操作系统-第五章
- 格式:doc
- 大小:70.50 KB
- 文档页数:12
第五章设备管理1、试说明设备控制器的组成。
P163答:设备控制器的组成由设置控制器与处理机的接口;设备控制器与设备的接口;I/O 逻辑。
2、为了实现CPU与设备控制器间的通信,设备控制器应具备哪些功能?P162-P163 答:基本功能:接收和识别命令;数据交换;标识和报告设备的状态;地址识别;数据缓冲;差错控制。
3、什么是字节多路通道?什么是数组选择通道和数组多路通道?P164-P165 答:1、字节多路通道:这是一种按字节交叉方式工作的通道。
它通常都含有许多非分配型子通道,其数量可从几十到数百个,每个子通道连接一台I/O 设备,并控制该设备的I/O 操作。
这些子通道按时间片轮转方式共享主通道。
只要字节多路通道扫描每个子通道的速率足够快,而连接到子通道上的设备的速率不是太高时,便不致丢失信息。
2、数组选择通道:字节多路通道不适于连接高速设备,这推动了按数组方式进行数据传送的数组选择通道的形成。
3、数组多路通道:数组选择通道虽有很高的传输速率,但它却每次只允许一个设备数据。
数组多路通道是将数组选择通道传输速率高和字节多路通道能使各子通道(设备)分时并行操作的优点相结合而形成的一种新通道。
它含有多个非分配型子通道,因而这种通道既具有很多高的数据传输速率,又能获得令人满意的通道利用率。
4、如何解决因通道不足而产生的瓶颈问题?P166答:解决“瓶颈”问题的最有效的方法,便是增加设备到主机间的通路而不增加通道,就是把一个设备连接到多个控制器上,而一个控制器又连接到多个通道上。
多通路方式不仅解决了“瓶颈”问题。
而且提高了系统的可靠性,因为个别通道或控制器的故障不会使设备和存储器之间没有通路。
5、试对VESA及PCI两种总线进行比较。
P167答:1、VESA 该总线的设计思想是以低价位迅速点领市场。
VESA 总线的带宽为32 位,最高传输速率为132Mb/s。
VESA 总线仍存在较严重的缺点,它所能连接的设备数仅为2—4 台,在控制器中无缓冲,故难于适应处理器速度的不断提高,也不能支持后来出现的Pentium 微机。
第五章参考答案1、设备控制器位于设备与CPU之间,它要与CPU、设备进行通信。
设备控制器一般都由3部分构成:设备控制器与CPU的接口、设备控制器与设备的接口、I/O逻辑。
2、设备控制器应具备下列功能1)接收与识别命令:接收与识别CPU发送的命令,这些命令放在寄存器中。
由设备驱动程序进行解释与执行。
2)交换数据:3)标识与报告设备状态4)地址识别:如内存的每一个单元都有地址,每个设备已都有一个地址。
CPU就是通过这些地址来控制与识别设备。
5)数据缓冲:由于CPU和内存的速度较高,而I/O设备的速度较低,因此在他们中间必要通过缓冲区进行速度匹配。
6)差错控制9、引入缓冲主要原因有(1)缓和CPU与I/O设备间速度不匹配的矛盾。
凡是数据到达和离去速度不匹配的地方均可采用缓冲技术。
在操作系统中采用缓冲是为了实现数据的I/O操作,以缓解CPU与外部设备之间速度不匹配的矛盾,提高资源利用率(2)减少对CPU的中断次数(频率)。
14、1)安全分配方式:当进程发出I/O请求后,便进入阻塞状态,直到I/O完成才被唤醒。
不可能造成死锁2)不安全分配方式:在这种方式中,当进程提出I/O请求后,仍然进行运行,需要时又提出第二个I/O请求。
可能造成死锁。
设备独立性是指应用程序独立于具体使用的物理设备。
引入设备独立性有二:1)设备分配具有灵活性:当进程以物理设备名来请求某设备时,如果该设备已经分配,而尽管这是还有其它的相同设备正在空闲(但名字不同),该进程仍然要被阻塞。
但如果用逻辑设备名来请求,系统就会从这类设备中进行分配。
2)易于实现I/O重定向:/O重定向—用于I/O操作的设备可以更换(即重定向)而不必改变应用程序。
为了实现设备独立性必须引入逻辑设备与物理设备(设备的独立性是通过逻辑设备来实现的)。
在应用程序中使用的是逻辑设备(通过逻辑设备名来请求设备);而系统执行时,是使用的物理设备。
因此必须有将逻辑设备转化为物理设备的功能(OS要做的事情)将一台物理I/O设备虚拟为多个逻辑I/O设备,让多个用户共享一台物理I/O设备,实现设备虚拟的关键技术是SPOOLing技术。
第五章存储管理作业答案2、6、10、13、15、162、解释下列概念:物理地址、逻辑地址、逻辑地址空间、内存空间、重定位、静态重定位、动态重定位、碎片、紧缩、可重定位地址。
物理地址——内存中各存储单元的地址由统一的基地址顺序编址,这种地址称为物理地址。
逻辑地址——用户程序经编译之后的每个目标模块都以0为基地址顺序编址,这种地址称为逻辑地址。
逻辑地址空间——由程序中逻辑地址组成的地址范围叫做逻辑地址空间。
内存空间——由内存中的一系列存储单元所限定的地址范围称作内存空间。
重定位——把逻辑地址转变为内存物理地址的过程叫做重定位。
静态重定位——在目标程序装入内存时所进行的重定位。
动态重定位——在程序执行期间,每次访问内存之前进行的重定位。
碎片——在分区法中,内存出现许多容量太小、无法被利用的小分区称作“碎片”。
紧缩——移动某些已分配区的内容,使所有作业的分区紧挨在一起,而把空闲区留在另一端,这种技术称为紧缩。
可重定位地址——当含有它的程序被重定位时,将随之被调整的一种地址。
6、什么是虚拟存储器?它有哪些基本特征?参考答案:虚拟存储器是用户能作为可编址内存对待的虚拟存储空间,在这种计算机系统中实现了用户逻辑存储器与物理存储器分离,它是操作系统给用户提供的一个比真实内存空间大得多的地址空间。
虚拟存储器的基本特征是:虚拟扩充——不是物理上,而是逻辑上扩充了内存容量;部分装入——每个作业不是全部一次性地装入内存,而是只装入一部分;离散分配——不必占用连续的内存空间,而是“见缝插针”;多次对换——所需的全部程序和数据要分成多次调入内存。
10、某虚拟存储器的用户编程空间共32个页面,每页为1KB,内存为16KB。
假定某时刻一个用户页表已调入内存的页面页号和物理块号如表5-1所示。
则逻辑地址0A5C(H)所对应的物理地址为。
表5-1 页表中页号和物理块号对照表参考答案:0A5C(H)换成二进制:页号为2,查表,对应物理块号为4,与页内地址拼接成物理地址:再转换为十六进制,即125C(H)13、已知段表如表5-2所示。