§6+函数的一致连续性概念与应用练习参考解答
- 格式:doc
- 大小:702.99 KB
- 文档页数:7
关于一致连续的证明题一致连续是数学中一个重要的概念,而证明一致连续的问题常常是学习数学的人会遇到的难题之一。
在这篇文章中,我们将探讨一致连续以及如何证明一致连续的常见方法。
首先,我们来回顾一下一致连续的定义。
给定一个函数f(x),如果对于任意的ε>0,存在一个δ>0,使得当|x-y|<δ时,有|f(x)-f(y)|<ε成立,那么我们说函数f(x)是一致连续的。
直观上来看,一致连续就是说函数在整个定义域上的变化不会特别大,无论取多小的ε,我们总能找到一个足够小的δ来保证函数值之间的差距不会超过ε。
接下来,我们将通过一个具体的例子来说明一致连续的证明过程。
考虑函数f(x)=x²,我们要证明它在区间[0,1]上是一致连续的。
首先,我们任取ε>0,然后需要找到相应的δ来满足上述定义。
我们可以通过分析函数的性质来寻找证明的思路。
注意到当x与y的差值|x-y|非常小时,即它们很接近时,它们的平方差值|x²-y²|可能会变得非常大。
因此,我们不能简单地通过|x-y|<δ来得到|f(x)-f(y)|<ε的结论。
而是要考虑如何选择合适的δ来避免平方差值的扩大。
在区间[0,1]上,我们可以发现,函数f(x)=x²的图像是一个开口向上的抛物线,且最高点为f(1)=1。
因此,我们可以假设f(x)的导数f'(x)在这个区间上是有界的。
通过导数的有界性,我们可以得到一个非常重要的性质:当|x-y|<1时,有|f(x)-f(y)|<|x-y|。
现在,我们可以利用这个性质来进行证明。
我们任取ε>0,并取δ=ε。
假设x和y是满足|x-y|<δ的任意两个数,根据前面导出的性质,我们有:|f(x)-f(y)|<|x-y|<δ=ε因此,我们得到了对于任意的ε>0,存在一个δ=ε,使得当|x-y|<δ时,有|f(x)-f(y)|<ε。
1 函数一致连续性[1]设()x f 在定义在区间I 上的函数,若对任给0>ε,存在()0>=εδδ,使得对任意的1x 、I x ∈2,只要δ<-21x x ,就有()()ε<-21x f x f ,则称函数()x f 在区间I 上一致连续.1.1 函数一致连续的相关定理与证明定理1.1[2] 若()x f 在区间I 上有定义,则()x f 在I 上一致连续的充要条件是()()0lim 21,02121=-<-+∈→x f x f SUP x x Ix x δδ.证明 ①必要性因为()x f 在区间I 上一致连续,所以由定义知 0,00>∃>∀δε,对任意的1x ,I x ∈2,只要 021δ<-x x ,就有()()221ε<-x f x f ,故可得出()()221,02121εδ≤-<-∈x f x f SUP x x Ix x .因为当00δδ<<时,有()()()()εεδδ<≤-≤-<-<-∈∈221,21,021212121x f x f SUPx f x f SUP x x x x Ix x Ix x .故可得()()0lim 21,02121=-<-+∈→x f x f SUP x x Ix x δδ.②充分性由于()()0lim 21,02121=-<-+∈→x f x f SUP x x Ix x δδ,所以0,00>∃>∀δε,对任意的1x ,I x ∈2只要021δ<-x x ,就有()()εδ<-<-∈21,02121x f x f SUPx x Ix x .故取00δδ≤<,当1x ,I x ∈2,021δ<-x x 时,可以得到()()()()()()εδδ<-≤-≤-<-<-∈∈21,21,21021212121x f x f S U P x f x f S U P x f x f x x x x Ix x Ix x ,所以()x f 在区间I 上一致连续.定理1.2[2] 函数()x f 在区间I 上一致连续的充要条件是在I 上任意两个数列nx ',n x '',只要使0lim =''-'∞→n nn x x ,就有()()0lim =''-'∞→n n n x f x f 证明 ①必要性因为()x f 在区间I 上一致连续,所以由定义知 0,0>∃>∀δε,对任意的x ',I x ∈''只要δ<''-'x x ,就有 ()()ε<''-'x f x f .对于任意数列n x ',n x '',因为0lim =''-'∞→n n n x x ,故对上述N n N N >∀>∈∃+,0,δ有δ<''-'n nx x . 故可得()()ε<''-'x f x f ,即()()0lim =''-'∞→n n n x f x f .②充分性(反证法)假设()x f 在区间I 上不一致连续,则存在某00>ε,对任意0>δ,都存在相应的两点I x x ∈''',,尽管δ<''-'x x ,但有()()0ε≥''-'x f x f .令n1=δ(n 为正整数),相应的两点记为I x x n n∈''',,尽管nx x 1<''-',但有()()0ε≥''-'n nx f x f . 当n 取遍所有正整数时,得数列{}nx '与{}n x '',且有0lim =''-'∞→n n n x x 但是 ()()0lim ≠''-'∞→n n n x f x f ,这与条件矛盾,所以假设不成立.因此可得()x f 在区间I 上一致连续.定理1.3[3] 设函数()x f 在区间I 上可导,其导函数()x f '在区间I 上有界,则()x f 在I上一致连续.证明 因为()x f '在区间I 上有界,则I x M ∈∀>∃,0有()M x f ≤'.对0>∀ε,=∃δδε<''-'∈'''∀x x I x x M ,,,,就有()()()εεξ=⋅<''-''=''-'MM x x f x f x f ,所以()x f 在I上一致连续.定理 1.4[3] 函数()x f 在区间I 上一致连续的充要条件是对任意给出的0>ε,,0,,>∃∈'''∀M I x x 使得当()()Mx x x f x f >''-'''-'时恒有有()()ε<''-'x f x f .证明 ①必要性(反证法)函数()x f 在区间I 上一致连续,所以0,0>∃>∀δε,对任意的x ',I x ∈''只要δ<''-'x x ,就有()()ε<''-'x f x f 即()()ε≥''-'x f x f 必有δ≥''-'x x .取δε2=M ,当()()Mx x x f x f >''-'''-'时有()()ε≥''-'x f x f .令()()x f x f ''-'=α,则存在1>K 使得()εαεK K <<-1. 令1-=K αβ,则αβε≤≤.不妨设()()()x x x f x f ''<'''<',因为()()()()x f x f x f x f ''=+''≤+'<'αβ,且由连续函数的介值性知(]x x x '''∈∃,1使得()()β+'=x f x f 1同理:(]x x x ''∈∃,12使得()()β+=12x f x f .如此可得k k x x x x <<<<-110 ,规定x x x x k ''='=,0且对每一个i ,()()εβ≥=--1i i x f x f .因为由一致连续的定义知δ≥--1i i x x ,所以()()MK K x x x f x f =≤=≤''-'''-'δεδβδβ2与条件矛盾,假设不成立.即,0,,0>∃∈'''∀>∀M I x x ,ε使得当()()Mx x x f x f >''-'''-'时恒有()()ε<''-'x f x f .②充分性,0,,0>∃∈'''∀>∀M I x x ,ε使得当()()Mx x x f x f >''-'''-'时恒有()()ε<''-'x f x f .取Mεδ=,若设()()ε≥''-'x f x f 必有()()Mx x x f x f ≤''-'''-'即()()Mx f x f x x 1≥''-'''-' .故()()()()δε=≥''-'''-'''-'=''-'Mx f x f x f x f x x x x 1.故有只要δ<''-'x x ,就有 ()()ε<''-'x f x f 即()x f 在I 上一致连续.1.2有限区间上的函数一致连续性定理1.5[1] 函数()x f 在[]b a ,上连续,则函数()x f 在[]b a ,上一致连续.证明(应用有限覆盖定理)由f 在[]b a ,上的连续性,任给0>ε,对[]b a x ,∈∀,都存在0>x δ,使得当()x x U x δ;∈'时有()()2ε<-'x f x f .考虑开区间集合[]⎭⎬⎫⎩⎨⎧∈⎪⎭⎫⎝⎛=b a x x U H x ,2,δ,显然H 是[]b a ,的一个开覆盖。
§6 函数的一致连续性概念与应用部分练习参考解答1. 若对任何0,f ε>在[,]a b εε+-上连续,是否可推出f 在(),a b 上连续。
2. 试用一致连续的定义证明:若函数f 在[],a c 和[],c d 上都一致连续,则f 在[],a b 上也一致连续。
3. 证明:若f 在[],a b 上连续,且不存在任何[],x a b ∈使得()0f x =,则f 在[],a b 上恒正或恒负。
4. 证明:(1) 函数x x f =)(在),0[+∞上一致连续。
(2) 函数2)(x x f =在],[b a 上一致连续,但在),(+∞-∞上不一致连续。
5. 证明 ()f x ax b =+(0)a ≠在(,)-∞+∞上一致连续。
6. 求证下列函数在指定区间上一致连续:(1) ()1f x x=, ()0a x <≤<+∞; 2) ()f x = ()0x ≥。
证 (1) 0ε∀>,取2a δε=, 则当212x x a ε-<时, 有12122121211x x x x x x x x a ε---=≤<, ()12,x x a ∀≥。
即得()1f x x=在[),a +∞上一致连续。
(2) 设210x x >≥, 则有=≤即有。
于是, 对0ε∀>, 30δε∃=>, 对12,0x x ∀≥, 当21x x δ-<时, 有ε≤<即得()f x 在0x ≥上一致连续。
7. 求证下列函数在指定区间上不一致连续。
(1) ()()1sin01f x x x=<<; (2) ()()ln 0f x x x =>。
证 (1) 取'12nx n π=,''122n x n ππ=+, ()1,2,n =,则有()'''lim 0n n n x x →∞-=。
而 ()()()'''lim lim11n n n n f x f x →∞→∞-==。
1 函数一致连续性[1]设()x f 在定义在区间I 上的函数,若对任给0>ε,存在()0>=εδδ,使得对任意的1x 、I x ∈2,只要δ<-21x x ,就有()()ε<-21x f x f ,则称函数()x f 在区间I 上一致连续.1.1 函数一致连续的相关定理与证明定理1.1[2] 若()x f 在区间I 上有定义,则()x f 在I 上一致连续的充要条件是()()0lim 21,02121=-<-+∈→x f x f SUP x x Ix x δδ.证明 ①必要性因为()x f 在区间I 上一致连续,所以由定义知 0,00>∃>∀δε,对任意的1x ,I x ∈2,只要 021δ<-x x ,就有()()221ε<-x f x f ,故可得出()()221,02121εδ≤-<-∈x f x f SUP x x Ix x .因为当00δδ<<时,有()()()()εεδδ<≤-≤-<-<-∈∈221,21,021212121x f x f SUP x f x f SUP x x x x Ix x Ix x .故可得()()0lim 21,02121=-<-+∈→x f x f SUP x x Ix x δδ.②充分性由于()()0lim 21,02121=-<-+∈→x f x f SUP x x Ix x δδ,所以0,00>∃>∀δε,对任意的1x ,I x ∈2只要021δ<-x x ,就有()()εδ<-<-∈21,02121x f x f SUP x x Ix x .故取00δδ≤<,当1x ,I x ∈2,021δ<-x x 时,可以得到()()()()()()εδδ<-≤-≤-<-<-∈∈21,21,21021212121x f x f SUP x f x f SUP x f x f x x x x Ix x Ix x ,所以()x f 在区间I 上一致连续.定理1.2[2] 函数()x f 在区间I 上一致连续的充要条件是在I 上任意两个数列n x ',n x '',只要使0lim =''-'∞→n nn x x ,就有()()0lim =''-'∞→n n n x f x f 证明 ①必要性因为()x f 在区间I 上一致连续,所以由定义知 0,0>∃>∀δε,对任意的x ',I x ∈''只要δ<''-'x x ,就有 ()()ε<''-'x f x f .对于任意数列n x ',n x '',因为0lim =''-'∞→n n n x x ,故对上述N n N N >∀>∈∃+,0,δ有δ<''-'n nx x . 故可得()()ε<''-'x f x f ,即()()0lim =''-'∞→n n n x f x f .②充分性(反证法)假设()x f 在区间I 上不一致连续,则存在某00>ε,对任意0>δ,都存在相应的两点I x x ∈''',,尽管δ<''-'x x ,但有()()0ε≥''-'x f x f .令n1=δ(n 为正整数),相应的两点记为I x x n n∈''',,尽管n x x 1<''-',但有()()0ε≥''-'n nx f x f . 当n 取遍所有正整数时,得数列{}nx '与{}n x '',且有0lim =''-'∞→n n n x x 但是 ()()0lim ≠''-'∞→n n n x f x f ,这与条件矛盾,所以假设不成立.因此可得()x f 在区间I 上一致连续.定理1.3[3] 设函数()x f 在区间I 上可导,其导函数()x f '在区间I 上有界,则()x f 在I 上一致连续.证明 因为()x f '在区间I 上有界,则I x M ∈∀>∃,0有()M x f ≤'.对0>∀ε,=∃δδε<''-'∈'''∀x x I x x M ,,,,就有()()()εεξ=⋅<''-''=''-'MM x x f x f x f ,所以()x f 在I 上一致连续.定理 1.4[3] 函数()x f 在区间I 上一致连续的充要条件是对任意给出的0>ε,,0,,>∃∈'''∀M I x x 使得当()()M x x x f x f >''-'''-'时恒有有()()ε<''-'x f x f .证明 ①必要性(反证法)函数()x f 在区间I 上一致连续,所以0,0>∃>∀δε,对任意的x ',I x ∈''只要δ<''-'x x ,就有()()ε<''-'x f x f 即()()ε≥''-'x f x f 必有δ≥''-'x x .取δε2=M ,当()()M x x x f x f >''-'''-'时有()()ε≥''-'x f x f . 令()()x f x f ''-'=α,则存在1>K 使得()εαεK K <<-1. 令1-=K αβ,则αβε≤≤.不妨设()()()x x x f x f ''<'''<',因为()()()()x f x f x f x f ''=+''≤+'<'αβ,且由连续函数的介值性知(]x x x '''∈∃,1使得()()β+'=x f x f 1同理:(]x x x ''∈∃,12使得()()β+=12x f x f .如此可得k k x x x x <<<<-110 ,规定x x x x k ''='=,0且对每一个i ,()()εβ≥=--1i i x f x f .因为由一致连续的定义知δ≥--1i i x x ,所以()()M K K x x x f x f =≤=≤''-'''-'δεδβδβ2与条件矛盾,假设不成立.即,0,,0>∃∈'''∀>∀M I x x ,ε使得当()()M x x x f x f >''-'''-'时恒有 ()()ε<''-'x f x f .②充分性,0,,0>∃∈'''∀>∀M I x x ,ε使得当()()M x x x f x f >''-'''-'时恒有 ()()ε<''-'x f x f .取Mεδ=,若设()()ε≥''-'x f x f 必有()()M x x x f x f ≤''-'''-'即()()Mx f x f x x 1≥''-'''-' .故()()()()δε=≥''-'''-'''-'=''-'Mx f x f x f x f x x x x 1.故有只要δ<''-'x x ,就有 ()()ε<''-'x f x f 即()x f 在I 上一致连续.1.2有限区间上的函数一致连续性定理1.5[1] 函数()x f 在[]b a ,上连续,则函数()x f 在[]b a ,上一致连续.证明(应用有限覆盖定理)由f 在[]b a ,上的连续性,任给0>ε,对[]b a x ,∈∀, 都存在0>x δ,使得当()x x U x δ;∈'时有()()2ε<-'x f x f .考虑开区间集合[]⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛=b a x x U H x ,2,δ,显然H 是[]b a ,的一个开覆盖。
函数的一致连续性及其应用本文以函数的连续性为基础,一致连续性的定义为出发点,重点深入分析函数的一致连续性.教材一般只给出定义来判断函数是否一致连续,这对一些函数来说是比较复杂且难以解决的.因此本文主要对一元函数在各种区间上讨论函数的一致连续性的判断条件和方法,以及一些性质和应用,能够在教材的基础上更加全面地了解函数的一致连续性.1.2预备知识为了便于理解,现将本文涉及的一些相关定义和定理罗列如下.定义1.2.1[1]设函数在某上有定义,若,(1-1)则称函数在点连续,若函数在区间上的每一点都连续,则称在上连续.定义1.2.2[2]若函数在区间上有定义,称(1-2)为在区间上的连续模.定义1.3.1[1]设为定义在区间上的函数.若对任给的,存在,使得对任何,只要,就有,(1-3)则称函数在区间上一致连续.注:函数在区间上一致连续表明无论两点,在中处于什么位置,只要它们的距离小于,而这只与有关,就可以使.这个定义是教材中最常用的定义,根据定义还能扩展推理得到更多判断函数一致连续的条件和方法,这些本文后面会逐渐说明.由此,还可以得到函数在区间不一致连续的定义:,对,存在,使得当时,有.(1-4)引理1.2.1[3]有限区间上的一致连续函数必有界.引理1.2.2[1]设区间的右端点为,区间的左端点也为,若分别在和上一致连续,则在上也一致连续.2函数一致连续性的判断条件(1)引理2.1[1]函数在上一致连续的充要条件为:对任何数列,若,(2-1)则.(2-2)类似用归结原则来判断函数的连续性,这里通过数列来判断函数的一致连续性,但是直接用来证明函数的一致连续可能会很麻烦,因为这要验证任意的数列,因此一般用来证明函数的不一致连续比较方便,而这又与数列有关,可适用于含有三角函数和幂函数的函数.例2.1证明函数在上不一致连续.证:令,(2-3)则.(2-4)但是,(2-5)在上不一致连续.例2.2判断函数在上的一致连续性.解:令,(2-6)则.(2-7)而,(2-8)在上的不一致连续.从这两个简单的例子可以知道应用(1)中的结论是非常方便快捷的,如果用定义来判断函数的一致连续性还需要进行推理化简得到定义的形式,甚至有时候根本无法化简.由此可知定义无法满足解决函数一致连续性的需求,还需总结更多的判断函数一致连续性的条件和方法.(2)函数在上一致连续的充要条件为【2】:.证:若在上一致连续,则对当时,有,所以,(2-9)从而当时,有,(2-10)所以.(2-11)若,则对,有,(2-12)所以,(2-13)因此当时,有,(2-14)在上一致连续.这里可以通过连续模的极限来判断函数的一致连续性,其实也是从定义出发,观察函数的图像的陡峭程度来进行描述,但是这个往往用得比较少.(1)和(2)适用于函数所在定义域的所有区间,而在一些特殊区间还要进行如下讨论.(3)一致连续性定理:若函数在闭区间上连续,则在上一致连续【1】.这个定理也叫康托尔定理,其实从函数一致连续的定义可以知道如果一个函数在区间上一致连续,那么它肯定在上连续.这个定理直接就将闭区间上的函数的连续性和一致连续性联系起来,说明了只有在闭区间上的连续函数才必定一致连续.但是如果不在闭区间上时,那么通过分析这个定理可以知道要判断在有限开区间上的函数是否一致连续,还需要分析函数在区间端点连续性.所以可以得到以下结论:(4)函数在上一致连续的充要条件为:在上连续,存在且有限.证:在上一致连续,在上连续,且对,当时,有.当时,由柯西收敛准则知存在且有限.同理当时,知存在且有限.构造函数(2-15)则在上连续,根据(3)中一致连续定理知在上一致连续,在上也一致连续,在上一致连续.例2.3证明在上一致连续.证:由在上连续,知,(2-16)在上一致连续.这些只是在函数一致连续性有限区间上的讨论,还可以类似进一步在无限区间中展开讨论.(5)若函数在上连续,,存在且有限,则函数在上一致连续.但是反之是不成立的,比如在上是一致连续的,但是是不存在的.所以在无限区间上的时候要注意这个问题.通过以上讨论,也可以用类似方法判断连续函数在,,,,,上的一致连续性,具体内容不再一一重复.总之,(3)-(5)判断函数一致连续性的条件是函数在区间上连续并且在区间端点的极限要存在,都应用到了函数的连续性,这也说明了一致连续和连续有着非常密切的关系.从而根据(3)-(5)还能得到以下结论:(6)若函数在区间上单调有界且连续,则在上一致连续.证明:由在区间上单调有界,则对,存在,而且连续,根据(3)-(5)的结论可知在上一致连续.2.4判断是否一致,是否连续?解:对,有,(2-17)在上连续,又因为,(2-18)在上一致连续.3函数一致连续性的判断方法3.1函数一致连续性在一般区间的判断方法(1)定义法.一般根据函数一致连续性的定义都能判断一个函数是否一致连续,很多证明方法都是从定义出发的,这也是最常用的方法,而根据函数一致连续性的定义,还能将其扩展得到以下结论:若函数在区间上满足利普希茨条件:.(3-1)其中是是常数,则在上一致连续.证:对则当时,有,(3-2)所以在上一致连续.由证明过程可知函数化成利普希茨条件的形式其实是对函数一致连续性定义的直接应用,这将定义具体化,提供了解题思路.例3.1设,证明在上一致连续.证:对,有.取,那么根据(1)就知在上一致连续.(2)导函数有界法.根据导函数有界,可以间接地得到(1)中的结论.有时候一个函数太复杂,有时候无法将题目直接化简成(1)中利普希茨条件的形式,也就是说用定义无法简单地证明这个函数一致连续.这时可以从导函数入手.当导函数比较简单时,只要知道这个函数的导函数有界,就能判断这个函数是否一致连续.也就得到以下结论:若函数在区间上可导,且在上有界,则在上一致连续.证明:因为在上有界,所以,使,(3-3)又因为在可导,由拉格朗日中值定理,知对,有,(3-4)所以.(3-5)所以根据(1)可知在一致连续.3.2函数一致连续性的比较判别法(1)定理3.2.1【4】函数,若,其中是常数,且,则函数具有相同的一致连续性.这个方法是通过构造一个函数,通过两个函数的比较以及所构造的函数是否一致连续来判断原函数是否一致连续.它比较灵活,表面看好像大多函数都能通过这个方法判断一致连续性,特别是一些复杂的函数,但是前提是要知道所构造函数的一致连续性并且两个函数比较之后的极限要存在,而通常基本初等函数的一致连续性是比较好判断的.因此如果题目中的函数含有基本初等函数,则可以考虑这种方法.函数在不同的区间上时,还可以类似得到以下的结论:(2)函数,若,其中是常数,且,则函数具有相同的一致连续性.(3)函数,若,其中是常数,且,则函数具有相同的一致连续性.(4)函数,若,,其中是常数,且,则函数具有相同的一致连续性.例3.2.1证明函数在上一致连续.证明:令,(3-6)则,(3-7)取,则有.(3-8)在上一致连续,在上一致连续.3.3函数一致连续性的比值判别法(1)设函数,且函数满足1);2)可导,且;3),其中是常数,且,则函数具有相同的一致连续性.证明:根据洛必达法则,知,(3-9)设在上一致连续,则对当时,有,(3-10)因为,(3-11)所以对,使,(3-12)由柯西微分中值定理知,,使,(3-12)所以,(3-13)所以对,有,(3-14)从而有,(3-15)所以,(3-16),有,(3-17)因此,在上一致连续.在上连续,在上一致连续.在上一致连续.同理还可证明若在上一致连续,则在上一致连续.如果一个函数是无穷大量并且可导,那么可以通过构造一个已知一致连续性的无穷大量的可导的函数,通过两个导函数的比值关系,其实也是这两个函数的比值,将两者的一致连续性联系起来,这样就能判断了,这与比较判别法类似,都是构造函数,只是条件不一样.由(1)知函数在不同的区间上时,还可以类似得到以下的结论:(2)设函数,且函数满足1);2)可导,且;3),其中是常数,且,则函数具有相同的一致连续性.(3)设函数,且函数满足1);2)可导,且;3),其中常数,且,则函数具有相同的一致连续性.(4)设函数,且函数满足1);2)可导,且;3),其中是常数,且,则函数具有相同的一致连续性.(5)设函数,且函数满足1);2)可导,且;3),其中是常数,且,则函数具有相同的一致连续性.(6)设函数,且函数满足1),;2)可导,且;3),其中是非零常数,则函数具有相同的一致连续性.3.3确定上的函数是否一致和连续?解:在上不一致连续.令,(3-18)则.(3-19)又因为在上连续,且,(3-20)而在上不一致连续,在上不一致连续.无论是在有限区间还是无限区间,比较判别法和比值判别方法都可以适用.4函数一致连续性的性质函数的连续性满足四则运算,一致连续性也如此.(1)若函数在上一致连续,则在上一致连续.证明:在上一致连续,对,当时,有,(4-1)又在上一致连续,当时,有,(4-2)故对,取,则对,当时,有,在上一致连续.(2)若函数在上一致连续,则,在上一致连续.(3)若函数在上一致连续且有界,则在上一致连续.(4)若函数在上一致连续,函数在上一致连续且,则在上一致连续.例4.1设函数在上一致连续,证明在上也一致连续.证:在上一致连续,令,则在上连续,在上一致连续.又在上有界,在上一致连续,在上一致连续.因此在上一致连续.5两种函数的一致连续性5.1周期函数的一致连续性如果函数的周期为,在上有定义且连续,则函数在上一致连续.证:在上连续,在上连续.根据一致连续性定理知在上一致连续,对,当时,有.令,当时,存在正整数,使,(5-1),(5-2)所以.(5-3)故在上一致连续.这个针对周期函数的一致连续性,将连续和一致连续的关系连在一起.有些函数是周期函数,如三角函数等,但是如果直接用定义或者其他方法来证明它是一致连续的,有时候很难化简得到结果或是无从下手,此时就可以通过连续性来判断一致连续性,从而得到结论.例5.1.1证明函数在上一致连续.证:是以为周期的周期函数,并且在上连续,根据周期性知在上连续,因此在上一致连续.例5.1.2证明在上一致连续.证:因为,(5-4)的周期为,即是周期函数.由上题知,(5-5)在上连续,所以在上连续,故在上一致连续.5.2幂函数的一致连续性(1)函数在上是一致连续的.证:当时,根据例4.1的证明过程知在上一致连续;当时,知,(5-6)根据一致连续性的定义,对当时,有,(5-7)所以在上一致连续.(2)对任意的,函数在上一致连续,在上不一致连续,也就是在上不一致连续.证明:在上连续,在上一致连续.,当时,根据拉格朗日中值定理知,存在介于之间,使,(5-8),使,(5-9)所以,(5-10)则有.(5-11)在上不一致连续,在上不一致连续.例2.2中可以直接用(2)的结论来说明在上是不一致连续的.。
函数的一致连续性函数的一致连续性是指在定义域内的每一个点上,函数值的变化都可以通过自变量的微小变化来控制,即函数在整个定义域上的变化都是连续的。
一致连续性是连续性的一种更强的性质,它要求函数在整个定义域上都保持连续性,而不仅仅是在某个点或某个区间上连续。
在数学分析中,一致连续性是一个重要的性质,它可以帮助我们更好地理解函数的性质和行为。
一、函数的连续性在介绍函数的一致连续性之前,首先需要了解函数的连续性。
函数的连续性是指函数在某一点或某一区间上没有间断或跳跃,即函数在这些点上的极限存在且与函数在该点的取值相等。
如果函数在定义域内的每一个点上都是连续的,那么我们称这个函数在整个定义域上是连续的。
二、一致连续性的定义函数的一致连续性是指对于任意给定的ε>0,存在一个δ>0,使得当函数的自变量之间的距离小于δ时,函数值之间的距离小于ε。
换句话说,对于任意给定的ε>0,存在一个δ>0,使得当|x-y|<δ时,|f(x)-f(y)|<ε对于所有的x,y∈D都成立。
这就是函数的一致连续性的定义。
三、一致连续性与局部连续性的区别函数的一致连续性与局部连续性是两个不同的概念。
局部连续性是指函数在某一点附近连续,而一致连续性要求函数在整个定义域上都连续。
局部连续性只要求函数在某一点附近连续,对于不同的点可以有不同的δ,而一致连续性要求对于整个定义域上的任意ε,都存在一个δ,使得函数在整个定义域上都满足ε-δ的条件。
四、一致连续性的性质1. 一致连续性是连续性的更强的性质,具有更好的连续性和稳定性。
2. 一致连续性可以保证函数在整个定义域上的变化都是连续的,而不仅仅是在某个点或某个区间上连续。
3. 一致连续性可以帮助我们更好地理解函数的性质和行为,对于分析函数的性质和性质具有重要的作用。
五、一致连续性的应用1. 在实际问题中,一致连续性可以帮助我们更好地分析函数的性质和行为,从而更好地解决实际问题。
函数连续性判定方法例题和知识点总结在数学分析中,函数的连续性是一个重要的概念。
它不仅在理论研究中具有重要地位,而且在实际问题的解决中也有着广泛的应用。
本文将通过一些例题来详细讲解函数连续性的判定方法,并对相关知识点进行总结。
一、函数连续性的定义设函数$f(x)$在点$x_0$ 的某个邻域内有定义,如果当自变量的增量$\Delta x$ 趋近于零时,函数的增量$\Delta y = f(x_0 +\Delta x) f(x_0)$也趋近于零,那么就称函数$f(x)$在点$x_0$ 处连续。
用数学语言表示为:$\lim_{\Delta x \to 0} \Delta y =\lim_{\Delta x \to 0}f(x_0 +\Delta x) f(x_0) = 0$或者$\lim_{x \to x_0} f(x) = f(x_0)$如果函数在区间内的每一点都连续,就称函数在该区间上连续。
二、函数连续性的判定方法1、利用定义判定直接根据连续性的定义,计算函数在某点的极限是否等于该点的函数值。
例 1:判断函数$f(x) = x^2$ 在$x = 1$ 处的连续性。
解:$\lim_{x \to 1} f(x) =\lim_{x \to 1} x^2 = 1^2 = 1$,而$f(1) = 1^2 = 1$,因为$\lim_{x \to 1} f(x) = f(1)$,所以函数$f(x) = x^2$ 在$x = 1$ 处连续。
2、左右极限相等且等于该点函数值如果函数在某点的左极限和右极限都存在且相等,并且等于该点的函数值,则函数在该点连续。
例 2:判断函数$f(x) =\begin{cases} x + 1, & x < 1 \\ 3, &x = 1 \\ x 1, & x > 1 \end{cases}$在$x = 1$ 处的连续性。
解:左极限$\lim_{x \to 1^} f(x) =\lim_{x \to 1^}(x +1) = 2$,右极限$\lim_{x \to 1^+} f(x) =\lim_{x \to 1^+}(x 1) = 0$,因为左极限和右极限不相等,所以函数$f(x)$在$x= 1$ 处不连续。
函数的一致连续及应用函数的一致性定义为两个或更多函数之间的性质,当它们的自变量变化时,其输出结果也会随之变化。
函数的一致性通过离散变量和连续变量来定义,其应用有许多种,如在统计领域,多元线性回归,函数的估计和精确的拟合,以及在计算机领域中的信号处理和图像处理。
一致性是一种比较数学性质的重要概念,它指的是当函数的自变量改变时,函数的行为也会随之改变,也就是说,函数的一致性是基于变量的连续性和非离散性来定义的。
函数的一致性可以用多种方式来表示,比如可以从图形上表示,也可以用数学公式表达。
一般地,如果函数的自变量改变了一小部分,函数的值也会随之改变。
而无论函数的改变有多小,都只要函数的输出结果保持不变,函数就满足一致性。
在数学上,函数的一致性可以通过向量和矩阵分析来证明,即可以通过一个矩阵来表示一组函数和变量,以及它们之间的关系。
由于函数的一致性定义中也涉及到求导和积分,因此需要利用微积分的技巧来证明函数的一致性。
函数的一致性在统计学中具有重要意义,例如,在多元线性回归分析中,需要构建一个自变量和因变量之间是一致性关系的函数,以便对数据进行分析和预测。
另外,函数的一致性也被广泛应用在计算机领域,如信号处理和图像处理中,用于精确拟合函数曲线,实现准确的信号分析、建模和图像处理。
函数的一致性也有许多应用场景,如在建筑设计、飞机结构设计中,函数的一致性可以用来模拟和分析不同环境下的结构性能,从而更好地设计出更加稳健的结构。
此外,在进行气象研究时,也需要从不同气象要素中分析和模拟出合理的函数,以便对地表和海洋的热力态势进行准确预测。
总之,函数的一致性是一种重要的数学性质,它被广泛应用于统计学、计算机领域、工程设计和气象研究等领域,是许多方面的重要指标,也是不断探索和实现函数性能的重要工具。
函数的连续性知识点及例题解析1. 函数的连续性概念在数学中,函数的连续性指的是当自变量的值变化时,函数值的变化趋势和自变量的变化趋势相一致。
如果在某个区间内,函数在该区间的任意一点都存在极限,并且极限与该点的函数值相等,则称该函数在该区间内连续。
2. 函数的连续性条件函数f(x)在点x=a处连续的条件是:- 函数在点x=a处存在- 函数在点x=a处的左极限等于右极限- 函数在点x=a处的极限与函数在该点的函数值相等3. 函数的连续性的判定方法3.1 图像法:通过观察函数的图像来确定函数是否连续。
如果函数的图像没有跳跃、断裂或间断现象,那么该函数在相应区间内是连续的。
3.2 极限法:通过计算函数的极限来判定函数是否连续。
如果函数在某个点的极限存在并与函数在该点的函数值相等,则该函数在该点连续。
4. 函数的连续性例题解析例题1:考虑函数:\[ f(x) = \begin{cases} x+1, & \text{if } x \leq 0 \\ x-1, & \text{if } x > 0 \end{cases} \]问:函数f(x)在点x=0是否连续?解析:根据函数的定义可知,函数在x=0处存在极限,即\(\lim_{x\to0^-}f(x) = 0+1 = 1\)和\(\lim_{x\to0^+}f(x) = 0-1 = -1\)。
由于左极限和右极限不相等,所以函数在x=0处不连续。
例题2:考虑函数:\[ g(x) = \begin{cases} \sin(x), & \text{if } x \neq 0 \\ 1, & \text{if } x = 0 \end{cases} \]问:函数g(x)在点x=0是否连续?解析:根据函数的定义可知,函数在x=0处存在极限,即\(\lim_{x\to0}g(x) = \lim_{x\to0}\sin(x) = \sin(0) = 0\)。
函数的一致连续性函数的一致连续性是数学分析中的一个重要概念,它反映了函数在定义域内的整体的性质和变化情况。
本文将从一致连续性的定义、性质、应用等方面进行详细阐述。
一、一致连续性的定义一致连续性是一种特殊的连续性,它描述了在任意给定的公差范围内,函数值与自变量之间的变化情况。
具体来说,如果对于任意给定的正数ε,都存在一个正数δ,使得当丨x₂-x₁丨<δ时,有丨f(x₂)-f(x₁)丨<ε,则称函数f在区间I上是一致连续的。
二、一致连续性的性质1.一致连续函数的一致连续区间如果函数f在区间I上是一致连续的,那么对于任意给定的正数ε和负数ε,都存在一个正数δ,使得当丨x₂-x₁丨<δ时,有丨f(x₂)-f(x₁)丨<max{ε, -ε}。
因此,一致连续函数的定义域内存在一个一致连续区间。
2.一致连续函数的性质一致连续函数具有以下性质:(1) 如果函数f在区间I上是一致连续的,则f在I上也是连续的。
这是因为当x从左侧逼近于某个点x₀时,一致连续性保证了f(x)与f(x₀)之间的差的绝对值小于任意给定的正数ε。
(2) 如果两个函数f和g在区间I上是一致连续的,那么它们的和、差、积也在这个区间上是一致连续的。
这个性质可以由绝对值不等式的性质得到。
(3) 如果函数f在区间I上是一致连续的,那么对于任意给定的正数M和负数m,都存在一个正数δ,使得当丨x₂-x₁丨<δ时,有max{f(x₁), f(x₂)}<M和min{f(x₁), f(x₂)}>m。
这个性质说明了函数值的变化范围可以被任意给定的上下界所限制。
三、一致连续性的应用1.微分方程的解的性质一致连续性在微分方程的求解中有着重要的应用。
例如,如果微分方程描述的是一个物理系统在一组时间段上的状态变化,那么解的一致连续性就保证了系统状态的平滑变化,避免了突变和跳跃。
2.函数的逼近和级数求和一致连续性也是函数逼近和级数求和中的一个重要概念。
摘要从函数连续与一致连续的概念和关系出发,函数的一致连续性在数学分析中是一个比较精细的概念,占的地位比较重要。
对函数连续性的研究一直受到人们的重视,经过多年不懈地研究,很多学者都取得了不少的研究成果,以对函数连续性和一致连续的内涵有更全面的理解和认识。
本论文综述了连续函数的定义和一致连续函数的定义,以及一致连续函数所具有的性质,最后本文介绍了三种判别函数一致连续性的方法,第一种利用连续函数的性质判别不同类型区间上函数的一致连续性,第二种利用瑕积分判断函数的一致连续性,第三种利用比值判别法判断函数一致连续性。
关键词:连续函数性质,一致连续性,判别法About a discussion of function continuousand uniformly continuousAbstract:Uniform continuity of functions in mathematical analysis is a more sophisticated concept,representing more important role.definition this paper summarizes the continuous function continuous function and consistent,and consistent with the nature of the continuous function,finally, this paper describes three methods discriminant function consistent continuity,the first use of continuous functions on the nature of the different types of discrimination uniform continuity interval function,the second use of uniform continuity flaw integral function of judge,the third function is to determine the continuity of the use of a consistent ratio of discrimination law.Keyword:Properties of continuous functions,Uniform Continuity,Criterion目录一、引言 (1)(一)相关的背景和意义 (1)(二)选题依据及研究内容 (1)二、函数连续及函数一致性连续的定义 (2)(一)函数连续性定义 (2)(二)函数一致连续性定义 (2)三、函数连续的性质 (4)(一)连续函数的局部性质 (4)(二)闭区间上连续函数的基本性质 (4)(三)反函数的连续性 (5)(四)初等函数的连续性 (5)四、一致连续函数的性质 (5)(一)一致连续函数自变量与函数值的关系 (5)(二)区间内一致连续函数的有界性 (6)(三)函数一致连续的四则运算性质 (7)五、判别函数一致连续性的方法 (9)(一)利用连续函数的性质判别不同类型区间上函数的一致连续性 10 (二)利用瑕积分的敛散性判断函数的一致连续性 (13)(三)利用比值判别法判断函数一致连续性 (14)六、结论 (15)致谢...................................... 错误!未定义书签。
函数一致连续性的判别一.函数一致连续性的定义1.函数一致连续性的概念定义:设函数)(x f 在区间I 有定义,若δδε<-∈∀>∃>∀212,1:,0,0x x I x x 有,)()(21ε<-x f x f 称函数)(x f 在I 上一致连续。
例1.证明:函数)0()(≠+=a b ax x f 在),(+∞-∞上一致连续。
证 :,0>∀ε由于'''')''()(x x a x f x f -=-,取δ=aε,则对任何),(,'''+∞-∞∈x x ,只要δ<-'''x x ,就有ε<-)()('''x f x f ,故函数)0()(≠+=a b ax x f 在),(+∞-∞上一致连续。
例2. 证明:函数xx f 1)(=在区间[]1,a (其中10<<a 为常数)上一致连续;在区间(]1,0上非一致连续。
证 : (1),0>∀ε由于'''2'''''''''''111)''()(x x a xx x x x x x f x f -≤-=-=-,取εδ2a =,则对任意[],1,,'''a x x ∈当δ<-'''x x 时,就有ε<-)()('''x f x f ,故函数xx f 1)(=在区间[]1,a (其中10<<a 为常数)上一致连续; (2)⎪⎪⎭⎫ ⎝⎛>∃>∀>=∃δδε10,0210n ,取11'+=n x ,(]1,01'',11'∈=+=n x n x ,虽然有 ,1)1(11112'''δ<<+<-+=-nn n n n x x 但211)1()(0'''=>=-+<-εn n x x f ,故函数xx f 1)(=在区间(]1,0上非一致连续。
函数f(x)一致连续的条件及应用函数f(x)一致连续的条件及应用内容摘要:比较全面的总结了判断函数的一致连续性的条件,并结合具体例子对这些方法加以应用,而且对基本初等函数的一致连续性作了较为完整的讨论,还将一元函数的一致连续性推广到二元函数上去.关键词:一致连续拟可导函数基本初等函数二元函数Abstract:This paper is more completely to summarize the methods of judging uniform continuity of functions, and apply them to analyze some examples, moreover, we discuss uniform continuity of fundamental primary functions in detail, and extend these methods to the case of functions of two variables. Key words: uniform continuity perederivatable functions fundamentalprimary functions functions of two variables 1.引言函数的一致连续性是数学分析课程的重要理论,弄清函数的一致连续性的概念和熟练掌握判断函数一致连续的方法是学好这一理论的关键.一般的数学分析教材中只给出一致连续的概念和判断函数在闭区间上一致连续的G.康托定理,内容篇幅较少,不够全面和深入;虽然有些论文对函数一致连续性的判断作了一些拓展和补充,但是显得不够系统和应用得不够广泛.因此,对一般数学分析教材中这一部分内容并结合一部分论文资料,作一个比较系统和全面的总结,并作适当的拓展,如将一元函数的一致连续性推广到二元函数上去,无疑这一工作是十分必要和具有现实意义的.2.预备知识一致连续和非一致连续的定义一致连续:设f(x)为定义在区间I上的函数.若对任给的??0,存在???(?)?0,使得对任何x?,x???I,只要x??x????,就有f(x?)?f(x??)??,则称函数f(x)在区间I上一致连续. 1 非一致连续:存在?0?0,对任何正数?,总存在两点x?,x???I,尽管x??x????,但有f(x’)?f(x’’)??0.则称函数f(x)在区间I上非一致连续. G.康托定理G.康托定理[1]:若函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上一致连续. 这个定理的证明可应用实数连续性命题中有限覆盖定理或致密性定理来证明.但是G.康托定理只能用来判断有限闭区间上函数的一致连续性,应用不是十分广泛.下面再介绍几种比较常见的判断函数一致连续性的方法.几种常见的判断函数一致连续性的方法方法1:利用李普希茨条件若f(x)在区间I上满足李普希茨条件,即任给x,y?I,有f(x)?f(y)kx?y?为常数),则f(x)在区间I上一致连续. 方法2:有限开区间上一致连续的判别法若f(x)在有限开区间(a,b)上连续,且f(a?0)与f(b?0)都存在且有限?函数f(x)在上连续,且f(a?0)存在且有限?函数f(x)在(a,b]上一致连续. 方法3:无穷区间上一致连续的判别法若f(x)在(??,??)上连续,且limf(x)?A及limf(x)?B 极限存在,则f(x)在x???x???(??,??)上一致连续. 类似的还有:若f(x)在[a,??)(或(??,b])上连续,且limf(x)(或limf(x))极限存在,则f(x)在x???x???[a,??)(或(??,b])上一致连续. f(x)(或limf(x)及若f(x)在(a,??)(或(??,b))上连续,且limf(x)及lim?x???x?ax??? 2 x?b?limf(x))极限存在,则f(x)在(a,??)(或(??,b))上一致连续. 3. 方法的归纳和应用方法的归纳及方法的应用方法1:用连续模数来刻画一致连续性若f(x)在区间I上有定义,则称?f(?)?supf(x)?f(x)为函数f(x)的连续x’,x’’?Ix’?x’’??’’’模数. 定理若f(x)在区间I上有定义,则f(x)在I上一致连续的充要条件是[5]??0?lim?f(?)?0. ??0’’’g(?)?0,则推论若f(x)在区间I上连续,若?f(?)?supf(x)?f(x)?g(?)且lim?x’,x’’?Ix’?x’’??f(x)在I上一致连续. 上述定理易得到一致连续的视察法: ?f(?)的值只与f(x)的图象最陡的地方有关.若f(x)的图象在某处无限变陡, 使得?f(?)?0,则f(x)非一致连续;若f(x)在某处最陡,但??0时,此处的变差?f(x’)?f(x’’)?0,则f(x)一致连续. 1在(0,c)(c?0)上是非一致连续的,但在[c,??)(c?0)上一致连续. x1分析:f(x)?(x?0),在x?0处,图形无限变陡. x例1 f(x)????0,?f(?)???.??0?时?f(?)??0. 因此,f在任何区间(0,c)(c?0)上都是非一致连续的. 但在区间[c,??)上,f(x)?可见,f(x)?111?0(??0?). 在点c处最陡,且?f(?)??xcc??1在[c,??)上一致连续. x方法2:利用一致连续函数的四则运算性质来判断一致连续(1)若f(x),g(x)都在区间I上一致连续,则f(x)?g(x)也在I上一致连续. 3 (2)若f(x),g(x)都在有限区间I上一致连续,则f(x)g(x)也在I 上一致连续. 若f(x),g(x)都在区间I(含无穷区间)上一致连续且有界,则f(x)g(x)也在I上一致连续. (3)若f(x)在区间I上一致连续,且有正的下确界(或负的上确界),则致连续. (4)若f(x)在区间I上一致连续,则?f(x)也在I上一致连续(其中?为任意常数). 例2 若f(x)在有限区间I上一致连续, g(x)在区间I上非一致连续.问: f(x)?g(x)在1也在I上一f(x)I上的一致连续性. 分析:假设f(x)?g(x)在I上一致连续,又f(x)是有限区间I的一致连续函数,一致连续函数的四则运算性质知g(x)?[f(x)?g(x)]?f(x)在I上一致连续,这与条件矛盾. 所以,f(x)?g(x)在I上非一致连续.同理有f(x)?g(x)在I上非一致连续. 方法3:复合函数的一致连续性设函数f(x)在区间I上一致连续, g(x)在区间U上一致连续,且g(U)?I,则复合函数f(g(x))在区间U上一致连续. 方法4:利用两区间之并设f(x)定义在[a,c]上,若f(x)在[a,b]和[b,c]上都连续,则f(x)在[a,c]上一致连续. 上述结论可进一步推广为:设区间I1的右端点为c?I1,区间I2的左端点也为c?I2(I1,I2可为有限或无限区间).若[1]f(x)在I1和I2上都一致连续,则f(x)在I?I1?I2上一致连续. 例 3 讨论f(x)?x在[0,??)上的一致连续性. 分析:f(x)在[0,??)上连续,设a?0,当0?x?a 时,设0?x1?a,0?x2?a,x1?x2??,则4 x1?x2?x1?x2??, 0??f(?)?supx1,x2?[0,a]x1?x2??f(x1)?f(x2) ?? ??0,所以f(x)?且lim???0x在[0,a]上一致连续. 当x?a时,x1?x2?所以f(x)?x1?x2x1?x2??2a,且lim???0?2a?0. x在[a,??)上一致连续. x在[0,??)上一致连续. 综上所述,f(x)?方法5:利用数列(1)函数f(x)在I上一致连续?对区间I上任意两个数列{xn},{yn},当limxn?yn?0n??时,有limf(xn)?f(yn)?0. n??函数f(x)在I上非一致连续?区间I上存在两个数列{xn},{yn},当limxn?yn?0时,n??但limf(xn)?f(yn)?0. n??例4 f(x)?sinx2在(??,??)内非一致连续. ’分析:可取xn?2n???2,xn’’?2n???2,则xn’?xn’’?0(n??).而f(xn’)?f(xn’’)?2,故f(x)?sinx2在(??,??)内非一致连续.(2)函数f(x)在有界实数集E上一致连续?函数f(x)将E中的柯西列变成R中的柯西[5]1列. 方法6:利用渐近线设f(x)在[a,??)上连续,且lim[f(x)?(cx?d)]?0(c,d为常数).即x???时, x???f(x)有渐近线y?cx?d,则f(x)在[a,??)上一致连续. 上述结论可进一步推广为: [6] 5设f(x)在[a,??)上连续,g(x)在[a,??)上一致连续,即x???时,且x???lim[f(x)?g(x)]?A,则f(x)在[a,??)上一致连续. 例5 f(x)?xln(e?)在[1,??)上一致连续. 1x1xln(e?)x?1,b?lim[xln(e?1)?x]?1,故f(x)?xln(e?1)在该分析:于k?limx??x??xxxe区间有渐近线y?x?1,所以f(x)在[1,??)上一致连续. e方法7:利用导数若f(x)在区间I上存在有界导函数,即?M?0,?x?I,有f?(x)?M,则f(x)在I上一致连续. 下面还有一个应用得更加广泛的结论: 若f(x)在[a,??)上连续,在(a,??)内处处可导,且limf?(x)?A存在,则f(x)在x???[6] [a,??)上一致连续. 例6 f(x)?’x2?2在(??,??)上一致连续. xx2?2,f’(x)?1,故f(x)?x2?2在(??,??)上一致连续. 分析:于f(x)?方法8:利用积分设函数f(x)在区间[a,??)上局部可积,且f(x)在区间[a,??)上有界,则F(x)??xaf(s)ds在[a,??)上一致连续. 方法9:引进拟可导函数来说明一致连续性定义1(凸函数) 设函数f(x)在区间I上有定义,若?x,y? I,0???1,有[4] f[?x?(1??)y]??f(x)?(1??)f(y)(或f[?x?(1??)y]??f(x)?(1??)f(y)), 则称f(x)为定义在区间I上的下凸(或上凸)函数,上,下凸函数统称为凸函数. 注:下面的定义,引理,定理和推论均见[4]. 定义2(拟可导函数) 若函数f(x)在U0(x0)有定义,且极限 6hhf(x0?)?f(x0?)22存在, limh?0hhhf(x0?)?f(x0?)22. 则称函数f(x)在x0拟可导,记为Df(x0)?limh?0h引理1 凸函数在任意开区间I上连续. 引理 2 若f(x)在区间I上连续,且对?x1,x2?I,有f(x1)?f(x2)x?x?f(12),22则函数f(x)为下凸函数. 定理若f(x)在开区间I上单调,且Df(x)在I内处处存在,有界,则f(x)在I上一致连续. 推论1 若f(x)是开区间I上的凸函数,且拟导数存在,有界,则f(x)在I上一致连续. 推论2 若f(x)在开区间I 上满足条件:①?x1,x2?I,有f(x1)?f(x2)x?x?f(12);22②?x?I,f?(x)和f?(x)都存在;③在I上处处拟可导,且拟导数有界,则f(x)在I上一致连续. 几个重要应用应用之一:周期函数的一致连续性[2][6] 设f(x)是(??,??)上以T为周期的函数,则f(x)在(??,??)上连续?f(x)在(??,??)上一致连续. 应用之二:基本初等函数的一致连续性?(1)f(x)?x在[0,??)上,当0???1时一致连续,当??1时不一致连续.(2)f(x)?e在R上非一致连续. x 7(3)f(x)?lnx在(0,1]上非一致连续,在[1,??)上一致连续. (4)y?sinx和y?cosx均在R上一致连续,y?tanx和y?cotx均在其定义域上非一致连续. (5)y?arcsinx 和y?arccosx均在[?1,1]上一致连续,y?arctanx和y?arccotx均在(??,??)上一致连续. p(x)?0xn??1xn?1?...??n(6)R(x)?,其中n,m 为非负整数,?mm?1q(x)?0x??1x?...??m?0,?1,...?n ,?0,?1,...,?m均为常数,且?0?0,?0?0.当n?m?1时,R(x)在[a,??)上一致连续;当n?m?1时,R(x)在[a,??)上非一致连续.. 4. 二元函数的一致连续性前面我们已经对一元函数的一致连续性已作了详细的叙述,下面我们将一元函数的一致连续性的一些结论推广到二元函数中去. 定理 1 若函数f(P)在有界闭区域D上连续,则f(P)在D上一致连续. 定理2 函数f(P)在有界开区域D上一致连续?f(P)在D上连续,且?P0??D,limf(P)存在. P?P0P?D2定理3 函数f(x,y)在R上连续,且limf(x,y)存在,其中r?r???x2?y2,则f(x,y)在R2上一致连续. 定理 4 函数f(x,y)在区域D上满足:?(xi,yi)?D(i?1,2),都有,f(x1,y1)?f(x2,y2)?k1x1?y1?k2x2?y2则f(x,y)在D上一致连续. 定理5 函数f(x,y)在凸区域D内存在有界偏导数,则f(x,y)在D上一致连续. 定理6 函数f(P)在区域D上一致连续?对?{Pn},{Qn}?D,n???lim?(Pn,Qn)?0,恒有limf(Pn)?f(Qn)?0. n??? 8 定理7 函数f(x,y)在有界区域E上一致连续?函数f(x,y)将E中的柯西列变成R中的柯西列. 总之,一元函数的一致连续性大多可以推广到二元函数上去,但形式上要注意区别,例如定理5中的条件要求为凸区域.5. 结束语文章比较全面的总结了各种判断函数的一致连续性的条件,并结合实例对这些方法加以运用,而且对基本初等函数的一致连续性作了较为完整的讨论,并将一元函数的一致连续性推广到二元函数上去,这些都具有一定的意义.然而必须指出:关于函数一致连续性的判断,是函数所满足的条件及所定义的范围决定的,还不能解决所有的判断函数一致连续的问题,还可以进行更加深入的讨论和研究.。
函数的一致连续性一致连续性是数学分析中的一个重要概念,它不仅在微积分中有着广泛的应用,而且在函数论和拓扑学等领域也扮演着关键的角色。
本文将对一致连续性的定义、性质及其与普通连续性的关系进行深入探讨,并通过例子说明其在实际中的应用。
一致连续性的定义传统的连续性涉及到函数在某一点的邻域内的行为,而一致连续性则进一步扩展了这一概念。
设 ( f: A ) 是定义在集合 ( A ) 上的一个函数。
如果对任意的 ( > 0 ),存在一个 ( > 0 ),使得对于所有的 ( x, y A ),只要满足 ( |x - y| < ),就有 ( |f(x) -f(y)| < ),那么我们称函数 ( f ) 是在 ( A ) 上一致连续的。
这种定义与普通的连续性不同,普通的连续性要求在特定点附近都能找到适合的 ( ) 值,而一致连续性则要求这个 ( ) 值能够适用于整个区间或集合。
这种“整体”性质使得一致连续性在分析中极具吸引力。
一致连续性的性质性质一:一致连续性的充要条件一致连续性最重要的一个性质是其与有界闭集上连续性的关系。
即如果函数 ( f: [a, b] ) 在区间上是连续的,并且该区间是有界闭集,那么函数 ( f ) 是一致连续的。
这一性质也可以称为“海涅-博尔查诺定理”的一种表现。
性质二:复合函数的一致连续性如果 ( f: A B ) 和 ( g: B C ) 都是显式一致连续的函数,那么复合函数 ( g(f(x)) ) 也是一致连续的。
这为我们提供了在处理复杂问题时的一种手段,可以将多个容易处理的一致连续函数组合起来。
性质三:一致连续函数的有限性如果一组函数 ( f_n: A_n B_n ) 是一致连续的,并且它们都定义在相同的集合上,则它们的一致收敛也将保持一致性,即如果( f_n(x) f(x) )(对所有 ( x A_n )),那么 ( f(x) ) 同样是一致连续的。
一致连续性与普通连续性的关系虽然所有的一致连续函数都是普通连续函数,但并非所有普通连续函数都是一致连续函数。
函数的一致连续性专题1、函数一致连续性的定义:2. ()f x 在区间I 上不一致连续,存在00ε>,对任意的0δ>,存在,x y I ∈,虽满足|y|<x δ-,但0|()()|f x f y ε->.3、若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上一致连续。
4、函数()f x 在区间1I 和2I 上一致连续,若12I I ≠∅I ,则()f x 在12I I U 上一致连续。
一.应用定义来证明函数的一致连续性与不一致连续性例1:()f x =[0,)+∞上一致连续例2:2()f x x =在[1,)+∞上不一致连续例3:设()f x 在区间(0,1]上可导,且0lim ()n x A +→'=,求证()f x 在区间(0,1]上一致连续例4:若函数()f x 在区间I 上满足下述Lipschitz 条件,即0,',"L x x I ∃>∀∈,有(')(")'"f x f x L x x -≤-成立,则()f x 在I 上一致连续。
习题1:.设函数()f x 在区间I 上连续,且满足'()f x 在I 上有界,则()f x 在I 上一致连续。
二:函数不一致连续的一个等价刻画及具体函数不一致连续的判别 命题: 若函数()f x 在区间I 上不一致连续的充分必要条件是:存在两个点列{}n x ,{}n y 满足||0n n x y -→,但lim |()()|0n n n f x f y →+∞-≠. 例3: 函数2()sin f x x =在区间[0,)+∞上不一致连续(湘潭大学2009年) 例4:1()e cos , (0,1]x f x x x=∈不一致连续 (2009年大连理工大学)三、一致连续性的极限判别法(说明有界性 区间结构 连续性,一致连续性之间的关系)命题3: 连续函数()f x 在有限区间(,)a b 上一致连续的充要条件是:是()f x 在(),a b 上连续且()f a +及()f b -都存在。
函数的一致连续及应用
一致连续函数(Uniformly Continuous Functions)是指具有一致性连续
性的函数,它指函数在一定范围内,当输入的变量的变化量变小的时候,输出的函数值的变化量也变小,即使输入的变量的变化量趋于零,输出的函数值也会趋于零。
一、定义
一致连续函数的定义如下:若函数f(x)在一定的闭区间内连续,且当其定义域上的任意两个点之间的距离x越小,则函数f(x)的值之差越小,
也就是说,函数f(x)在定义域上越靠近,其值差越小,则称f(x)为一致
连续函数。
二、实例
1、线性函数:y=kx+b
线性函数表示的是一条直线,当x的变化量趋近于零时,y的变化量也
趋近于零,线性函数既满足连续性又满足一致性,因此线性函数是一
致连续函数。
2、幂函数:y=x^a
幂函数表示的是一条曲线,当x的变化量趋近于零时,y的变化量也趋
近于零,幂函数既满足连续性又满足一致性,因此幂函数也是一致连
续函数。
三、应用
1、函数拟合
一致连续函数可以用于函数拟合,即选定一个一致连续函数,例如线性函数或者指数函数,然后依据实验数据的观测值,进行函数参数的拟合,以最好地拟合实验数据,这是一致连续函数的广泛应用之一。
2、解析解
一致连续函数的另一个应用是解析解,即如果某一函数可以用一致连续函数拟合,由此可以用以研究某个函数定义域上的任意一点,以及函数的特征,给出函数关于某个变量的几何解析解。
3、逼近
一致连续函数还被广泛应用于逼近计算,这是一项综合计算机科学中十分重要的概念,在大数据处理中也常常用到这一技术,比如,根据大量的数据,使用一致连续函数,可以更精准地拟合这些数据,使得这些数据的变化的趋势更加明显。
§6 函数的一致连续性概念与应用部分练习参考解答1. 若对任何0,f ε>在[,]a b εε+-上连续,是否可推出f 在(),a b 上连续。
2. 试用一致连续的定义证明:若函数f 在[],a c 和[],c d 上都一致连续,则f 在[],a b 上也一致连续。
3. 证明:若f 在[],a b 上连续,且不存在任何[],x a b ∈使得()0f x =,则f 在[],a b 上恒正或恒负。
4. 证明:(1) 函数x x f =)(在),0[+∞上一致连续。
(2) 函数2)(x x f =在],[b a 上一致连续,但在),(+∞-∞上不一致连续。
5. 证明 ()f x ax b =+(0)a ≠在(,)-∞+∞上一致连续。
6. 求证下列函数在指定区间上一致连续:(1) ()1f x x=, ()0a x <≤<+∞; 2) ()f x = ()0x ≥。
证 (1) 0ε∀>,取2a δε=, 则当212x x a ε-<时, 有12122121211x x x x x x x x a ε---=≤<, ()12,x x a ∀≥。
即得()1f x x=在[),a +∞上一致连续。
(2) 设210x x >≥, 则有=≤即有。
于是, 对0ε∀>, 30δε∃=>, 对12,0x x ∀≥, 当21x x δ-<时, 有ε≤<即得()f x 在0x ≥上一致连续。
7. 求证下列函数在指定区间上不一致连续。
(1) ()()1sin01f x x x=<<; (2) ()()ln 0f x x x =>。
证 (1) 取'12nx n π=,''122n x n ππ=+, ()1,2,n =,则有()'''lim 0n n n x x →∞-=。
而 ()()()'''lim lim11n n n n f x f x →∞→∞-==。
于是()f x 在()0,1上不一致连续。
(2) 取''n n x e -=, ()1'n n x e -+=, ()1,2,n =, 则有()'''lim 0n n n x x →∞-=, 而()()'''lim lim11n n n n f x f x →∞→∞⎡⎤-==⎣⎦。
由此推出()f x 在()0,+∞上不一致连续。
8. 设()f x 在(),a b 上一致连续,求证:(1) 0δ∃>, 使得对0x ∀, 当()()00,,x a b x x δδ∈⋂-+时,()()01f x f x ≤+。
(2) ()f x 在(),a b 上有界。
证(1) 由()f x 的一致连续性, 对 10ε=>,0δ∃>, 当()()00,,x a b x x δδ∈⋂-+时,有 ()()()()0011f x f x f x f x -<⇒≤+。
(2) 利用(1)中的δ把(),a b 分成n 个小区间, 设分点为01n a x x x b =<<<=,使得()11max k k k nx x δ-≤≤-<, 令(){}11max1kk n M f x ≤≤-=+, 对(),x a b ∀∈, x 一定落在某一个小区间, 即()11k k n ∃≤≤-, 使得[]1,k k x x x -∈。
于是根据(1), 有()()1k f x f x -<, ()11k n ≤≤-,或()()11k f x f x --<, ()2k n ≤≤。
并由此推出 ()f x M ≤。
9. (1) 证明函数1y x =在(0,1)内不一致连续。
(2) 0c ∀>,证明 1y x=在(,1)c内是一致连续的。
10.证明 1sinx在(,1)c (0)c >内是一致连续的,而在(0,1)内连续但非一致连续。
11.设区间1I 的右端点为1c I ∈,区间2I 的左端点也为2c I ∈(12,I I 可分别为有限或无限区间)。
试按一致连续性定义证明:若f 分别在1I 和2I 上的一致连续,则f 在12I I I =⋃上也一致连续。
12.设函数)(x f 和)(x g 在区间I 上一致连续。
证明函数)()(x g x f +在区间I 上一致连续。
13.设函数)(x f 在有限开区间),(b a 内连续。
则)(x f 在有限开区间),(b a 内一致连续, )0( +⇔a f 和)0(-b f 存在( 有限 )。
14.设函数)(x f 在有限开区间),(b a 内连续。
则)(x f 在),(b a 内一致连续,⇔)(x f 在),(b a 内一致连续。
15.若f 在[,)a +∞上连续,且lim ()x f x →+∞存在。
证明:f 在[,)a +∞上有界。
试问f 在[,)a +∞上必有最大(小)值吗? 16.设函数)(x f 在R 内连续且 .)(lim +∞=∞→x f x 则)(x f 在R 内有最小值。
(与)0(f 比较。
)17. 证明:任一实系数奇次方程至少有一个根。
18. 求证:三次方程3210x x +-=只有唯一根,此根在()0,1内。
19. 证明方程240x x -=在区间10,2⎛⎫⎪⎝⎭内有一根。
20.证明方程01423=+-x x 在()1,0内至少有一个实根.证 设()1423+-=x x x f ,()x f 在[]1,0上连续,又()010>=f , ()021<-=f由推论1知:至少存在一点()1,0∈ξ,使得()0=ξf .这表明所给方程在()1,0内至少有一个实根ξ. 21. 证明,方程内各有一个实根与在)3,2()2,1(03162715=-+-+-x x x 。
22.证明:若()x f 与()x g 在[]b a ,连续,且()()a g a f <,()()b g b f >,则()()()c g c f b a c =∈∃使,,。
证 设()()()()x F x g x f x F 显然,-=在[]b a ,连续,且()()()()()()0,0>-=<-=b g b f b F a g a f a F 。
由零点定理,()b a c ,∈∃,使()()()()()c g c f c g c f c F ==-=即,0。
23.证明, 奇次多项式 1221120)(+++++=n n n a x a x a x P 至少存在一个实根,其中n a a a ,,10都是常数,且00≠a 。
证 已知多项式()x P 在R 连续。
将()x P 改写为.)(.0)(,),(,.0)(,0)(,0,)(lim ,)(lim ,0)()(012121012至少存在一个实根即奇次多项式使一点内至少存在在根据零点定理与使得于是有不妨设x P c P c P P x P x P a xa x a a x x P x x n n n =->->>∃-∞=+∞=>+++=-∞→+∞→+++γγγγγ24.设函数)(x f 在区间)0( ]2 , 0[>a a 上连续, 且).2()0(a f f = 证明, 在区间] , 0[a 上至少存在某个,c 使 ).()(a c f c f += 证 若)2()(a f a f =, 取0=c 或a c =即可;若),2()(a f a f ≠ 不妨设).2()(a f a f > 设)()()(a x f x f x F +-=, 应用零点定理即得所证。
25.设函数)(x f 在区间],[b a 上连续,.21b x x x a n <<<<< 试证明:],,[1n x x ∈∃ξ 使.)()()()(21nx f x f x f f n +++= ξ26. 设.)( ,)( ],,[b b f a a f b a C f <>∈ 试证明:方程 x x f =)(在区间),(b a 内有实根。
27. 证明: 方程 x x x cos sin 2=- 在0到2π之间有实根。
28.证明:若0r >,n 为正整数,则存在唯一正数0x ,使得0n x r =。
(唯一性的证明用n x 在) , 0 (∞+内的严格递增性。
)29.设f 在[,]a b 上连续,满足([,])[,]f a b a b ⊂。
证明:存在0[,]x a b ∈,使得00()f x x =。
30.证明:若()f x 在[,]a b 上连续,1...,n a x x b <<<<则在1[,]n x x 上必有一点ξ,使 12()()...()()n f x f x f x f nξ+++=证 因为()f x 1[,]n x x 上连续,所以()f x 在1[,]n x x 上有最大值M 和最小值m ,使1(),(),([,])i n m f x M m f x M x x x ≤≤≤≤∈。
于是12()()...()n nm f x f x f x nM≤+++≤,即12[()()...()]/n m f x f x f x n M ≤+++≤。
由闭区间上连续函数的介值定理,知存在1[,](,)n x x a b ξ∈⊂,使12()()()...()]/,(,)n f f x f x f x n a b ξξ=+++∈。
31. 设()f x 在[,]a b 上连续,a c d b <<<,证明:对任意正数P 和q ,至少有一[,]c d ξ∈,使()()()()pf c qf a p q f ξ+=+。
证 因[,][,]c d a b ⊂,所以()f x 在[,]c d 连续,故在[,]c d 上取得最小值m 与最大值M ,使(),()m f c M m f d M ≤≤≤≤,因为0,0,p q >>所以(),(),pm pf c pM qm qf d qM ≤≤≤≤两式相加得()()()()p q m pf c qf d p d M +≤+≤+。
即 ()()pf c qf d m M p q+≤≤+。
依介值定理推论,在[,]c d 上至少有一ξ,使()()()pf c qf d f p qξ+=+。
从而 ()()()()pf c qf d p q f ξ+=+。
32.设()f x 是[,]a b 上的连续函数,且()0,()0f a f b <>,求证:(,)c a b ∃∈使()0f c =且(,], ()0x c b f x ∀∈>。