高层建筑结构设计水平地震作用
- 格式:ppt
- 大小:1.92 MB
- 文档页数:27
建筑技术开发Building Technology Development 建筑设计Architectural Design 第48卷第5期2021年3月(1 )髙度不超过40 m 且以剪切变形为主并且质点和刚度沿高度分布均匀的结构(2)近似于单质点体系的结构(1 >不满足底部剪力法适用条件(2)高层建筑(3)质M 和刚度不对称不均匀的结构、超过 100 m 的髙层应采用考虑扭转耦联振动影响的方法(CQC )(4) _度大于24m 的楼盖、跨度大于12 m 的转换与连抹结构、悬挑长度大于5 m 的悬挑结构,竖向地震作用效应标准值| (丨)特别不规则的结构(2)甲类建筑(3 ) 7-9度时,髙规所列高度的乙丙类建筑 | (4)不满足高规所列高度的竖向不规则结构)(8 )平面投影尺度很大的空间结构(跨度大于120m 或长度大于300m 或悬臂大于40m ),7度III 和IV 类场地和8、9度时,用此法计算i f f B 级高度高层、混合结构和复杂高层建筑竖向)[静力法1—取结构或构件重力的一定百分数作为竖向地震作用地震作用计算方法J 1反应谱法按阵型分解反应谱法计算竖向地震作用f 百分数法规定结构或构件所受到的竖向地震作用为水平地震作用的某一百分数图1地震作用计算方法2.4 反应谱不同振型分解法采用的是考虑了震动强度与平均频谱特性的 设计谱,时程分析法全面反映了地震动强度、谱特征与持续时间三要素。
|(5) B 级高度的高层、混合结构和复杂高层建筑||(6)结构顶层取消部分墙.柱形成的空旷房间时1(7 >跨度大于24m 的楼盖,跨度大于12tn 的转换与连体结构.悬桃长度大于5m 的悬挑结构,竖向地震作用效应标准值高层建筑地震作用计算方法包括底部剪力法、振型分解 反应谱法(以下简称反应谱法)、时程分析法(以下简称时程 法)、弹塑性静力或动力分析法、静力法及百分数法。
其中底部剪力法和反应谱法是基本方法,时程分析法则是高层建筑 地震作用计算中有效的补充计算方法。
第四节水平地震作用计算重力荷载代表值计算本设计建筑高度为23.95m,以剪切表形为主,且质量和高度均匀分布,故可采用底部剪力法计算水平地震作用。
首先需要计算重力荷载代表值。
屋面处重力荷载代表值=结构和构件自重标准值楼面处重力荷载代表值=结构和构件自重标准值+0.5楼面活荷载标准值其中结构和构件自重取楼面上、下各半层高度范围内(屋面处取顶层1/2)的结构和构件自重。
计算地震作用时,建筑的重力荷载代表值应取结构和构件自重和各可变荷载组合值之和。
设计时顶层重力荷载代表值包括:屋面恒载,纵、横梁自重,半层柱自重,女儿墙自重,半层墙体自重。
其他层重力荷载代表值包括:楼面恒载,50%楼面均布活荷载,纵、横梁自重,楼面上、下各半层的柱及纵、横墙体自重。
一、楼层总量取6轴框架左侧3000mm宽度和右侧3000mm宽度的楼层的重量进行近似计算第9标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mm线荷载:25×0.3×(0.6-0.12)+0.04×(0.6-0.12)×17=3.93KN/m=3.93×(4+3)=27.51 KNG1⑵截面尺寸:b×h=250mm×500mm线荷载:25×0.25×(0.5-0.12)+0.04×(0.5-0.12)×17=2.63KN/m=2.63×3×4 =31.56 KNG2(3)截面尺寸:b×h=200mm×450mm线荷载:25×0.2 ×(0.45-0.12)+0.04×(0.45-0.12)×17=1.87KN/m =1.87×6 =11.22 KNG3(4)截面尺寸:b×h=300mm×650mm线荷载:25×0.3 ×(0.65-0.12)+0.04×(0.65-0.12)×17=4.34KN/m =4.34×8 =34.72 KNG42.柱重量= (6.01×3)×(1.8/2-0.12)=27.18KNG53.板重量G=5.0×14×3 =210KN64.墙重量=6.3×(2×3+6)+3×2+5.1×1.15/2×8+5.1×0.6×4+5.1×G71.3/2×3=120.95KN5.活载:根据《建筑抗震设计规范》5.1.3要求屋面板的活载组合值系数为0,故:=0G8则第9层楼面的重力荷载代表值为:G=27.51+31.56+11.22+34.72+27.18+210+120.95=508.14 KN 7第8标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mm线荷载:25×0.3×(0.6-0.12)+0.04×(0.6-0.12)×17=3.93KN/m=3.93×8=31.44 KNG1⑵截面尺寸:b×h=250mm×500mm线荷载:25×0.25×(0.5-0.12)+0.04×(0.5-0.12)×17=2.63KN/m=2.63×(3×5+6+4)=65.75 KNG2(3)截面尺寸:b×h=200mm×450mm线荷载:25×0.2 ×(0.45-0.12)+0.04×(0.45-0.12)×17=1.87KN/m G=1.87×(3×5) =28.05 KN32.柱重量G= (6.01×3)×(2.0/2+1.8/2-0.12)+6.01×(1-0.12)=69.38KN43.板重量=5.0×3×(6+1.5+14)=322.5KNG54.墙重量G= (3+12)×5.1/2+(3+14)×6.1/2+3×10.5/2+3×1.1/2=107.5KN65. 活载:根据《建筑抗震设计规范》5.1.3要求屋面板的活载组合值系数为0 ,故:= 0G7则第8层楼面的重力荷载代表值为:G=31.44+65.75+28.05+151.2+322.5+107.5 =624.62KN8第7标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mmG=4.2×8=33.6KN1⑵截面尺寸:b×h=250mm×500mmG=2.86×(3×4+6+4)=62.92KN2(3)截面尺寸:b×h=200mm×450mm=2.06×(3×2+6) =24.72KNG32.柱重量G= 6.01×1×4+(8.35×2+13.25×2)×(3.6/2-0.1)=116.64KN43.板重量=3.4×(3×14)+3.6×(3×4)=220KNG54.墙重量=(3+18)×6.1/2+3×3/2+3×10.5/2+3×1.1×0.5+3×G6(4.5+9.7+10.5+10.5+6.1) ×0.5+10×12.2/2+6.5×10.3×0.5+5×12.4×0.5+6×9.7×0.5+2.5×10.4×0.5=315.48KN5. 活载:根据《建筑抗震设计规范》5.1.3要求楼面板的活载组合值系数为0.5,故:G=〔2.0×(3.0×14)+ 2.5×(3×4)〕×0.5=32KN7则第7层楼面的重力荷载代表值为:G=33.6+62.92+24.72+116.64+220+315.48+32=805.36 KN7第6标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mm=4.2×8=33.6KNG1⑵截面尺寸:b×h=250mm×500mmG=2.86×(3×7+6+4)=88.66KN2(3)截面尺寸:b×h=200mm×450mm=2.06×(3×6+6+2.5×3) =64.89KNG3(4)截面尺寸:b×h=200mm×300mm=1.21×1 =1.21KNG42.柱重量= (8.35×2+13.25×2)×(3.6/2+3.6/2-0.1)=151.2KNG53.板重量G=3.6×(3×14+3×8+0.5×6)+3×(3×4)+3.4×2.5×3.5=314.15KN64.墙重量=3×(10.5+10.5+6.1)+12.2×10+9.7×6+12.4×2.5×2+9.7×3G7×0.5+10.4×2.5×0.5+3×(2+6.3) ×0.5+10.3×6.5×0.5+8.1×1+11.8×6×0.5+3×4.5×0.5+3×8.5×0.5+5.5×6×0.5+10.5×6×0.5+10.8×3×0.5=524.18KN5. 活载:根据《建筑抗震设计规范》5.1.3要求楼面板的活载组合值系数为0.5,故:=〔2.0×(3×4+2.5×3.5+3×14)+2.5×(3×11.5+0.5×6)〕×0.5=109.63KN G8则第6层楼面的重力荷载代表值为:G=33.6+88.66+64.89+1.21+151.2+314.15+524.18+109.63=1287.5KN 6第5标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mm=4.2×8=33.6KNG1⑵截面尺寸:b×h=250mm×500mmG=2.86×(3×7+6+4)=88.66KN2(3)截面尺寸:b×h=200mm×450mm=2.06×(3×6+6+2.5×2) =59.74KNG3(4)截面尺寸:b×h=200mm×300mmG=1.21×1 =1.21KN42.柱重量G= (8.35×2+13.25×2)×(3.6/2+3.6/2-0.1)=151.2KN53.板重量G=3.6×(3×8+ 0.5×6)+ 3.4×(3×19.5+2.5×3.5)=325.85K64.墙重量G=5.5×6+10.5×12+10.8×3+4.6×3+6.1×3+12.4×2.5×2+8.17×1+12.2×10+11.8×6+9.7×6=544.6KN5. 活载:根据《建筑抗震设计规范》5.1.3要求楼面板的活载组合值系数为0.5,故:G=〔2.0×(3×19.5+2.5×3.5 )+2.5×(3×8+0.5×6)〕×0.5=101KN10则第5层楼面的重力荷载代表值为:G=33.6+88.66+59.74+1.21+151.2+325.85+544.6+101=1305.86KN 5第4标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mm=4.2×8=33.6KNG1⑵截面尺寸:b×h=250mm×500mm=2.86×(3×7+6+4)=88.66KNG2(3)截面尺寸:b×h=200mm×450mmG=2.06×(3×6+6+2.5×2) =59.74KN3(4)截面尺寸:b×h=200mm×300mm=1.21×1 =1.21KNG42.柱重量= (8.35×2+13.25×2)×(3.6/2+3.6/2-0.1)=151.2KNG53.板重量G=3.6×(3×8+ 0.5×6)+ 3.4×(3×19.5+2.5×3.5)=325.85K64.墙重量=(5.5×6+10.5×12+10.8×3+4.6×3+6.1×3+12.4×2.5×2+8.1×1+12.2 G7×10+11.8×6+9.7×6) ×0.5+(5.5×6+10.5×12+4.6×3+6.1×3+12.4×2.5×2+8.1×1+12.2×4+11.8×6+9.7×6+12.4×6) ×0.5=491.8KN5. 活载:根据《建筑抗震设计规范》5.1.3要求楼面板的活载组合值系数为0.5,故:G=〔2.0×(3×19.5+2.5×3.5 )+2.5×(3×8+0.5×6)〕×0.5=101KN 10则第4层楼面的重力荷载代表值为:G=33.6+88.66+59.74+1.21+151.2+325.85+491.8+101=1253.06KN 4第3标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mm=4.2×8=33.6KNG1⑵截面尺寸:b×h=250mm×500mm=2.86×(3×6+6+4)=80.08KNG2(3)截面尺寸:b×h=200mm×450mm=2.06×(3×6+6+2.5×2) =59.74KNG3(4)截面尺寸:b×h=200mm×300mmG=1.21×1 =1.21KN4(5)截面尺寸:b×h=250mm×550mm=3.44×3 =10.32KNG52.柱重量G= (8.35×2+13.25×2)×(3.6/2+3.6/2-0.1)=151.2KN63.板重量=3.6×(3×8+ 0.5×6)+ 3.4×(3×19.5+2.5×3.5)=325.85KNG74.墙重量=(5.5×6+10.5×12+10.8×3+4.6×3+6.1×3+12.4×2.5×2+8.1×1+12.2 G8×10+11.8×6+9.7×6) ×0.5+(5.5×6+10.5×12+4.6×3+6.1×3+12.4×2.5×2+8.1×1+12.2×4+11.8×6+9.7×6+12.4×6) ×0.5=491.8KN5. 活载:根据《建筑抗震设计规范》5.1.3要求楼面板的活载组合值系数为0.5,故:=〔2.0×(3×19.5+2.5×3.5 )+2.5×(3×8+0.5×6)〕×0.5=101KN G9则第1层楼面的重力荷载代表值为:G=33.6+80.08+59.74+1.21+10.32+151.2+325.85+491.8+101=1254.8KN 3第2标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mmG=4.2×8=33.6KN1⑵截面尺寸:b×h=250mm×500mm=2.86×(3×7+6+4)=88.66KNG2(3)截面尺寸:b×h=200mm×450mm=2.06×(3×6+6+2.5×2) =59.74KNG3(4)截面尺寸:b×h=200mm×300mmG=1.21×1 =1.21KN42.柱重量= (8.35×2+13.25×2)×(3.6/2+3.6/2-0.1)=151.2KNG53.板重量G=3.6×(3×8+ 0.5×6)+ 3.4×(3×19.5+2.5×3.5)=325.85K64.墙重量=5.5×6+10.5×12+10.8×3+4.6×3+6.1×3+12.4×2.5×2+8.1G7×1+12.2×10+11.8×6+9.7×6=544.6KN5. 活载:根据《建筑抗震设计规范》5.1.3要求楼面板的活载组合值系数为0.5,故:=〔2.0×(3×19.5+2.5×3.5 )+2.5×(3×8+0.5×6)〕×0.5=101KNG8则第2层楼面的重力荷载代表值为:G=33.6+88.66+59.74+1.21+151.2+325.85+544.6+101=1305.86KN 2第1标准层:1.梁重量⑴截面尺寸:b×h=300mm×600mm=4.2×8=33.6KNG1⑵截面尺寸:b×h=250mm×500mm=2.86×(3×7+6+4)=88.66KNG2(3)截面尺寸:b×h=200mm×450mm=2.06×(3×6+6+2.5×2) =59.74KNG3(4)截面尺寸:b×h=200mm×300mm=1.21×1 =1.21KNG42.柱重量G= (8.35×2+13.25×2)×(3.6/2+5.2 -0.1)=298.08KN53.板重量=3.6×(3×8+ 0.5×6)+ 3.4×(3×19.5+2.5×3.5)=325.85KG64.墙重量=(5.5×6+10.5×12+10.8×3+4.6×3+6.1×3+12.4×2.5×2+8.1G7×1+12.2×13+11.8×6+9.7×6)×0.5+(7.9×6+14.5×10+12.9×6+6.8×3+14.7×2.5×2+12.8×2.5+8.6×3+12.1×6+14.1×6+10×1)×0.5=584.95KN5. 活载:根据《建筑抗震设计规范》5.1.3要求楼面板的活载组合值系数为0.5,故:=〔2.0×(3×19.5+2.5×3.5 )+2.5×(3×8+0.5×6)〕×0.5=101KNG8则第1层楼面的重力荷载代表值为:G=33.6+88.66+59.74+1.21+185.76+325.85+584.95+101=1493.09KN 1二、荷载分层总汇顶层重力荷载代表值包括:屋面恒载,纵、横梁自重,半层柱自重,半层墙体自重。
高层建筑考虑双向水平地震作用和偶然偏心适用条件一、规范条文抗规5.1.1条规定:质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响;其他情况,应允许采用调整地震作用效应的方法计入扭转影响。
抗规5.2.3条规定:规则结构不进行扭转耦联计算时,平行于地震作用方向的两个边榀,其地震作用效应应乘以增大系数。
一般情况下,短边可按1.15采用,长边可按1.05采用;当扭转刚度较小时,宜按不小于1.3采用。
5.2.3条文说明中提到:对于平面规则的建筑结构,国外的多数抗震设计规范也考虑由于施工、使用等原因所产生的偶然偏心引起的地震扭转效应及地震地面运动扭转分量的影响。
本次修订要求,规则结构不考虑扭转耦联计算时,应采用增大边榀结构地震内力的简化处理方法。
高规JGJ3-2002第3.3.2条(强制性条文)规定,质量与刚度分布明显不对称、不均匀的结构,应计算双向水平地震作用下的扭转影响;其他情况,应计算单向水平地震作用下的扭转影响。
高规JGJ3-2002第3.3.3条规定,计算单向地震作用应考虑偶然偏心的影响。
高规JGJ3-2002第 4.6.3按弹性方法计算的楼层层间最大位移与层高之比△u/h 之注:楼层层间最大位移△u以楼层最大的水平位移差计算,不扣除整体弯曲变形。
抗震设计时,本条规定的楼层位移计算不考虑偶然偏心的影响。
高规JGJ3-2002第4.3.5 结构平面布置应减少扭转的影响。
在考虑偶然偏心影响的地震作用下,楼层竖向构件的最大水平位移和层间位移,A级高度高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.5倍;B级高度高层建筑、混合结构高层建筑及本规程第10章所指的复杂高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.4倍。
结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比,A级高度高层建筑不应大于0.9,B级高度高层建筑、混合结构高层建筑及本规程第10章所指的复杂高层建筑不应大于0.85。
5 地震作用和结构抗震验算5.1 一般规定5.1.1各类建筑结构的地震作用,应符合下列规定:1一般情况下,应至少在建筑结构的两个主轴方向分别计算水平地震作用,各方向的水平地震作用应由该方向抗侧力构件承担。
2有斜交抗侧力构件的结构,当相交角度大于15°时,应分别计算各抗侧力构件方向的水平地震作用。
3质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响;其它情况,应允许采用调整地震作用效应的方法计入扭转影响。
48、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用5平面投影尺度很大的空间结构,应视结构形式和支承条件,分别按单点一致、多点、多向或多向多点输入计算地震作用。
注:8、9度时采用隔震设计的建筑结构,应按有关规定计算竖向地震作用。
【说明】本次修订,拟明确大跨空间结构地震作用的计算要求。
1、平面投影尺度很大的空间结构指,跨度大于120m、或长度大于300m、或悬臂大于40m的结构。
2、关于结构形式和支承条件(1)周边支承空间结构,如:网架、单、双层网壳、索穹顶、弦支穹顶屋盖和下部圈梁-框架结构,当下部支承结构为一个整体、且与上部空间结构侧向刚度比大于等于2时,应允许采用三向(水平两向加竖向)单点一致输入计算地震作用;当下部支承结构由结构缝分开、且每个独立的支承结构单元与上部空间结构侧向刚度比小于2时,应采用三向多点输入计算地震作用;(2)两线边支承空间结构,如:拱,拱桁架;门式刚架,门式桁架;圆柱面网壳等结构,当支承于独立基础时,应采用三向多点输入计算地震作用。
(3)长悬臂空间结构,应视其支承结构特点,采用多向单点一致输入、或多向多点输入计算地震作用。
3、关于单点一致输入仅对基础底部输入一致的加速度反应谱或加速度时程进行结构计算。
4、关于多向输入沿空间结构基础底部,三向同时输入,其地震动参数(加速度峰值或反应谱峰值)比例取:水平主向:水平次向:竖向= 1.00:0.85:0.65。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载从地震灾害看高层建筑结构设计地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容从震害教训看多高层建筑结构的概念设计周森(华南理工大学土木与交通学院广东广州 510640)摘要:统计了1920s以来历次对建筑影响较大的地震的震害情况,对其震害原因进行了分类归纳。
汇总了较为宏观的与总体建筑方案、结构布置以及与结构控制有关的概念设计的重要内容,并针对性地将震害原因与相关概念设计联系起来。
本文工作为多高层建筑结构设计中进一步提高对概念设计清晰的认识,并减少引起震害的因素等方面提供了一定的参考价值。
关键词:震害情况;原因分类;概念设计;联系中图分类号:TU973 文献标识码:A 文章编号:作者简介:周森(1986~),河南南阳人,从事于岩土工程地下结构设计方法与风险评估的研究。
E-mail:beihai_1986@Conceptual design in high-rise building structure from the perspective of seismic damageZhou Sen(College of Civil Engineering & Transportation,South China University of Technology,Guangzhou 510640,China)Abstract:The earthquakes which had happened since the 1920s imposing major damage on high-rise building structure were collected and the characteristics of the seismic damage were classified.The conceptual design concerning with building program,arrangement of structures and components was presented in details in correspondance with the factors of seismic damage.The contents of study may provide a reference for those who are engaged in structual design.Key words:seismic damage;classified reasons;conceptualdesign;correspondance0 引言地震是一种自然现象,世界上的地震主要分布在环太平洋地震带、欧亚地震带和海岭地震带等三大地震带。
结构地震作用及响应3.1 概述使结构产生内力或变形的原因称为“作用”,分为直接作用和间接作用两种。
各种荷载(如自重、风载等)属于直接作用,而各种非荷载作用(如混凝土收缩、温度变化、基础沉降等)为间接作用。
结构地震反应由地震动导致的结构惯性力引起,因此地震作用属于间接作用。
地震作用与一般荷载的区别在于:地震作用不仅与地震动本身有关,而且与结构的动力特性(如自振周期、阻尼等)也有关。
由地震动引起的结构内力、变形及结构运动加速度与速度等统称为结构地震反应。
结构抗震设计理论主要包括地震作用的确定和结构抗震计算方法等。
地震反应分析和结构抗震理论是近一百年来发展形成的一门新兴学科。
由于结构地震反应决定于地震动和结构动力特性,因此,地震反应分析也随着人们对两方面的认识而发展。
根据计算理论的不同,地震反应分析理论可划分为静力理论、反应谱理论和动力理论三个阶段。
1)静力理论阶段日本是世界上最早形成抗震理论并用于抗震设计的国家。
由于日本地处环太平洋地震带上,其国土均属于强震区,地震活动频繁,导致日本的抗震研究和理论发展也较早。
早在19世纪末期,日本就已开始震害预防研究。
20 世纪20 年代,在吸取了日本关东地震和其他地震经验的基础上,大森房吉、佐野利器等即提出静力计算法来近似分析地震反应。
静力理论的基本假设为:①将结构视为刚体;②假设各质点的振动加速度均等于地面运动加速度。
结构所受到的地震作用为其质量与地面运动加速度的积,即将结构的自重乘以水平烈度系数来确定水平方向地震作用的最大值,按静力均匀施加于结构的各个部位,进行静力分析。
由于该方法考虑质点振动加速度仅与地面运动加速度即烈度相关,所以又称为烈度法。
静力法忽略了地震作用与结构动力特性的相关性、结构为非刚性等关键特性,所求出的结构地震作用有较大的误差,仅适用于固有周期极短(T<0.2 s)的结构。
但静力法的产生在工程结构抗震领域具有划时代意义,解决了结构抗震理论从无到有的问题。
第3章 高层建筑结构的荷载和地震作用[例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为m m 4030⨯,地下室采用筏形基础,埋置深度为12m ,如图3.2.4(a)、(b)所示。
已知基本风压为2045.0m kN w =,建筑场地位于大城市郊区。
已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。
为简化计算,将建筑物沿高度划分为六个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结构底部(一层)的剪力和筏形基础底面的弯矩。
解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: s n T 90.13805.005.01=⨯==222210m s kN 62.19.145.0T w ⋅=⨯=(2)风荷载体型系数:对于矩形平面,由附录1可求得80.01=s μ57040120030480L H 0304802s .....-=⎪⎭⎫ ⎝⎛⨯+-=⎪⎭⎫ ⎝⎛+-=μ (3)风振系数:由条件可知地面粗糙度类别为B 类,由表3.2.2可查得脉动增大系数502.1=ξ。
脉动影响系数ν根据H/B 和建筑总高度H 由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得=ν0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即H H i /z =ϕ,i H 为第i 层标高;H 为建筑总高度。
则由式(3.2.8)可求得风振系数为:HH 478050211H H 11iz i z ⋅⨯+=⋅+=+=μμξνμϕνξβ.. z z z(4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为:()z z z z ....)z (q βμβμ6624=40×570+80×450=按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。
总水平地震作用标准值总水平地震作用标准值是建筑物在地震作用下所能承受的最大水平地震作用力。
它是建筑物结构设计的重要参数,直接关系到建筑物在地震中的安全性能。
一般来说,总水平地震作用标准值是根据建筑物所处地区的地震烈度、建筑物结构类型和使用功能等因素来确定的。
在地震设计中,工程师需要根据相关规范和标准来计算建筑物的总水平地震作用标准值,并采取相应的抗震措施,以确保建筑物在地震中不发生倒塌或严重损坏。
总水平地震作用标准值的确定需要考虑地震烈度。
地震烈度是描述地震破坏性大小的一个参数,一般用地震烈度标度来表示。
地震烈度越大,地震作用对建筑物的影响就越严重,因此建筑物在地震设计中所能承受的总水平地震作用标准值也会相应增大。
在确定总水平地震作用标准值时,工程师需要根据建筑物所处地区的地震烈度来进行计算,并合理确定建筑物的抗震设计参数。
另外,建筑物的结构类型和使用功能也是确定总水平地震作用标准值的重要因素。
不同类型的建筑物在地震中所受到的地震作用力是不同的,因此它们的总水平地震作用标准值也会有所差异。
一般来说,对于重要的公共建筑物和高层建筑,其总水平地震作用标准值会相对较大,以确保它们在地震中能够安全稳定地运行。
而对于一般的住宅建筑和轻型结构建筑,其总水平地震作用标准值相对较小,但也需要满足相关的抗震要求,以保障建筑物的安全性能。
总水平地震作用标准值的确定是建筑物抗震设计的重要环节,它直接关系到建筑物在地震中的安全性能。
工程师在进行抗震设计时,需要根据建筑物所处地区的地震烈度、结构类型和使用功能等因素来合理确定总水平地震作用标准值,并采取相应的抗震措施,以确保建筑物在地震中不发生倒塌或严重损坏。
只有通过科学合理地确定总水平地震作用标准值,并采取有效的抗震措施,才能够提高建筑物在地震中的安全性能,减少地震灾害对人们生命财产造成的损失。
总之,总水平地震作用标准值是建筑物在地震中所能承受的最大水平地震作用力,它是建筑物抗震设计的重要参数。
地震是一种瞬态的地壳运动,它会对建筑结构产生重大影响。
在地震发生时,地震波会以强烈的震动作用于建筑物,产生横向和纵向的动力效应,给建筑结构带来巨大的振动和应变。
这些振动和应变会导致建筑结构产生破坏甚至倒塌。
下面将详细介绍地震对建筑结构的影响。
1. 动力响应地震波的传播会引起建筑结构的动力响应。
地震波是一种具有多频率和多方向特性的动力负荷,它会使建筑结构发生振动。
这种振动对建筑结构的影响取决于地震波的频率、振幅和持续时间,以及建筑结构的自振频率和阻尼特性。
建筑结构的振动会导致地震惯性力和剪切力的作用,进而产生结构的变形和应力。
2. 结构破坏地震波的动力作用会导致建筑结构产生破坏。
地震波的横向和纵向振动会使建筑结构发生弯曲、错位和扭转,导致构件的破坏。
特别是当地震波的频率接近或与建筑结构的自振频率相近时,共振现象可能会导致结构的加剧破坏。
此外,地震波还会引起结构的滑移、断裂和塌落,对整体结构的稳定性产生重大威胁。
3. 层间位移地震波的作用会导致建筑结构的层间位移。
地震波产生的惯性力会使建筑结构的不同层之间发生相对位移,这可能导致结构的破坏和倒塌。
特别是在多层和高层建筑中,地震波的作用会导致结构的层间变形和相互影响,进而产生结构的非线性行为。
4. 结构的破坏模式地震对建筑结构的影响还表现在结构的破坏模式上。
根据地震波的特性和建筑结构的特点,建筑结构可能出现的破坏模式包括抗震墙的破坏、柱子的剪切破坏、梁的剪切破坏、地基的沉降和土壤液化等。
这些破坏模式对建筑结构的稳定性和安全性产生重大影响。
为了减轻地震对建筑结构的影响,需要采取一系列的抗震措施:1. 抗震设计在建筑结构的设计阶段,要充分考虑地震的作用,并采取相应的抗震设计措施。
这包括选择合适的结构形式和材料,提高结构的刚度和强度,增加结构的耐震能力,以减少地震对建筑结构的影响。
2. 结构加固和改造对于已经存在的建筑结构,可以通过结构加固和改造来提高其抗震能力。