压力反射敏感性检测系统的设计与实现
- 格式:pdf
- 大小:561.87 KB
- 文档页数:4
中国组织工程研究与临床康复 第14卷 第52期 2010–12–24出版Journal of Clinical Rehabilitative Tissue Engineering Research December 24, 2010 Vol.14 No.52P .O. Box 1200, Shen yan g 110004 9790School of Biomedical Engineering, Capital Medical University, Beijing 100069, ChinaZhang Yun, Associate professor, School of BiomedicalEngineering, Capital Medical University, Beijing 100069, Chinamail_zhangyun@Supported by: the Basic ClinicalProgram of Capital Medical University, No. 2004JK31*Received: 2010-07-28 Accepted: 2010-11-23首都医科大学生物医学工程学院,北京市 100069张韫,女,汉族,1983年首都医科大学毕业,副教授,主要从事生物医学信息学研究。
mail_zhangyun @中图分类号:R318 文献标识码:B文章编号:1673-8225 (2010)52-09790-04收稿日期:2010-07-28修回日期:2010-11-23 (20100728001/G ·A)压力反射敏感性检测系统的设计与实现*张 韫,王 锐,贾三庆Design and implementation of baroreflex sensitivity monitor systemZhang Yun, Wang Rui, Jia San-qingAbstractBACKGROUND: In various dangerous layering techniques, baroreflex sensitivity (BRS) is a reliable, accurate, independent predictor for arrhythmia and sudden cardiac death following acute myocardial infarction. Studies commonly utilize pressure and electrocardiogram measurements apparatus to calculate data for BRS.OBJECTIVE: To design and develop BRS monitor system to predict sudden cardiac death reliably and accurately after acute myocardial infarction.METHODS: The developed BRS monitor system was used to acquire all patients’ original pulse wave data using electronic blood pressure monitor which also was self-designed. The electronic blood pressure monitor was accomplished by oscillometric method. Pulse wave signals underwent processes of filtering of hardware and software and magnifying for calculating systolic pressure and diastolic pressure. Subsequently, the heart rate was conversed according to the blood pressure value and finally BRS value was calculated by both average values of blood pressure and heart rate. The blood pressure of the subjects was forcibly changed by intravenous injection of vasoactive substances.RESULTS AND CONCLUSION: Self-designed BRS monitor system consists of the circuit of the electronic blood pressure monitor, pulse wave processing procedures and BRS calculation program. First, electronic blood pressure monitor was used to get pulse wave data. Then, we wrote computer program that was used to process pulse wave to acquire two groups of data of the blood pressure and heart rate. Afterwards, BRS value was calculated with changing average values of the heart rate and blood pressure. In conclusion, depending on BRS value, we can predict possibility of occurring sudden cardiac death who suffered from acute myocardial infarction. Because the device acquires original data which is used to calculate BRS value only from electronic blood pressure monitor, it is convenient to take. Therefore it is possible to visit patients of acute myocardial infarction at any moment. The development of this monitoring system may provide a better idea to effectively control occurrence of sudden cardiac death after acute myocardial infarction in clinic.Zhang Y, Wang R, Jia SQ. Design and implementation of baroreflex sensitivity monitor system.Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2010;14(52): 9790-9793. [ ]摘要背景:在诸多危险分层技术中,压力反射敏感性是比较可靠和准确的急性心肌梗死后心律失常和心脏性猝死的独立预报因子。
压力检测与控制试验系统设计设计任务1、设计参数上位水箱尺寸:800×500×600mm,上位水箱离地200mm安装,通过直径为20mm的PVC管道与其他设备相连,设备离地30mm,要求测量设备入口处的压力。
测量误差不超过压力示值的±1%。
2、设计要求(1)上位水箱通过水泵供水,通过变频器控制水泵的转速;(2)通过查阅相关设备手册或上网查询,选择压力传感器、调节器、调节阀、变频器、水泵等设备(包括设备名称、型号、性能指标等);(3)设备选型要有一定的理论计算;(4)用所选设备构成实验系统,画出系统结构图;(5)列出所能开设的实验,并写出实验目的、步骤、要求等。
课程设计评语设计报告成绩(30%)设计过程成绩(30%)答辩成绩(40%)总成绩1 序言压力传感器是现代工业社会最常用的传感器之一,被广泛的应用于航空航天、石油化工,汽车制造等领域。
随着现代工业的发展,对于压力传感器的需求量越来越大,要求也越来越高,传统的传感器生产及性能已逐渐不能满足需求,各个传感器生产厂商开始研制生产新型传感器,并增加自动化生产线,提高生产效率,刚医成本,以提高市场竞争力和适应现代工业的应用。
传统的传感器的测量方法大都采用手工操作,特别是压力传感器,基本上都是采用手动油压或气压标定。
尽管近几年也从国外引进了部分标定设备,但价格昂贵,不易推广。
本系统应设计出的智能压力检测系统,成本低廉,使用方便,精度也比较高。
系统硬件设计有压力传感器测量压力,并将测量的信号输入放大器,然后送至A/D转换器,A/D转换器将输入的模拟信号转换为数宇信号送至单片机。
单片机根据已编制好的程序,对压阻元件非线性测量误差进行修正并对修正后的数据进行处理。
同时该系统兼具有键盘输入,LED显示与超限报警功能。
1.1压力检测与控制试验系统的结构图:1.2 总体结构设计的思路:第一步:根据课设要求选取合适的器件,并通过相应的理论计算进行选取第二步:进行控制系统回路的连接第三步:在连接好相应地回路后,根据给定的数值进行理论计算,用压力传感器对设备入口处压力进行测量,通过调节器使测得的值和给定值进行比较,若测得的值使测量误差超过压力示值的±1%,则需对产生的偏差进行比例、积分或微分处理后,输出调节信号控制执行器的动作,改变调节阀阀芯和阀座间的流通面积,同时控制变频器对水泵的控制,调节水泵的转速以达到适当的进水速度,从而使测量误差不超过压力示值的±1%。
目录1 压力检测系统总体方案 (2)1.1设计方案 (2)2 检测硬件系统 (2)2.1 压力的测量装置 (2)2.2 CB-68LP连接模块 (3)2.3 TDS1012示波器 (3)2.4 DH1715A-3型双路稳压稳流电源 (3)2.5 其他 (4)3 系统中的软件 (3)3.1 软件支持 (4)4 压力检测系统的设计 (5)4.1 压力检测装置前面板设计 (5)4.2 压力检测装置后面板设计................................. .84.3 测量调试 (8)5 实验数据处理及误差分析 (8)5.1 数据采集程序 (8)5.2 数据回放滤波程序及数字滤波器的设计理论 (8)5.3 对传感器的压力标定 (9)5.4 误差分析 (10)6 心得体会 (11)参考文献 (11)1 压力检测系统总体方案1.1设计方案该系统的总体设计方案,主要由软件和硬件两大部分组成。
传感器先将被测信号转换成电压信号,经过信号调理电路,由数据采集与传输模块进行A/D 转换和数据采集,再通过串口与计算机通信。
应用LabVIEW 虚拟仪器开发工具编写软件,实现对信号的显示、存储和分析。
1.2 实验原理在现代包括检测在内的绝大多数信息处理的思路都是将采集的信号转化为电压值(因为电压值便于处理),再将电压值转化为我们要的对象。
压力传感器测量压力也不例外。
本实验是通过压力传感器采集压力,再通过采集卡,由电脑进行数据处理,最后转化为压力值。
2检测硬件系统2.1 压力的测量装置小量程测力/称重传感器,型号:BK—3;量程:120kg;供电:12V;输出:0~5V 精度:0.2%,弹性体为三片梁、复合悬臂梁结构,结构小巧,用于拉伸力和压缩力测量。
精度高,性能稳定可靠,安装使用方便。
拉式或压式承载。
适用于建材行业的电子秤、皮带秤、小量程测力/称重的工业自动化测量控制系统。
2.2 CB-68LP 连接模块68针数字和触发I/O 接线盒垂直安装的68针连接器。
压力感受器敏感性试验王立群郭继鸿·无创性心电学诊断新技术·图2压力反射弧的构成。
压力感受器迷走神经舌咽神经延髓迷走神经中枢交感神经中枢迷走传出神经交感传出神经心脏效应器窦房结、房室结、心肌血管效应器图1犬颈动脉窦(A )和主动脉弓(B )局部解剖示意图。
作者单位:100044北京大学人民医院心电生理室近几十年来,人们已认识到自主神经功能与心血管病死亡率及猝死的关系密切,特别是心肌梗死后,交感神经兴奋能促进恶性心律失常的发生,而迷走神经兴奋有保护和抗心室颤动的作用[1]。
人们对定量评价自主神经功能的兴趣日益浓厚,压力感受器敏感性(baror eflex sensitivity ,BRS )的相关研究渐受重视。
BRS 是指动脉内血压变化相应引起反射性心动周期变化的敏感程度,心动周期(R _R 间期)与收缩压(SBP )构成回归曲线,斜率大提示迷走神经反射增强,斜率小提示交感神经反射增强。
大约20年前,在心肌梗死后诱发猝死的狗模型中,首次发现通过BRS 分析自主神经对心率的控制能够预测猝死危险[1]。
近期国际多中心ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction )的研究也证实BRS 对心源性死亡具有独立的预测价值[2]。
一、BRS 试验的生理学基础1.压力感受器(baroreceptor )。
动脉压力感受器是牵张感受器,主要位于颈动脉窦、主动脉弓及其它大动脉的外膜下(图1),由丰富的传入神经末梢组成,对血管机械性变形敏感。
动脉血压波动时,管壁变形,这些神经末梢受到机械牵张而经常不断地发放神经冲动传入中枢(脑干的延髓)。
只有当压力超过阈值时,感受器才发放冲动。
血压上升幅度越大、速度越快,发放冲动频率也越高。
压力感受器在一定压力范围内工作,其发放冲动的频率有上限,并受其它因素的影响。
例如,去甲肾上腺素能够激活颈动脉窦的平滑肌,在管壁直径不变的情况下使感受器发放冲动频率改变。
第1篇一、引言压力传感器作为一种重要的传感器,广泛应用于工业自动化、汽车电子、医疗设备等领域。
本报告通过对压力传感器的实践操作,对其原理、特性、应用等方面进行了深入研究和探讨。
二、压力传感器原理及分类1. 原理压力传感器是将压力信号转换为电信号的装置。
其基本原理是利用弹性元件(如膜片、波纹管等)在受力后发生形变,通过电阻、电容、电感等元件将形变转换为电信号。
2. 分类根据工作原理,压力传感器可分为以下几类:(1)弹性元件式压力传感器:利用弹性元件的形变将压力信号转换为电信号,如膜片式、波纹管式等。
(2)压阻式压力传感器:利用半导体材料的压阻效应将压力信号转换为电信号。
(3)电容式压力传感器:利用电容元件的电容值随压力变化而变化的特点,将压力信号转换为电信号。
(4)压电式压力传感器:利用压电材料的压电效应将压力信号转换为电信号。
三、实践操作1. 实验目的通过对压力传感器的实践操作,了解压力传感器的工作原理、特性及应用,掌握压力传感器的选用、安装和维护方法。
2. 实验器材(1)压力传感器:膜片式、压阻式、电容式、压电式各一台。
(2)信号调理电路:放大器、滤波器等。
(3)数据采集设备:数据采集卡、电脑等。
(4)实验台、电源、连接线等。
3. 实验步骤(1)连接压力传感器:将压力传感器与信号调理电路连接,确保连接正确。
(2)搭建实验电路:将信号调理电路与数据采集设备连接,搭建实验电路。
(3)调试实验电路:调整放大器、滤波器等参数,使实验电路正常工作。
(4)实验数据采集:对压力传感器施加不同压力,采集实验数据。
(5)数据处理与分析:对采集到的实验数据进行处理和分析,绘制压力-输出电压曲线。
四、实验结果与分析1. 实验结果通过实验,得到了不同压力下四种压力传感器的输出电压曲线,如图1-图4所示。
图1 膜片式压力传感器输出电压曲线图2 压阻式压力传感器输出电压曲线图3 电容式压力传感器输出电压曲线图4 压电式压力传感器输出电压曲线2. 实验分析(1)膜片式压力传感器:输出电压与压力呈线性关系,灵敏度高,稳定性好,但动态响应速度较慢。
《基于皮电和脉搏波的心理压力检测系统设计与研究》篇一一、引言随着现代社会节奏的加快,心理压力问题日益凸显,成为影响人们身心健康的重要因素。
心理压力的准确检测与评估对于预防和干预心理疾病具有重要意义。
本文提出了一种基于皮电(Galvanic Skin Response, GSR)和脉搏波的心理压力检测系统,旨在通过生物电信号和生理参数的监测与分析,实现对心理压力的实时检测与评估。
二、系统设计(一)硬件设计本系统主要由传感器模块、信号处理模块、数据传输模块和电源模块组成。
传感器模块包括皮电传感器和脉搏波传感器,用于采集人体生物电信号和生理参数。
信号处理模块负责对传感器采集的信号进行滤波、放大和数字化处理,以便于后续分析。
数据传输模块负责将处理后的数据传输至上位机进行存储和分析。
电源模块为整个系统提供稳定的电源供应。
(二)软件设计软件部分主要包括信号处理算法、心理压力评估算法和用户界面。
信号处理算法负责对采集的信号进行预处理,提取出有用的信息。
心理压力评估算法则根据提取的信息,结合心理学理论,对心理压力进行评估。
用户界面负责与用户进行交互,显示检测结果和评估报告。
三、技术研究(一)皮电与脉搏波信号的采集与处理皮电和脉搏波信号的采集是本系统的关键步骤。
通过对皮电传感器和脉搏波传感器的合理布局和校准,确保信号的准确性和稳定性。
在信号处理方面,采用数字滤波技术、信号放大技术和数字化技术,对采集的信号进行预处理,提取出与心理压力相关的特征信息。
(二)心理压力评估算法研究心理压力评估算法是本系统的核心部分。
通过对大量心理压力相关数据的分析和研究,建立心理压力与生物电信号和生理参数之间的关联模型。
结合心理学理论,对提取的特征信息进行综合分析,实现对心理压力的准确评估。
四、实验与分析为了验证本系统的有效性,我们进行了大量实验。
实验结果表明,本系统能够准确采集皮电和脉搏波信号,并提取出与心理压力相关的特征信息。
通过心理压力评估算法的分析,实现对心理压力的准确评估。
Design of high precision pressure-resistance type pressure sensor detecting systemXueliang Zhao 1,a 1Center For Hydrogeology And Environmental Geology Survey,CGS, Key Laboratory of Geological Environment Monitoring Technology,Ministry of Land and Resources, Baoding of Hebei Province China , Shuren Gao 2, Tao Wang 2 and Yingping Guo 12Petroleum Production Engineering Research Institute, Huabei Oilfield Company, CNPC, Renqiu ChinaAbstract. The high precision detecting circuit is designed for the KELLER 3L sensor which is the pressure-resistance pressure sensor, and the water level long time monitoring of groundwater is accomplished. Through designing the power management circuit, the pressure sensor driver circuit, the signal conditioning circuit and temperature compensation method, the problem of zero drift and temperature drift is solved. The experiment shows that the pressure detecting instrument has the very good application prospect with the advantages of small size, low power consumption, high precision and so on.Keywords: pressure-resistance type pressure sensor; water level monitoring; detecting circuit; groundwater.1 IntroductionThe high precision monitoring of groundwater level is very important for the groundwater resources management and groundwater environment quality. The measurement of water level need use the pressure sensor. The pressure sensor includes float-type and pressure-resistance type generally. Along with the development of the science and technology, automation, online-monitoring, intelligence and high precision are the trend of groundwater level monitoring. The float-type pressure monitoring instrument has not matched the demand because of the disadvantages for example low precision, poor sensitivity and so on. The pressure-resistance pressure sensor can transform the water level into voltage signal, and is very easy to accomplish the long-time online high precision monitoring. However, the pressure sensor driver circuit and the temperature compensation are the key factors for the measurement precision. Aim at the groundwater level demand the power management circuit, the pressure sensor driver circuit and temperature measuring circuit are designed based on the pressure-resistance pressure sensor. The measurement accuracy is improved greatly, and the water level monitoring instrument is very suit to the demand at present.2 The KELLER 3L pressure sensorThe KELLER 3L pressure sensor is a pressure-resistance pressure sensor which is manufactured by diaphragm technology based on laser welding. It’s size isΦ9.5×4.2mm, and the pressure scale is 20 toa200 bar. The accuracy is 0.25%FS. The bridge circuit is included inside the sensor. It is very easy to be integrated with the detecting circuit and instrumentation housing. The groundwater level monitoring instrument is suit to be installed inside the monitoring wells to long-time monitor the groundwater situation based on the 3L pressure sensor. The internal equivalent circuit diagram of 3L pressure sensor is shown in the figure 1.Figure 1. The internal equivalent circuit diagram of 3L pressure sensor3 Hardware designThe MSP430F548[5] is adopted as the main processor. The whole instrument includes six parts: the processor minimum system, the constant current source pressure sensor driver circuit, the constant current source temperature electrode driver circuit, the signal transmission circuit, the power manage circuit and the host computer. The processor minimum system controls other parts to work orderly and collect the pressure sensor analog signal and temperature sensor signal. The pressure-resistance pressure sensor is drove by the constant current source pressure sensor driver circuit. The temperature sensor is drove by the constant current source temperature electrode driver circuit. The different part’s supplies are managed by the power manage circuit. The monitoring result data is transmitted to the host computer by the 485 bus. The water level data and water temperature data are saved and displayed by the host computer. The whole block diagram is shown in the figure 2.Figure 2. The whole block diagram2.1 MSP430F5438 and ADC12 moduleThe MSP430F5438 is the 16 bit ultra-lowpowersinglechip of TI based on the RISCarchitectures. The current can achieve u a level in the conditionofultra-low powerconsumption by the power management module of MSP430F5438. The multichannel and high precision ADC12 module is integrated into the MSP430F5438 [5]. It includes ADC core, 2.5V/1.5V reference voltage generator and a variety of clock source etc. The ADC12 module can meet manydatacollectionapplications, so that the hardware design can been greatlysimplified. The ADC12 block diagram is shown in figure 3.Figure 3. The ADC12 block diagramThe A0 channel and A1 channel are chosen to collect the signal of the thermostat sensor and the pressure-resistance type pressure sensor. The registers are set as follow.ADC12CTL2=ADC12RES_2;ADC12ICTL0=ADC12ON+ADC12SHT0_12;ADC12CTL1=ADC12SSEL_1+ADC12DIV0+ADC12SHP+ADC12CONSEQ_03.2 The constant current source pressure sensor driver circuitThe pressure-resistance pressure sensor can be drove by the constant current source and the constant voltage source. The constant current source which is compared with constant voltage source is benefitto reduce the temperature influence. The constant current source driver circuit is designed to let the pressure-resistance type pressure sensor work normally [1]. The circuit is shown in the figure 4.Figure 4.The constant current source driver circuitThe constant current source driver circuit is constructed by operational amplifiers A1, A2 and resistances. The operational amplifiers A1 and A2 use LM358. The current formula is shown as follow:I=-V0R3/R1R5 (R1×R4=R2×R3)The current which is generated by Fig.4 is 1mA according to the KELLER 3L pressure sensor’s demand.3.3 Pressure sensor signal conditioning circuitThe output resistance of pressure-resistance type pressure sensor is very high. Therefore, the pressure sensor signal conditioning circuit need have very bigger input resistance than the output resistance to guarantee the normal work of pressure sensor [2]. The pressure sensor signal conditioning circuit is shown in the figure 5.Figure 5.The signal conditioning circuitThe first stage co phase parallel connection differential amplifier circuit is constructed by the operational amplifiers A1 and A2. The second stage amplifier circuit is designed by A3 to improve the gain. The signal conditioning circuit has high input resistance, CMRR and open-loop gain with small offset current and noise, and can inhibit the common-signal interference effectively. The value of R1, R2, R3 and R4 are R. The value of R5 and R6 are Rf. The value of output voltage can be adjusted by the Adjustable resistance W. The value of output voltage is calculated according to the formula as follow.4 Software designThe system use the methodofmodularization, and the software program is written by C programming language in the IAR Embedded Workbench. The whole program include five parts: the main program, the supply management program, the pressure sensor signal acquisition program, the temperature measurement program, data handle program [3], the 485 communication program. The system program flow chart is shown in figure 6.Figure 6. The system program diagram4.1 Temperature compensation methodThe temperature is the main reason which influences the pressure measurement accuracy. So the temperature compensation must be carried out. The least square method is used to build the two non-linear function relationship including the relation of pressure sensor output voltage-pressure and the relation of temperature-Curve coefficient [4].The specific temperature compensation method includes three steps. Firstly, the curve equations need been built in different temperatures through experiments. Secondly, the curve equations are bulit between Curve coefficient which is in the first step and temperature. Finally, the final compensation equation is built through the first step and the second step.The DS18B20 which is a kind of digital temperature sensor is adopted to measure the groundwater temperature. The DS18B20 measurement circuit is very simply, and can minimum the whole hardware design the complexity.5 The application resultThe pressure-resistance type Pressure Sensor Detecting system’s performance is certificated by the analogy device which can analogy groundwater environment for example water pressure, watertemperature and water velocity of flow. The results are shown in table 1.Table 1.Pressure sensor detecting system’s performance experiment Temperature(°C) analogy pressor(KPa) measurement value(KPa) relative error(%)0 100 99.80 0.20 200 199.60 0.40 300 299.34 0.6610 100 99.61 0.39 200 199.48 0.52 300 299.30 0.7030 100 99.50 0.50 200 199.35 0.65 300 299.20 0.8045 100 99.36 0.64 200 199.37 0.63 300 299.20 0.80The table shows that the maximun relative error of pressor measurement system is 0.80% under the different temperature and pressure. The pressure measurement system is suit to be installed in the well to long-time online monitor the water level and water temperature with the advantages of small size, low power consumption, high precision and so on.6 ConclusionThe high accuracy pressure-resistance type pressure sensor measurement system is achieved finally by using the MSP430F5438A processor, the constant current source driver circuit, the signal conditioning circuit and temperature compensation. The laboratoryexperiment is carried out, and the result has very good effect. The measurement system has board prospectsinapplication with the advantage of low-power dissipation, simple structure and highreliability.AcknowledgmentThis research is Supported by National Natural Science Foundation of China No.41303089; Geological Survey Project of China No.121201012000150010; The special public welfare industry research of The Ministry of land and resources in China N0.201411083-3.References1.Hu Yuanyuan, Wang Dajun. Intelligent Design of Pressure Sensor Temperature CompensationBased on ATmegal6[J]. Instnmient Technique and Sensor, 2010,10:9-11.2.Cai Ying, Bi Peng. Pressure-resistance Type Pressure Sensor andDesign of Its ApplicationCircuit[J]. Measuremence and Overhaul,2002,22(5):12-14.3.Liu Peng, Yang Xueyou. Design of C Compensating Silicon Piezoresistive Sensor’ Error basedon MAX1452[J]. Instnmient Technique and Sensor, 2010,4:52-65.4.Ni Xiuhui, Zhang Linlin, Ren Guoxing.Design of High Precision ThermistorTanperatureMeasuranent Based on MSP430[J]. Instnmient Technique and Sensor,2009, 3:101-120.5.MSP430x5xx Family User’s Guide [J/OL].2008,.。
《面向压力评估的多生理信号采集和分析系统设计》篇一一、引言随着现代社会节奏的加快,压力已成为人们日常生活中普遍存在的问题。
长期的心理压力不仅对个体的心理健康产生严重影响,还可能引发一系列的生理疾病。
因此,准确、实时地评估个体的压力状态显得尤为重要。
多生理信号采集和分析系统作为现代医疗技术的重要部分,可以有效地监测和评估个体的生理状态,尤其是对压力的评估具有极高的应用价值。
本文将详细介绍面向压力评估的多生理信号采集和分析系统的设计。
二、系统设计目标本系统的设计目标主要包括:1. 高效、准确地采集多种生理信号,如心电、脑电、肌电等;2. 对采集的生理信号进行实时分析,以评估个体的压力状态;3. 提供友好的用户界面,方便用户操作和查看结果;4. 具备较高的稳定性和可靠性,保证长时间运行的准确性。
三、系统架构设计本系统采用模块化设计,主要包括以下几个部分:1. 生理信号采集模块:负责采集心电、脑电、肌电等多种生理信号。
采用高精度的传感器和电路设计,确保信号的准确性和稳定性。
2. 信号处理与分析模块:对采集的生理信号进行预处理,如滤波、放大、数字化等,然后通过算法分析,评估个体的压力状态。
该模块采用先进的机器学习和人工智能技术,实现自动化的压力评估。
3. 用户界面模块:提供友好的用户界面,方便用户操作和查看结果。
该模块采用图形化界面设计,直观地展示生理信号波形和压力评估结果。
4. 数据存储与传输模块:负责数据的存储和传输。
采用数据库技术对数据进行管理,支持数据的导入、导出和备份。
同时,通过无线传输技术,实现数据的远程传输和共享。
四、系统工作流程本系统的工作流程如下:1. 用户通过用户界面模块设置相关参数,启动系统。
2. 生理信号采集模块开始工作,采集心电、脑电、肌电等多种生理信号。
3. 信号处理与分析模块对采集的生理信号进行预处理和算法分析,评估个体的压力状态。
4. 用户界面模块展示生理信号波形和压力评估结果,方便用户查看。
毕业设计---智能压力传感器系统设计_智能压力传感器原理毕业设计任务书一、题目智能压力传感器系统设计二、指导思想和目的要求1. 培养学生综合运用所学职业基础知识、职业专业知识和职业技能,提高解决实际问题的能力,从而达到巩固、深化所学的知识与技能;2. 培养学生建立正确的科学思想,培养学生认真负责、实事求是的科学态度和严谨求实作风;3. 培养学生调查研究,收集资料,熟悉有关技术文件,锻炼学生的科研工作能力和培养学生的团结合作攻关能力。
三、主要技术指标1. 培养学生综合运用所学职业基础知识、职业专业知识和职业技能,提高解决实际问题的能力,从而达到巩固、深化所学的知识与技能;2. 培养学生建立正确的科学思想,培养学生认真负责、实事求是的科学态度和严谨求实作风;3. 培养学生调查研究,收集资料,熟悉有关技术文件,锻炼学生的科研工作能力和培养学生的团结合作攻关能力。
三、主要技术指标本设计主要设计一个智能压力传感器的设计,要求如下:被测介质:气体、液体及蒸气量程: 0Pa ~500pa综合精度:±0.25%FS供电: 24V Dc(12~36VDC )介质温度:-20~150℃环境温度:-20~85℃过载能力: 150%FS响应时间:≤10mS稳定性:≤±0.15%FS/年能实时显示目标压力值和保存参数,并能和上位机进行通信,并具有较强的抗干扰能力。
所需要完成的工作:1. 系统地掌握控制器的开发设计过程,相关的电子技术和传感器技术等,进行设计任务和功能的描述;2. 进行系统设计方案的论证和总体设计;3. 从全局考虑完成硬件和软件资源分配和规划,分别进行系统的硬件设计和软件设计;4. 进行硬件调试,软件调试和软硬件的联调;5. 查阅到15篇以上与题目相关的文献,按要求格式独立撰写不少于15000字的设计说明书及1.5万(或翻译成中文后至少在3000字以上)字符以上的英文翻译。
四、进度和要求第01周----第02周:查阅相关资料,并完成英文翻译;第03周----第04周:进行市场调查,给出系统详细的设计任务和功能,进行系统设计方案的论证和总体设计;第05周----第07周:完成硬件电路设计,并用PROTEL 画出硬件电路图;第08周----第10周:完成软件模块设计与调试;第11周----第12周:进行硬件调试,软件调试和软硬件的联调;第13周----第14周:撰写毕业设计论文;五、主要参考书及参考资料1. 单片机原理及应用,张鑫等,电子工业出版社2. MCS51单片机应用设计,张毅刚等,哈尔滨工业大学3. MCS51系列单片机实用接口技术,李华等,北京航天航空大学4. PROTEL2004电路原理图及PCB 设计,清源科技,机械工业出版社学,2005.56. 单片机应用技术选编,何立民,北京航空航天大学出版社,20007. 检测技术与系统设计,张靖等,中国电力出版社,2001 5. 基于MCS-51系列单片机的通用控制模块的研究,曹卫芳,山东科技大摘要压力是工业生产过程中的重要参数之一。
心梗后化学反射的变化一评估心梗后自主神经功能的新指标同济医科大学附属同济医院心血管内科研究生韩宏伟导师王琳教授中文摘要/自主神经功能紊乱与心性猝死关系密切,通过分析自主神、经功能可以预测心性猝死的风险大小。
冠心病人心梗后自主神经功能受损,心性猝死风险增加,因而有必要选取适合的指标对自主神经功能进行准确评估,以此识别猝死高危人群,防治猝死,改善一心梗预后。
目前常用来反映自主神经功能的指标有:压力反射敏感性(BRS)、心率变异性(HRV)等。
新近有学者提出了一个新的指标:化学反射敏感性(ChRS)。
j本文通过临床观察和动物实验两部分,对心梗后化学反射的变化进行了初步研究,并结合对压力反射的分析,比较了BRS、ChRS在猝死风险分析中的价值,对二者的方法学和心梗后变化的产生机制进行了初步探讨。
,,方法:临床观察心梗组、对照组各10例,分别测定BRS、ChRS:÷动物实验中家兔20只,结扎冠状动脉形成心梗,分别测定心梗前和心梗后的BRS、ChRS。
以药物升高血压后观察反射性的一心率(RR间期)变化来测定BRS;以吸氧升高血氧分压观察反射性的心率(RR间期)变化来测定ChRS;电刺激诱发室颤测定家兔心室致颤阂(VFT)。
结果:i.临床观察中,心梗组ChRS显著低于对照组(1.96±0.92vS5.28±0.80ms/mmHg,P<O.001);两组BRS有显著性差异(2.83±0.87VS5.58±0.72ms/mmHg.P<O.001)。
2.动物实验中,家兔心梗后ChRS显著低于心梗前(1.95±0.39VS2.70±0.63ms/mmHg,P<O.001);心梗前后BRS有显著性差异(3.07±0,61VS1.71±0.34ms/mmHg,P<O.001)。
3.家兔心梗后的ChRS与VFT相关系数:r=O.825.p<O.001:、BRS与VFT相关系数:r=O.719,p<O.002。
中国组织工程研究与临床康复 第14卷 第52期 2010–12–24出版Journal of Clinical Rehabilitative Tissue Engineering Research December 24, 2010 Vol.14 No.52P .O. Box 1200, Shen yan g 110004 9790School of Biomedical Engineering, Capital Medical University, Beijing 100069, ChinaZhang Yun, Associate professor, School of BiomedicalEngineering, Capital Medical University, Beijing 100069, Chinamail_zhangyun@Supported by: the Basic ClinicalProgram of Capital Medical University, No. 2004JK31*Received: 2010-07-28 Accepted: 2010-11-23首都医科大学生物医学工程学院,北京市 100069张韫,女,汉族,1983年首都医科大学毕业,副教授,主要从事生物医学信息学研究。
mail_zhangyun @中图分类号:R318 文献标识码:B文章编号:1673-8225 (2010)52-09790-04收稿日期:2010-07-28修回日期:2010-11-23 (20100728001/G ·A)压力反射敏感性检测系统的设计与实现*张 韫,王 锐,贾三庆Design and implementation of baroreflex sensitivity monitor systemZhang Yun, Wang Rui, Jia San-qingAbstractBACKGROUND: In various dangerous layering techniques, baroreflex sensitivity (BRS) is a reliable, accurate, independent predictor for arrhythmia and sudden cardiac death following acute myocardial infarction. Studies commonly utilize pressure and electrocardiogram measurements apparatus to calculate data for BRS.OBJECTIVE: To design and develop BRS monitor system to predict sudden cardiac death reliably and accurately after acute myocardial infarction.METHODS: The developed BRS monitor system was used to acquire all patients’ original pulse wave data using electronic blood pressure monitor which also was self-designed. The electronic blood pressure monitor was accomplished by oscillometric method. Pulse wave signals underwent processes of filtering of hardware and software and magnifying for calculating systolic pressure and diastolic pressure. Subsequently, the heart rate was conversed according to the blood pressure value and finally BRS value was calculated by both average values of blood pressure and heart rate. The blood pressure of the subjects was forcibly changed by intravenous injection of vasoactive substances.RESULTS AND CONCLUSION: Self-designed BRS monitor system consists of the circuit of the electronic blood pressure monitor, pulse wave processing procedures and BRS calculation program. First, electronic blood pressure monitor was used to get pulse wave data. Then, we wrote computer program that was used to process pulse wave to acquire two groups of data of the blood pressure and heart rate. Afterwards, BRS value was calculated with changing average values of the heart rate and blood pressure. In conclusion, depending on BRS value, we can predict possibility of occurring sudden cardiac death who suffered from acute myocardial infarction. Because the device acquires original data which is used to calculate BRS value only from electronic blood pressure monitor, it is convenient to take. Therefore it is possible to visit patients of acute myocardial infarction at any moment. The development of this monitoring system may provide a better idea to effectively control occurrence of sudden cardiac death after acute myocardial infarction in clinic.Zhang Y, Wang R, Jia SQ. Design and implementation of baroreflex sensitivity monitor system.Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2010;14(52): 9790-9793. [ ]摘要背景:在诸多危险分层技术中,压力反射敏感性是比较可靠和准确的急性心肌梗死后心律失常和心脏性猝死的独立预报因子。
至今的报道显示,有关压力反射敏感性的研究都是分别利用血压测量设备和心电测量设备采集计算压力反射敏感性所需的数据。
目的:为准确地预测急性心肌梗死后心脏性猝死的发生,设计并开发了压力反射敏感性检测系统。
方法:研发的压力反射敏感性检测系统是使用自行设计的电子血压计采样患者的脉搏波,电子血压计是采用示波法实现的。
脉搏波信号经软硬件滤波、放大和定标后,用于计算收缩压和舒张压。
而后,根据2次收缩压的差值得到心率值,再由血压和心率的变化均值计算出压力反射敏感性值。
采用静脉注射血管活性物质强制造成患者血压的变化。
结果与结论:自行设计的压力反射敏感性检测系统由电子血压计电路、脉搏波处理程序和压力反射敏感性计算程序3部分组成。
首先,使用电子血压计获得脉搏波。
然后,编程对脉搏波数据进行处理,以便从脉搏波中获得心率和血压的变化均值。
最后,利用心率和血压的变化值计算压力反射敏感性,并根据该值对患者急性心肌梗死后心脏性猝死发生的可能性进行判断。
由于该系统只用电子血压计获取计算压力反射敏感性所需的全部原始数据,故具有体积小和方便携带等优点,不仅可以作为急性心肌梗死患者随访的医疗设备,而且为临床有效控制急性心肌梗死后发生心脏性猝死提供了很好的思路。
关键词:压力反射敏感性;急性心肌梗死;数字血压计;示波法;设计 doi:10.3969/j.issn.1673-8225.2010. 52.025张韫,王锐,贾三庆. 压力反射敏感性检测系统的设计与实现[J].中国组织工程研究与临床康复,2010,14(52):9790-9793. [ ]0 引言近20多年来,随着生活水平的提高和生活节奏的加快,心血管疾病的发病率逐渐增高。
大量实验室及临床研究表明,压力反射敏感性(baroreflex sensitivity, BRS)能确切反映自主神经尤其是迷走神经对心血管的调节作用,是评估心脏自主神经功能状态的有效方法之一[1]。
心力衰竭、急性心肌梗死和高血压等多种心血管疾病的发生发展均与BRS 的改变有关[2-4]。
其中患急性心肌梗死后的一两年内,患者继发心律不齐和心脏性猝死的危险大幅度提高。
因此,如何对心脏性猝死进行危险分层,达到早发现、早治疗的研究受到医学界的广泛关注。
经大量临床研究发现,在诸多危险分层技术中,BRS张韫,等.压力反射敏感性检测系统的设计与实现ISSN 1673-8225 CN 21-1539/R CODEN: ZLKHAH9791 www.CRTER.org是比较可靠和准确的急性心肌梗死后心律失常和心脏性猝死的独立预报因子[5-6]。
BRS是指通过动脉内血压变化引起反射性窦性心率变化的敏感程度[7]。
心脏受交感和迷走神经双重支配。
刺激迷走神经引起的反应较交感神经更快,且迷走神经可使心脏的电生理稳定。