高中数学基本知识点大全最新整理
- 格式:docx
- 大小:37.22 KB
- 文档页数:2
高中数学259个知识点一、集合与函数概念。
1. 集合。
- 集合的定义:把一些元素组成的总体叫做集合。
- 集合元素的特性:确定性、互异性、无序性。
- 集合的表示方法:列举法、描述法、韦恩图法。
- 集合间的基本关系:子集(如果集合A的所有元素都是集合B的元素,那么A是B的子集,记作A⊆ B)、真子集(如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂neqq B)、相等(A = B当且仅当A⊆ B且B⊆ A)。
- 集合的基本运算:- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B = {xx∈ A或x∈ B}。
- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
2. 函数及其表示。
- 函数的概念:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
- 函数的三要素:定义域、值域、对应关系。
- 函数的表示方法:解析法、图象法、列表法。
3. 函数的基本性质。
- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。
- 减函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1)>f(x_2),那么就说函数y = f(x)在区间D上是减函数。
- 奇偶性:- 奇函数:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)= - f(x),且0∈ D时f(0)=0,则函数y = f(x)是奇函数。
- 偶函数:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)=f(x),则函数y = f(x)是偶函数。
高中数学公式及知识点总结大全(精华版)在高中数学学习中,掌握数学公式和知识点是至关重要的。
本文将为大家总结高中数学中常用的公式和知识点,旨在帮助同学们更好地学习和掌握数学知识,提高数学成绩。
一、基础知识点总结1. 直线与平面几何- 直线的方程:一般式、点斜式、两点式等- 直线与角的关系:平行线、垂直线等- 圆的性质:圆的方程、弧长、面积等2. 集合与不等关系- 集合的运算:并集、交集、差集等- 不等关系的性质:大于、小于、等于等3. 函数- 函数的性质:奇函数、偶函数、单调性等- 常用函数:一次函数、二次函数、指数函数等- 函数的图像及性质:拐点、极值点等二、常用公式总结1. 代数式与因式分解- (a+b)² = a²+2ab+b²- (a-b)² = a²-2ab+b²- a²-b² = (a+b)(a-b)2. 几何与三角函数- 三角函数基本关系:sin²θ+cos²θ=1- 角平分线定理:直角三角形中,垂直边上的高等于斜边上的高3. 二次函数与方程- 一元二次方程:ax²+bx+c=0- 二次函数顶点坐标:(-b/2a, -Δ/4a)三、高中数学实例应用1. 解析几何- 坐标系、直线、圆等的相关性质- 平面图形的运用:平行四边形、三角形、梯形等2. 统计与概率- 统计学基本概念:均值、方差、标准差等- 概率论基础知识:样本空间、事件的概率等通过本文的数学公式及知识点总结,希望能够帮助广大高中同学更深入地了解数学知识,提高学习成绩。
数学虽然有一定的难度,但只要勤奋学习、不断总结经验,相信大家一定能够在数学的道路上越走越远。
祝各位同学学习进步,取得优异成绩!。
高中数学知识点大全一、代数与函数1. 数系与数的性质- 自然数- 整数- 有理数- 实数- 复数2. 代数基本运算法则- 加法法则- 减法法则- 乘法法则- 除法法则3. 一元一次方程与一元一次不等式- 方程的基本概念- 方程的解集与解的判定- 不等式的基本概念- 不等式的解集与解的判定4. 多项式与因式分解- 多项式的定义与运算- 因式分解的基本方法5. 二次函数- 二次函数的定义与性质- 二次函数的图像与性质- 二次函数与一元一次方程的关系6. 幂与指数函数- 幂函数的定义与性质- 指数函数的定义与性质7. 对数函数- 对数函数的定义与性质- 对数函数与指数函数的关系8. 三角函数- 正弦、余弦、正切等三角函数的定义与性质 - 三角函数的图像与性质- 三角函数的运算二、几何与图形1. 平面几何基本概念- 点、线、面、角的定义与性质2. 直线与圆- 直线的性质与分类- 圆的性质与分类3. 三角形- 三角形的定义与分类- 三角形的性质与判定4. 图形的相似与全等- 相似图形的性质与判定- 全等图形的性质与判定5. 圆锥与圆柱- 圆锥的性质与分类- 圆柱的性质与分类6. 空间几何基本概念- 空间点、直线、平面的定义与性质7. 空间几何图形- 四面体、棱柱、棱锥、正多面体的性质与分类三、概率与统计1. 随机事件与概率- 随机事件的基本概念- 概率的计算与性质2. 统计与数据分析- 数据的收集与整理- 数据的组织与展示- 常见统计指标的计算与应用四、数学推理与证明1. 数学归纳法- 数学归纳法的基本思想与应用2. 数学证明与逻辑推理- 直接证明法- 反证法- 数学归纳法证明五、解析几何与坐标系1. 平面直角坐标系- 平面直角坐标系的基本概念与性质 - 坐标变换与距离公式2. 在平面直角坐标系中的图形- 直线与方程- 圆与方程- 椭圆与方程- 双曲线与方程3. 空间直角坐标系- 空间直角坐标系的基本概念与性质 - 坐标变换与距离公式4. 在空间直角坐标系中的图形- 空间中的直线- 空间中的平面- 空间中的曲线与曲面以上是高中数学的主要知识点,通过对这些知识点的学习和掌握,可以为后续的数学学习打下坚实的基础,帮助学生更好地理解和应用数学。
高中数学知识点大全(一)一、函数与极限1. 函数概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。
(2)函数的表示法:解析法、表格法、图象法、分离法。
(3)函数的基本性质:单调性、奇偶性、周期性、对称性。
2. 基本初等函数(1)常数函数:y=c(c为常数)(2)幂函数:y=x^α(α为实数)(3)指数函数:y=a^x(a>0,且a≠1)(4)对数函数:y=log_ax(a>0,且a≠1)(5)三角函数:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。
(6)反三角函数:反正弦函数、反余弦函数、反正切函数、反余切函数。
3. 函数的极限(1)数列的极限:设{a_n}是一个数列,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正整数N,使得当n>N时,|a_nA|<ε,那么就称A是数列{a_n}的极限,记作lim(n→∞)a_n=A。
(2)函数的极限:设函数f(x)在点x_0的某一去心邻域内有定义,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正数δ,使得当0<|xx_0|<δ时,|f(x)A|<ε,那么就称A是函数f(x)当x趋向于x_0时的极限,记作lim(x→x_0)f(x)=A。
(3)无穷小量与无穷大量:无穷小量是指极限为0的量,无穷大量是指极限为无穷的量。
(4)极限的运算法则:四则运算法则、复合函数的极限运算法则。
(5)极限存在的条件:夹逼定理、单调有界定理。
二、导数与微分1. 导数的概念(1)导数的定义:设函数y=f(x)在点x_0的某一邻域内有定义,如果极限lim(Δx→0)[f(x_0+Δx)f(x_0)]/Δx存在,那么就称这个极限为函数y=f(x)在点x_0处的导数,记作f'(x_0)。
高中数学知识点大全(完整版)高中数学知识点大全一、集合、简易逻辑1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。
二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。
四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。
五、平面向量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面向量的坐标表示;5、线段的定比分点;6、平面向量的数量积;7、平面两点间的距离;8、平移。
六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含绝对值的不等式。
七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简单线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。
八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简单几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简单几何性质;6、抛物线及其标准方程;7、抛物线的简单几何性质。
高中数学知识点总结全(最新)一、集合与函数概念1. 集合的基本概念集合的定义:集合是确定的、互不相同的对象的全体。
元素与集合的关系:属于(∈)、不属于(∉)。
集合的表示方法:列举法、描述法、图示法。
2. 集合的基本运算并集(∪):由两个集合的所有元素组成的集合。
交集(∩):由两个集合的共同元素组成的集合。
补集(C):全集中不属于某集合的元素组成的集合。
差集():由一个集合中不属于另一个集合的元素组成的集合。
3. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
函数的三要素:定义域、对应关系、值域。
4. 函数的性质单调性:增函数、减函数。
奇偶性:奇函数、偶函数。
周期性:存在一个非零常数T,使得对于定义域内的任意x,都有f(x+T) = f(x)。
最值:最大值、最小值。
二、基本初等函数1. 一次函数定义:形如y = kx + b(k≠0)的函数。
图像:一条直线。
性质:单调性(k>0时增,k<0时减)、截距(b为y 轴截距)。
2. 二次函数定义:形如y = ax² + bx + c(a≠0)的函数。
图像:一条开口向上或向下的抛物线。
性质:顶点(b/2a, c b²/4a)、对称轴(x = b/2a)、单调性、最值。
3. 指数函数定义:形如y = a^x(a>0且a≠1)的函数。
图像:过点(0,1),当a>1时单调递增,当0<a<1时单调递减。
性质:无界性、单调性、特殊点。
4. 对数函数定义:形如y = log_a(x)(a>0且a≠1)的函数。
图像:过点(1,0),当a>1时单调递增,当0<a<1时单调递减。
性质:定义域(x>0)、单调性、特殊点。
5. 三角函数正弦函数:y = sin(x),周期为2π,图像为波形曲线。
高中数学知识点总结归纳(完整版)高中数学知识点总结归纳(完整版)高中数学是一门重要的学科,涵盖了许多不同的知识点和概念。
在高中数学学习过程中,学生需要掌握并理解这些知识点,并能够灵活运用于解决各种数学问题。
本文将对高中数学的各个知识点进行总结归纳,帮助学生们更好地理解和掌握数学。
1.代数部分1.1.一元一次方程与不等式1.1.1.一元一次方程的解法:通过加减法和乘除法得出变量的值。
1.1.2.一元一次不等式的解法:通过加减法,乘除法和绝对值法得出变量的范围。
1.2.二元一次方程组与不等式组1.2.1.二元一次方程组的解法:通过消元法、代入法或加减法得出未知数的值。
1.2.2.二元一次不等式组的解法:通过画图法或代入法,求出未知数的范围。
1.3.整式与分式1.3.1.整式的加减乘除运算:根据指数法则进行运算,化简表达式。
1.3.2.分式的加减乘除运算:进行通分、约分、再进行运算,化简表达式。
1.4.根式1.4.1.根式的化简:通过提取公因式或有理化分母等方法化简根式。
1.4.2.根式的运算:通过合并同类项或分解因式的方法进行根式的加减乘除运算。
1.5.二次函数1.5.1.二次函数的定义:y=ax²+bx+c (a≠0),其中a、b、c为常数。
1.5.2.二次函数的性质:顶点坐标、对称轴、开口方向、零点、图像变换等。
1.5.3.二次函数的图像:根据二次函数的性质画出函数图像,分析函数行为。
2.几何部分2.1.平面几何2.1.1.平面几何的基本概念:点、线、面、角、相似等概念的定义。
2.1.2.平面几何的性质:线段中点定理、垂直角定理、平行线性质等。
2.1.3.平面图形的面积与体积:长方形、正方形、三角形、梯形等图形的面积计算方法。
2.2.立体几何2.2.1.立体几何的基本概念:点、线、面、体、棱、顶点等概念的定义。
2.2.2.立体图形的体积与表面积:长方体、正方体、圆柱体、圆锥体等图形的体积和表面积计算方法。
高中数学重点知识归纳2024一、函数与极限1. 函数的定义与性质(1)函数的定义:在某一变化过程中,如果有两个变量x和y,并且对于x在某一范围内的每一个值,按照对应法则f,都有唯一确定的y值与之对应,那么就称y是x的函数,记作y=f(x)。
(2)函数的性质:单调性、奇偶性、周期性、有界性。
2. 函数的图像与变换(1)函数图像:函数的图像是所有函数值对应的点在坐标系中的集合。
(2)函数变换:函数图像的平移、伸缩、对称等变换。
3. 初等函数(1)幂函数:y=x^α(α为实数)。
(2)指数函数:y=a^x(a为正常数)。
(3)对数函数:y=log_a x(a为正常数)。
(4)三角函数:y=sin x、y=cos x、y=tan x等。
4. 函数极限(1)数列极限:当n趋向于无穷大时,数列{a_n}的极限是A,记作lim(n→∞)a_n=A。
(2)函数极限:当x趋向于x_0时,函数f(x)的极限是A,记作lim(x→x_0)f(x)=A。
二、导数与微分1. 导数的定义与计算(1)导数的定义:函数在某一点x_0的导数是自变量在该点的增量与函数值增量的比值在增量趋向于0时的极限。
(2)导数的计算:利用导数的四则运算法则、复合函数的导数法则、隐函数的导数法则等。
2. 导数的应用(1)切线斜率:函数在某一点x_0的导数表示该点切线的斜率。
(2)函数的单调性:利用导数的符号判断函数的单调性。
(3)函数的极值:利用导数为0的点判断函数的极值。
(4)函数的最值:利用导数和单调性判断函数的最值。
3. 微分(1)微分的定义:函数在某一点x_0的微分是自变量在该点的增量与函数值增量的比值乘以自变量的增量。
(2)微分的计算:利用微分的四则运算法则、复合函数的微分法则等。
三、积分与级数1. 定积分(1)定积分的定义:函数在区间[a, b]上的定积分是自变量在该区间上的积分和的极限。
(2)定积分的计算:利用定积分的基本性质、牛顿-莱布尼茨公式等。
高中数学知识点总结及公式大全1.函数与方程(1)函数的概念、性质及表示方法(2)一次函数、二次函数、幂函数、指数函数、对数函数的性质和图像(3)函数的运算(4)一次方程、二次方程、一元高次方程的解法(5)多项式方程、分式方程的解法(6)不等式的解法2.数列与数学归纳法(1)数列的概念及表示方法(2)等差数列和等比数列的性质和求和公式(3)递推数列与通项公式(4)数学归纳法的原理和应用3.几何与三角函数(1)平面几何的基本概念和性质(2)三角函数的基本概念和性质(3)三角恒等式与解三角方程(4)解三角形(5)平面向量的概念和运算(6)解向量的应用问题4.数与图的关系(1)直角坐标系与平面图形的性质(2)平面图形的对称性质与判定方法(3)空间图形的投影与视图(4)立体图形的表面积与体积5.概率与统计(1)概率的基本概念(2)古典概型与几何概型(3)事件的概率与计数原理(4)随机变量的概念和分布(5)统计的基本概念和方法(6)参数估计与假设检验1.一次函数的一般式方程:y=ax+b2.一次函数的斜率公式:a=(y2-y1)/(x2-x1)3.二次函数的一般式方程:y=ax^2+bx+c4.二次函数的顶点坐标公式:x= -b/(2a),y= -(b^2-4ac)/(4a)5.二次函数的判别式公式:△=b^2-4ac6.指数函数的定义域:(-∞,+∞)7.指数函数的性质:a^m * a^n= a^(m+n),a^(-n)=1/(a^n),(a^m)^n= a^(mn)8.对数函数的性质:log(xy)=log(x)+log(y),log(x/y)=log(x)-log(y),log(a^n)=nlog(a)9.等差数列的通项公式:an=a1+(n-1)d10.等差数列的求和公式:Sn=n/2(a1+an)11.等比数列的通项公式:an=a1*r^(n-1)12.等比数列的求和公式:Sn=a1(1-r^n)/(1-r)13.三角函数的互余关系:sin(π/2-θ)=cos(θ),tan(π/2-θ)=cot(θ),sec(π/2-θ)=csc(θ)14.三角函数的和差化积公式:sin(α±β)=sin(α)cos(β)±cos(α)sin(β),cos(α±β)=cos(α)cos(β)∓sin(α)sin(β)15.立体图形的表面积和体积的公式:长方体的表面积=2(ab+bc+ac),长方体的体积=abc,球体的表面积=4πr^2,球体的体积=(4/3)πr^3。
高中数学知识点总结一、三角函数【1】以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=x r ,csc α=yr。
【2】同角三角函数平方关系:1cos sin 22=+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ;同角三角函数倒数关系:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα;同角三角函数相除关系:αααcos sin =tg ,αααsin cos =ctg 。
【3】函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;对称轴是直线)(2Z k k x ∈+=+ππϕω,图象与直线B y =的交点都是该图象的对称中心。
【4】三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。
【5】=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1【6】二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tg2α=αα212tg tg -【7】三倍角公式是:sin3α=αα3sin 4sin 3-cos3α=ααcos 3cos 43-【8】半角公式是:sin2α=2cos 1α-±cos2α=2cos 1α+±tg2α=ααcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +。
高中数学基本知识点大全最新整理
高中数学一直是一个难点,想要学好数学一定要回归课本,学好基础知识。
下面小编为大家整理了高中数学基本知识点,供大家参考。
1、集合与常用逻辑用语
2、复数
3、平面向量
4、不等式、线性规划
5、计数原理与二项式定理
6、函数、基本初等函数的图像与性质
7、函数与方程、函数模型及其应用
8、导数及其应用
9、三角函数的图形与性质
1、配方法
通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。
配方法用的最多的是配成完全平方式,
它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为
数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因
式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相
乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。
通常把未知数或变数称
为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部
分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃
至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两
个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以
及解一些有关二次曲线的问题等,都有非常广泛的应用。
感谢您的阅读,祝您生活愉快。