][4]).一致连续的特点在于,只要I 上的两点接近到同一个程度,就可以使这两点对应的函数值达到所需要的接近程度.因此,它从整体上反映出()f x 在I 上各点“连续”程度是否步调“一致”这样一个重要性质.历史上关于函数一致连续性的研究从未间断,中外大多学者在一元函数一致连续性的判定方面都取得了喜人的理论成果,本篇文献综述将对前人在函数一致连续性定义、性质、判定理论方面的研究作总结性陈述. 二、主题部分关于函数一致连续性的研究已经取得了较为丰富的结果,现将已有文献的理论成果综述如下:文献[5-6]研究函数一致连续的判别方法.其中文献[5]中,作者讨论了一致连续函数的判别及分布.作者指出,关于一致连续函数在平面上的分布,可归纳为以下情况:a 、对于有限区间上的一致连续函数,由于有界性,所以它必包含在一个矩形之内,矩形的边平行坐标轴;b 、对于无限区间来说,凡有垂直渐近线的连续函数都不是一致连续函数,因此,它的“无限部分”应限制在个角形之内,而角形的边不与坐标轴垂直;对于无渐近线的有界或无界的连续函数,如果当x 趋于无穷大时,其切线斜率趋于有限数,则其必为一致连续函数,因此,它应限制在某个角形之内.总之,一致连续函数是分布在平面上的一个“槽形”区域之内,当x 趋于无穷大时,其切线斜率为有界的一类连续函数.文献[6]中,作者给出了用导数判别函数在一般区间上一致连续的方法.并举例说明不可以建立关于一致连续的比较判别法. 文献[6]的主要结论可总结如下:定理1 若函数()f x 在区间I (I 可开、半开、有限或无限.下同)可导,且()f x '在I 有界.则函数()f x 在I 一致连续.定理2 若函数()f x 在区闻[,)a +∞(或(,]b -∞)可导.且()lim x f x →+∞'=∞(或 ()lim x f x →-∞'=∞),则()f x 在[,)a +∞(或(,]b -∞)非一致连续.定理3 若函数()f x 与()g x 在区间I 可导,且()()0f x g x ''≥f ,则(1) 当()f x 在I 一致连续时,()g x 在I 一致连续;(2) 当()g x 在I 非一致连续时,()f x 在I 非一致连续.上面这个定理指出可以根据两个导数间的关系判断函数的一致连续性,进一步的是否能直接利用两个函数(绝对值)的大小关系建立一致连续的“比较判别法”,作者举出了一个例子对这个问题予以否定回答.文献[7]讨论函数一致连续的条件,作者讨论了定义在区间和有界实数集上函数一致连续的充要条件,主要结论总结如下:定理4(Cantor 定理)函数()f x 在区间[],a b 一致连续当且仅当()f x 在区间[],a b 连续.(充分性也可参考文献[8])定理5 在有界实数集E 上定义的函数()f x 在E 上一致连续的充要条件是E 内任意 的收敛数列{}n x 其对应的函数值数列()n f x 也是收敛的.定理6 函数()f x 在区间I 上一致连续的充要条件是对任给的正数ε,及x ',x I ''∈, 总存在正整数N ,使得当()()f x f x N x x '''-'''-f 时,有()()f x f x ε'''-p . 定理7 函数()f x 在区间I 上一致连续的充要条件是区间I 上满足()lim 0n n n x y →∞-=的任意两数列{}n x ,{}n y 总有()()()lim 0n n n f x f y →∞-=. 文献[9]中,作者给出了一元函数在区间上一致连续的一个等价条件,并运用它证明了一些函数的一致连续性.定理8 设f 是区间I 上的函数,那么f 在区间I 上一致连续的充分必要条件是:存在0r f 及定义在[]0,r 上满足()0lim 0h g h →+=的函数g ,使得对任意的[]0,h r ∈和x I ∈,只要x h I +∈,就有()()()f x h f x g h +-≤.由上面定理的证明,作者得出了一个推论,结论是:f 是区间I 上的函数,若()()0,lim sup 0h x x h I f x h f x →++∈+-≠,则f 在区间I 上不一致连续.事实上,同样容易证明:如果f 在区间I 上不一致连续,则()()0,lim sup 0h x x h I f x h f x →++∈+-≠.这个推论是证明函数非一致连续的一种有效方法.文献[10]中,作者给出了函数()f x 在某集上不一致连续的一种规范证明方法. 证明1 ()2f x x =在()r -∞∞p p 上不一致连续. 证明2 ()1f x x=在()0,∞上不一致连续. 证明3 ()21f x x=在()0,∞上不一致连续. 证明4 ()1sin f x x =在2(0,]π上不一致连续. 文献[11]中,作者研究了函数的一致连续性问题,提出判定函数一致连续的比较判别法和比值判别法判定定理:定理9 函数()f x ,()()g x C I ∈,[,)I a =+∞,若满足()()()lim x f x Ag x B →+∞-=成立(其中A 为非零定值,B 为定值).则()f x ,()g x 有相同的一致连续性.文章给出证明,随后作者又给出了四个相关的命题定理,并对这些定理一一证明其正确性.定理10 设函数()f x ,()()g x C I ∈,[,)I a =+∞,()f x ,()g x 满足:(1)()()lim lim x x f x g x →+∞→+∞==∞, (2)()f x ,()g x 在I 上可导,且()0g x '≠,(3)()()lim x f x g x →∞''存在,若()()lim x f x A g x →∞=,(A 为非零定值),则()f x ,()g x 有相同的一致连续性.在这个定理的引申下,文章再次给出了五个相关的结论,都为判定函数一致连续提供了理论依据,更方便的函数一致连续的判定.对于函数的一致连续性问题,作者提出并证明了判定函数一致连续的比较判别法和比值判别法,从而大大简化并拓宽了函数一致连续性的可判别范围.文献[12]中,作者研究得到了函数一致连续的几个充分条件. 文献[12]的主要结论可总结如下:定理11 若函数()f x 在区间I (有限或无穷)上单调,且()Df x 在I 内处处存在、有界,则函数()f x 在开区间I 上一致连续.在此基础上作者给出两个推论,一个是:若函数()f x 是开区间I (有限或无穷)上的凸函数,且拟导数存在,有界,则函数()f x 在开区间I 上一致连续.另一个是:若函数()f x 在区间I (有限或无穷)上,满足一定的条件,就可以得到函数是一致连续的.文章对得出的定理给出了详细证明.文献[13]中,作者给出函数在无限区间上一致连续的三个判别条件,并对文献[14]的两个判别定理进行了改进. 文献[13]的主要结论可总结如下:定理12 若函数()f x 是可微函数,且()f x '在区间I (I 可开、半开、有限或无限)上有界,则()f x 在I 上一致连续.定理13 若函数()f x 在[,)a +∞上一致连续,()x φ在[,)a +∞上连续,且()()lim 0x f x x φ→+∞-=⎡⎤⎣⎦则函数()x φ在[,)a +∞上一致连续(以上两个定理的证明参考文献[15]).定理14 实函数()f x 在[0,)+∞上连续,在[0,)+∞内处处可导,且()lim x f x A →+∞'=存在,则当且仅当A +∞p 时,()f x 在[0,)+∞上一致连续.定理15 设存在0L f ,使对任意x ',x I ''∈,都有:()()()()f x f x L g x g x ''''''-≤-成立,而()g x 在区间I 上一致连续,则()f x 在I 上一致连续.定理16 设函数()f x 在[,)a +∞上连续,且x →+∞时,()f x 有渐近线y ax b =+.则()f x 在[,)a +∞上一致连续.定理17 设函数()f x 在[,)a +∞上连续,且()lim 0x bx f x →+∞-=⎡⎤⎣⎦,其中b 是非零常数,则()f x 在[,)a +∞上一致连续.三、总结部分数学是一门基础学科,我们生活的方方面面无不有数学的影子在里面,,它不仅指导我们进行生产和学习,同时对我们认识自然,了解事物的本质都有着积极的作用.函数一致连续性近几年在自然界和生活中有着广泛的应用背景,因此近几年关于函数一致连续性的各方面研究都取得了突破性的进展,这些研究成果渗透到了社会的方方面面,为社会的发展做出了重要的贡献,各国的专家学者对函数一致连续性做了深入的研究,并且已经取得很多重要的有益的结论,并且这些结论在函数一致连续性的研究上经常被采用.根据所总结的文献来看,许多学者已对函数一致连续性的性质、定义以及定理、应用进行了研究,然而以上有关函数一致连续性的定义与性质的文献总结都是在一元函数的框架下,而二元函数的研究显得很微弱,所以将一元函数的相关定理推广到二元函数中是很有必要的.这就是说函数一致连续性还尚存在很多不明确的问题,多元函数一致连续性还有很多需要解决的问题.所以随着科学技术的发展,时间的推移,我相信多元函数一致连续性的研究应用,会越来越占有重要的位置.四、参考文献[1] 华东师范大学数学系·数学分析(上册第三版)[M]·北京:高等教育出版社,2001[2] T.M ·Apostol.Mathematical Analysis[M]·Addison-Welsey Publishing Compony,inc.,1974[3] 菲赫金哥尔茨·微积分学教程[M]·北京:人民教育出版社,1959[4] 王孚和·连续与一致连续[J]·江西教育学院,教学参考资料:41─43[5] 袁南桥·一致连续的判别及分布[J]·四川文理学院学报,2007,17(2):6─7[6] 鞠正云·用导数判别函数的一致连续性[J]·工科数学,1999, 15(1):127─129[7] 赵向会·函数一致连续性的几个充要条件[J]·张家口职业技术学院学报,2007, 20(4):75─77[8] 裴礼文·数学分析中的典型问题与方法[M] 北京:高等教育出版社,1993[9] 成波,李延兴·函数一致连续的一种新证法[J]·安康师专学报,2006,18(4):71─72f x在某集上的一致连续性[J]·内江师范高等专科学校学[10] 黄崇智·关于()报,2000,15(2):14─17[11] 杨小远·关于函数一致连续的判别方法研究[J]·北京航空航天大学[12] 邱德华,李水田·函数一致连续的几个充分条件[J]·大学数学,2006,22(3):136─138[13] 陈惠汝,何春羚·再探函数在无穷远处的一致连续性[J]·宜春学院学报,2006,28(2) :45 ─46[14] 杨中南·函数在无穷远处的一致连续性[J]·集美大学报,1997,2(1):70─75[15] 陈慧汝·函数一致连续判别法的再研究[J]·数学教学研究,2005,(1):57─58。
函数一致连续性的判别一.函数一致连续性的定义1.函数一致连续性的概念定义:设函数)(x f 在区间I 有定义,若δδε<-∈∀>∃>∀212,1:,0,0x x I x x 有,)()(21ε<-x f x f 称函数)(x f 在I 上一致连续。
例1.证明:函数)0()(≠+=a b ax x f 在),(+∞-∞上一致连续。
证 :,0>∀ε由于'''')''()(x x a x f x f -=-,取δ=aε,则对任何),(,'''+∞-∞∈x x ,只要δ<-'''x x ,就有ε<-)()('''x f x f ,故函数)0()(≠+=a b ax x f 在),(+∞-∞上一致连续。
例2. 证明:函数xx f 1)(=在区间[]1,a (其中10<<a 为常数)上一致连续;在区间(]1,0上非一致连续。
证 : (1),0>∀ε由于'''2'''''''''''111)''()(x x a xx x x x x x f x f -≤-=-=-,取εδ2a =,则对任意[],1,,'''a x x ∈当δ<-'''x x 时,就有ε<-)()('''x f x f ,故函数xx f 1)(=在区间[]1,a (其中10<<a 为常数)上一致连续; (2)⎪⎪⎭⎫ ⎝⎛>∃>∀>=∃δδε10,0210n ,取11'+=n x ,(]1,01'',11'∈=+=n x n x ,虽然有 ,1)1(11112'''δ<<+<-+=-nn n n n x x 但211)1()(0'''=>=-+<-εn n x x f ,故函数xx f 1)(=在区间(]1,0上非一致连续。
§2.9 函数的一致连续性定义 2.21 设f 是X 上的单变量函数.若0,0εδ∀>∃>,使得当12,x x X ∈,12x x δ-<时总成立12()()f x x ε-<,则称f 是X 上的一致连续函数.显然,若f 是X 上的一致连续函数,则f 一定是X 上的连续函数(反之通常不正确).命题1 (不一致连续的充要条件) X 上的单变量函数f 不一致连续0ε⇔∃>和{},{}n n x y X ⊂,使得lim()0n n n x y →∞-=,并且()()n n f x f y - ,n ε*≥∀∈.证: “⇒”.假定f 不是X 上的一致连续函数,则0ε∃>,n *∀∈,n x ∃,n y X ∈满足1n n x y n -<和()(),n n f x f y n ε*-≥∀∈.这说明右边成立. “⇐”.假定0ε∃>和{}n x ,{}n y X ⊂,使得l i m ()0n n n x y →∞-=,并且()(),n n f x f y n ε*-≥∀∈.这时,0δ∀>,,,N N N N x y X x y δ∃∈-<使得()()N N f x f y ε-≥.这说明f 不是X 上的一致连续函数.□ 命题 2 若f 是区间..I 上的一致连续函数,00δ>是常数,则必存在0M >使得当,x y I ∈,0x y δ-≤时总成立()()f x y M -≤. 证:对于固定的0,0εδ>>取,使得当12,x x I ∈,12x x δ-<时总成立12()()f x x ε-<.再取n *∈使得0,M n n δδε<=令.当,,x y I ∈x y -0δ≤时,()()f x f y -11(())(())n k k k f x y x f x y x n n=-≤+--+-∑n ε< M =.□命题 3 有限开区间(,)a b 上的连续函数f 一致连续⇔存在有限单侧极限()f a +和()f b -.证:“⇒”.若f 是(,)a b 上的一致连续函数,即0,0εδ∀>∃>,使得当,(,),2x y a b x y δ∈-<时成立()()f x f y ε-<,则当,(,)x y a b ∈,0 x a <-,0y a δδ<<-<时有()()f x f y ε-<.根据函数单侧极限的Cauchy 收敛原理,便知存在有限右极限()f a +.同理,存在有限左极限()f b -.“⇐”. (反证法)假定存在有限单侧极限()f a +和()f b -,但连续函数f 不一致连续.由命题1,0ε∃>和{},{}(,)n n x y a b ⊂,使得l i m ()0n n n x y →∞-=,并且()()n n f x f y -,n ε*≥∀∈.取{}n x 的收敛一个子列{}n k x ,则(1),n n k k x y a →+;(2),n n k k x y b →-;(3)0,n n k k x y x → (,)a b ∈三者必居其一.这样,便有0lim ()()n n k k n f x f y →∞=- 0ε≥>,得到矛盾.□例1 设Y X ∅≠⊂⊂.(1) 若f 是X 上的连续函数,则f 也是Y 上的连续函数;(2) 若f 是X 上的一致连续函数,则f 也是Y 上的一致连续函数.(3) 若,f g 都是X 上的一致连续函数,则f g ±也是X 上的一致连续函数.(4) 若,f g 都是一致连续函数,g f 有意义,则g f 也是一致连续函数.例2 当常数(0,1]μ∈时,幂函数x μ是[1,)+∞上的一致连续函数. 证: 121x x ∀≤<,有不等式1111112222(1)(1)x x x x x x x x μμμμ---=-≤-=-,即 2121x x x x μμ-≤-.故 0ε∀>,令0δε=>,则当12,[1,)x x ∈+∞,12x x δ-<时总成立1212x x x x μμδε-≤-<=.□例3 (连续但不一致连续的函数) 当常数(1,)μ∈+∞时,幂函数x μ不是[1,)+∞上的一致连续函数(这说明两个一致连续函数的积可能不是一致连续函数).证: 1x y ∀≤<,有不等式 11()y x x y x x y x μμμμμ---≥-=-.n *∀∈,令 11,n n x n y n n μ-==+,则 11lim()lim 0n n n n y x n μ-→∞→∞-==, n n y x μμ- 1()n n n x y x μ-≥-1111n nμμ--==.由命题1便知x μ不是[1,)+∞上的一致连续函数.□例4 (连续但不一致连续的函数) 1sin x不是(0,1)上的一致连续函数. 证: 由命题3.□例 5 10,xσ∀>是[,)σ+∞上的一致连续函数,但却不是(0,)+∞上的一致连续函数.证: 12x x σ∀≤<,有不等式21212121211x x x x x x x x σ---=≤.故0ε∀>,令20δσε=>,则当12,[,)x x σ∈+∞,12x x δ-<时总成立1211x x -212x x σ-≤ε<. 这说明1x 是[,)σ+∞上的一致连续函数. 由命题2或命题3知1x不是(0,)+∞上的一致连续函数.□练习题2.9(109P ) 1,2,3.问题2.9(109P ) 2.§2.10 有限闭区间上连续函数的性质定理 2.22(一致连续性) 若f 是有限闭区间[,]a b 上的连续函数,则f 必在[,]a b 上一致连续.证:(利用有限闭区间的列紧性反证) 假定连续函数f 不一致连续,即0ε∃>和{}n x ,{}n y ⊂[,]a b ,使得 lim()0n n n x y →∞-=,并且()()n n f x f y - ε≥,n ∀*∈.取{}n x 的一个子列{}n k x 收敛于0[,]x a b ∈,则{}n k y 也收敛于0[,]x a b ∈,从而0lim ()()0n n k k n f x f y ε→∞=-≥>,得到矛盾.□定理2.23和2.24 (最大值和最小值的可达性) 若f 是有限闭区间[,]a b 上的连续函数,则必00,[,]x y a b ∃∈,使得0()min ()a x b f x f x ≤≤=, 0()m ()a x bf y ax f x ≤≤=. 作为推论,f 在[,]a b 上有界.证:(利用有限闭区间的列紧性)仅证最小值的可达性.令inf ([,])m f a b ∞=∈,由§1.9的命题2知,{()}([,])n f x f a b ∃⊂使得lim ()n n f x m →∞=.取{}n x 一个子列{}n k x 收敛于0[,]x a b ∈,便有0l i m ()()n k n m f x f x →∞==,即0()min ()a x bf x f x ≤≤=.□ 定理2.25和2.26 (介值定理和零值定理) 若f 是有限闭区间[,]a b 上的连续函数,()()f a f b ≠,则∀介于()()f a f b 和之间的实数γ,必c ∃∈(,)a b 使得()f c γ=.作为推论,若()()0f a f b <,则必c ∃∈(,)a b 使得()0f c =.证: (利用区间的连通性) 记{[,]:()}A x a b f x γ=∈<,{[,]:B x a b =∈ ()f x }γ≥,则A ≠∅,B ≠∅,,[,]A B A B a b =∅=.由[,]a b 的连通性,或者可取{}n x A ⊂收敛于c B ∈,此时()lim ()n n f c f x γγ→∞≤=≤;或者可取{}n y B ⊂收敛于1c A ∈,此时1()lim ()n n f c f y γγ→∞>=≥(该情形不会出现).因而()f c γ=,c ∈(,)a b .□推论 若f 是区间I 上的连续函数,则()f I 也是区间. 证:(利用区间的连通性),(),l L f I l L ∀∈<,要证(,)()l L f I ⊂. 取,a b I ∈满足()f a l =,()f b L =,并不妨设a b <.(,)l L γ∀∈,c ∃∈(,)a b 使得()f c γ=.这说明()f I γ∈,从而(,)()l L f I ⊂.□例1 任何实系数奇次多项式必有实根.证: 设()p x 是实系数奇次多项式(首系数为1), 则lim (),x p x →+∞=+∞ lim ()x p x →-∞=-∞.故当0A >充分大时,有()0,()0f A f A >-<,从而(,)c A A ∃∈-使得()0p c =.□例2(115P ,8)设([0,1])f C ∈,(0)(1)f f =.求证n *∀∈,n x ∃∈1[0,1]n- 使得1()()n n f x f x n =+. 证: 考虑1[0,1]n -上的函数1()()()x f x f x n ϕ=-+.由于01()()n nϕϕ+ 101121()()()()()()()0n n n f f f f f f n n n n n n nϕ--++=-+-++-=, 故或者()0,01k k n nϕ=∀≤≤-,或者1212,,01k k k k n ∃≤<≤-,使得12()()0k k n n ϕϕ<.由零值定理便知n x ∃∈1[0,1]n-使得()0n x ϕ=.□练习题2.10(114P ) 2,4,5,7,9,10,11.问题2.10(114P ) 2,4.§2.11 函数的上极限和下极限本节内容与数列的上极限和下极限的概念及相关结论完全一样. 定义2.22 设f 是X 上的单变量函数,0x ∈是X 的极限点,那么 00{:{}\{},lim ,lim ()}n n n n n E l x X x x x f x l ∞→∞→∞=∈∃⊂==≠∅使得. 记 0limsup ()sup x x f x E →= 和 0liminf ()inf x xf x E →=,分别称为当0x x →时f 的上极限和下极限;或称为f 在0x 处的上极限和下极限.类似地,能定义当00,,,,x x x x x x x →+→-→+∞→-∞→∞时f 的上极限和下极限.注记2.22' X 上的单变量函数f 在X 的极限点0x 处的上极限和下极限一定存在,其值与f 在0x 处是否有定义无关,只与f 在0x 的去心邻域00{:0}X x X x x δ∈<-<上的定义有关.这里,0δ是固定的正数. 注记2.22'' 设f 是X 上的单变量函数,0x ∈是X 的极限点.0δ∀>,记0()sup{():,0}f x x X x x ψδδ=∈<-<,0()inf{():,0}f x x X x x ϕδδ=∈<-<,则()ψδ在(0,)+∞上递增, ()ϕδ在(0,)+∞上递减(注意()ψδ和()ϕδ可能不是函数).故存在广义右极限0lim ()δψδ→+和0lim ()δϕδ→+.这两个广义右极限就是当0x x →时f 的上极限和下极限.当00,,,,x x x x x x x →+→-→+∞→-∞→∞时的情形类似. 定理2.27 设f 是X 上的单变量函数,0x ∈是X 的极限点,{E l =∈:∞00{}\{},lim ,lim ()}n n n n n x X x x x f x l →∞→∞∃⊂==使得. 则β∞∈是当0x x →时f 的上极限(或下极限)的充要条件是(1) E β∈;(2) (),0y y ββδ∀><∃>或,使得当0,0x X x x δ∈<-<时成立 ()f x y <(或()f x y >).当00,,,,x x x x x x x →+→-→+∞→-∞→∞时的情形类似. 推论 设条件如同定理2.27,则sup max ,inf min E E E E ==. 定理2.28 设,f g 是X 上的单变量函数,0x ∈是X 的极限点,则有(1) 00liminf ()limsup ()x x x x f x f x →→≤; (2) 000lim ()liminf ()limsup ()x x x x x x f x a f x f x a ∞→→→=∈⇔==; (3) 当00,0x X x x δ∈<-<时成立()()f x g x ≤⇒0000liminf ()liminf (),limsup ()limsup ()x x x x x x x x f x g x f x g x →→→→≤≤. 当00,,,,x x x x x x x →+→-→+∞→-∞→∞时的情形类似. 补充定义 设f 是X 上的单变量函数,0x X ∈是X 的极限点.若00limsup ()()x x f x f x →≤,则称f 在0x 处上半连续;若00liminf ()()x x f x f x →≥,则称f 在0x 处下半连续.命题 设f 是X 上的单变量函数,0x X ∈是X 的极限点.那么f 在0x 处连续⇔f 在0x 处既上半连续又下半连续.例(115P ,问题3)设f 是[,)a +∞上有界的连续函数,求证0λ∀>,{}n x ∃ [,),lim n n a x →∞⊂+∞=+∞,满足 lim(()())0n n n f x f x λ→∞+-=. 证: 记limsup(()())x f x f x L λ→+∞+-=,liminf (()())x f x f x l λ→+∞+-=,则,l L ∈.(1) 当0l =或0L =时,结论显然成立.(2) 当0l L <<时,{},{}[,)n n y z a ∃⊂+∞,lim n n y →∞=+∞,lim n n z →∞=+∞,使得()()0n n f y f y λ+-<,()()0,n n f z f z n λ*+->∀∈.利用零值定理,可取(,)n n n x y z ∈使得()()0n n f x f x λ+-=.显然{}n x 满足要求.(3) 0l >或0L <这两种情形不会出现.(反证法)假定0l >成立,则N *∃∈,使得当x N λ≥时成立()()2l f x f x λ+->.故当n N >时成立1()()[()()]()2n k N l f n f N f k f k n N λλλλλλ-=+-=+->-∑.这与f 有界相矛盾.同理,能证0L <不成立.□练习题2.11(118P ) 1,2,3.。
函数一致连续性的判定及性质摘要:在函数的众多性质中,函数的一致连续性是非常重要的一个,它刻划出了函数在一个区间上的全局性,是理解数学中其它知识的基础,对这一性质的深刻理解与掌握能够很好的促进数学分析的学习,研究函数一致连续性必然要研究一致连续性的判定定理及性质,这有利于描绘函数的图像和进一步了解函数的性质。
本文简要概括了一元函数的一致连续性概念及连续与一致连续的联系与差别,并深入分析了函数一致连续的判定、性质及应用。
关键词:一致连续性连续函数非一致连续极限可导The Judgemental Theorems and Properties of UniformContinuity for FunctionsAbstract The uniform continuity of function is a very important concept in the mathematical analysis course,it skins out the overall importance of function on an interval and it is a foundation in understanding other knowledge associated with mathematics.Deep understanding and mastering of this nature can promote us learning about mthematical analysis.Studying the judgemental theorems and properties of uniform continuity for function are useful for researching the uniform continuity of function,and this helps us to depict the images of function and further understand the nature of the function.The paper summarizes the uniform continuity concept of the unary function and the difference between continuous function and uniformly continuous function,at the same time,it analysizes the determination,properties and application of uniformly continuous function in depth.Keywords consistent continuity continuous function non-uniform limit differentiable1引言一致连续是数学分析上册第四章第2节所学到的一个概念,它能够帮助我们理解和解决很多问题。
教材中给出了一元函数一致连续性的的定义和判断函数在闭区间上一致连续的一致连续性定理(若函数在闭区间上连续,则它在闭区间上一致连续),但是当我们应用时这些内容往往不够,使用定义证明函数在区间上一致连续是非常复杂且不易想到的,一致连续性定理的使用条件又比较苛刻,因此有必要探索判别函数一致连续的其它方法。
本文从一致连续性出发结合连续、极限、导数、绝对连续等概念性质给出了另外几种判定函数在开区间、任意区间以及无穷区间一致连续的判定定理及证明,并总结了函数一致连续的若干性质,并在此基础上列举了几个典型具体的例子来分析函数一致连续性的应用。
2一致连续性的概念及其与连续性质的联系与差别定义1①:设f 为定义在区间I 上的函数,若对任给的ε>0,存在δ=()εδ>0,使得对任何x ',x ''∈I ,只要|x '-x ''|<δ,就有|()()f x f x '''-|<ε,则称函数f 在区间I 上一致连续。
(1)函数f 在区间I 上连续,是指任给ε0>,对每一点x ∈I ,都存在相应正数δ=(),x δε,只要x '∈I 且|x -x '|<δ,就有|()f x -()f x '|<ε,δ的取值除依赖ε之外还与点x 有关,()f x 在区间I 上一致连续是()f x 的一个整体性质,由函数在区间上的一致连续性必可推出它在区间上的连续性。
(2)函数的一致连续性意味着对于区间上的任意两点只要它们的距离无限接近,就可以使它们的函数值无限接近。
(3)要证明函数f 在某区间I 上非一致连续,只要证明:存在某0ε>0对于任何δ总存在两点x ',x ''∈I ,尽管|x '-x ''|<δ,但有()()f x f x '''->0ε3函数一致连续性的判定判定1②函数()f x 在区间(),a b 上连续且f ()0a +与()0f b -都存在⇔()f x 在(),a b 上一致连续。
证明:充分性令①华东师范大学数学系.数学分析[M],高等教育出版社,2001,79P .②常明.一元函数一致连续性的判定及性质[J],平顶山市宝丰一高,2009,下旬刊.()G x =()()()()0,,,0,f a x a f x x a b f b x b +=⎧⎪∈⎨⎪-=⎩f ()0a +与()0f b -都存在,又lim x a+→()f x =f ()0a +=()a G ,所以可得()G x 在点x a =是连续的,又因为lim x b-→()f x =()0f b -=()G b ,所以()G x 在点x b =是连续的,又由假设知道()f x 在(),a b 上是连续的,可推出()G x 在闭区间上连续,由一致连续性定理,从而可推出()G x 在闭区间上一致连续,即()f x 在区间(),a b 上一致连续。
必要性()f x 在(),a b 上是一致连续的,由一致连续性定义,ε∀>0,δ∃0>对任何x ',x ''∈(),a b ,当|x '-x ''|<δ,有|()()f x f x '''-|<ε,所以可以得出对任意x ',x ''∈(),a b ,当x ',x ''∈(),a a δ+时有|x '-x ''|<δ,故有|()()f x f x '''-|<ε由已学数学分析知识知(0)f a +=lim x a+→()f x 存在同理可推出()0f b -=lim x b-→()f x 存在,综上所述判定1即可被证明。
判定2①f 在某区间I 上一致连续的充要条件是对{}{},n n x y ∀⊂I ,当()lim 0n n n x y →+∞-=有()()()lim 0n n n f x f y →+∞-=。
证明:充分性函数f 在区间上非一致连续,即知存在0ε>0对任何δ>0,∃,x y ∈I ,当|n x -n y |<δ时有lim n →+∞|()()n n f x f y -|0ε≥,取21n n =δ,3,2,1=n ,于是存在n x ,n y I ∈且满足|n x -n y |<21n ,|()()n n f x f y -|0ε≥,显然()lim 0n n n x y →+∞-=,但由假设()()()lim 0n n n f x f y →+∞-≠,这矛盾,所以f 在区间I 上一致连续。
必要性()f x 在(),a b 上是一致连续由一致连续性的定义知,对ε∀>0,存在正数δ,对任意的,x y ∈I ,只要|x y -|<δ就有()()f x f y ε-<,又因为()lim 0n n n x y →+∞-=,对①范新华.判别函数一致连续的几种方法[J],常州工学院学报,2004(8),第17卷第4期.上述的δ,存在N >0,当N n >时有|n x -n y |<δ,从而有|()()n n f x f y -|<ε。
即可推出()()()lim 0n n n f x f y →+∞-=。
综上即可论证。
判定3①对于区间I 上的任意1x ,2x ,如果|()1f x -()2f x |≤L |1x -2x |,其中L >0,则f 在区间I 上一致连续。
证明:对任意的ε>0,取δ=Lε>0,对任意1x ,2x ,当|1x -2x |<δ时有|()1f x -()2f x |≤L 12x x -<L ⋅Lε<ε所以可推出f 在区间I 上一致连续。
判定4设()f x 在区间)[∞+,a 上连续,()h x 在区间)[∞+,a 上一致连续且()()lim ||0x f x h x →+∞-=,则()f x 在区间)[∞+,a 上一致连续。
证明:由()()lim ||0x f x h x →+∞-=可推出对于任意的ε>0,存在G >a ,对任意的1x ,2x ≥G ,有|()1f x -()1h x |<3ε|()2f x -()2h x |<3ε又()h x 在区间)[∞+,a 上一致连续,所以对上述ε>0,存在δ>0对任意的1x ,2x ≥G 且|1x -2x |<δ有|()1h x -()2h x |<3ε综上所述,对任意1x ,2x >G 且|1x -2x |<δ,有|()1f x -()2f x |≤|()1f x -()1h x |+|()1h x -()2h x |+|()2f x -()2h x |<3ε+3ε+3ε①钱吉林.等数学分析题解精粹[M],崇文书局,2003,234P .<ε所以()f x 在[)+∞G,一致连续,又显然()f x 在[],1a G +上一致连续可推出()f x 在区间)[∞+,a 上一致连续。
推论1:设()f x 在区间(],b -∞上连续,()h x 在区间(],b -∞上一致连续且()()lim ||0x f x h x →-∞-=,则()f x 在区间(]b ,∞-上一致连续。