正方体的十一种展开图
- 格式:docx
- 大小:29.40 KB
- 文档页数:2
正方体的11种侧面展开图
1. 141型,中间一行4个作侧面,上下两个各作为上下底面,共有六种基本图形
2. 132型,中间3个作侧面,共3种基本图形
3. 222型,两行只能有1个正方形相连
4. 33型,两行只能有一个正方形相连
小结:一四一,都可以;
一三二,二必连;
二成三阶梯;
两排三三连;
田字必舍弃。
正方体的展开图可以按照行进行分类。
主要有以下特点:
1.上中下三行,每两行之间只能有一条边重合。
2.222、33两类是特殊的,为阶梯状。
3.有的看似不属于任一类,旋转后就是其中一类了。
在下面的口诀中,前四行是描述十一种展示图的特点,后两行是描述哪些图形不能构成正方体,哪些面是相对的面,哪些面是相邻的面。
正方体展开图口诀
正方体展有规律,十一种类看仔细;
中间四个成一行,两边各一无规矩;
二三紧连错一个,三一相连一随意;
两两相连各错一,三个两排一对齐。
一条线上不过四,田七和凹要放弃;
相间之端是对面,间二拐角面相邻。
巧记口诀确定正方体表面展开图正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1) (2) (3) (4)(5) (6)以上六种展开图可归结为四方连线,即块在四个方块的上下两侧,共六种情况。
二、跃马失蹄四分开(1) (2) (3) (4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。
三、两两错开一阶梯这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。
四、对面相隔不相连这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。
如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。
五、识图巧排“7”、“凹”、“田”(1) (2) (3)这里介绍的是一种排除法。
如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。
如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。
如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。
例1.下面的平面图形中,是正方体的平面展开图的是( )解析:本题可用“识图巧排 ‘7’、‘田’、‘凹’”来解决。
A 、D 都有“凹”形结构,B 有“田”形结构,故应选C例2.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如右图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示.) 解析:本题可用“跃马失蹄四分开”来解决。
正⽅体的11种折叠法及背会⼩窍门⼩⼝诀有⼀⽆盖⽴⽅体纸箱,若将其沿棱剪成展开图,问有多少种不同形式的展开图?解因总⾯数是5,不会出现5个⾯全部排成⼀⾏(列)的情形.(1)当⼀⾏(列)⾯数最多是4时,有两种情形(注意对称性),如图)(2)当⼀⾏(列)⾯数最多是3时,剩下的两个⾯位于这⼀⾏(列)的同⼀侧有两种不(3)剩下的两个⾯位于这⼀⾏(列)的异侧有三种不同情形,如图(4)当⼀⾏(列)的⾯数最多是2时,仅⼀种情形,如图所⽰.总数为2+2+3+1=8种,即有8种不同的展开形式.探究正⽅体的展开图将⼀个正⽅体的表⾯沿某些棱剪开,展成⼀个平⾯,共有哪些不同的图形呢?要搞清这个问题,最好是动⼿实践,⽐如找⼀些正⽅体纸盒,沿着棱按不同⽅式将其剪开(但不要剪断,六个⾯要通过边连在⼀起),展成平⾯,再观察、对⽐⼀下不同形状的图形有哪些。
如果不容易找到⾜够的正⽅体纸盒,还可以找⼀些不太厚、易折叠的正⽅体纸板,利⽤逆向思维,先猜测正⽅体展开图会有哪些不同形状,并将它们画在纸板上,再将周围多余部分剪去,然后沿所画直线直⾏折叠,看看哪些图形纸板可以折叠成正⽅体。
这种探究⽅法虽然有点⿇烦,但操作简便易⾏,快速有效。
事先可多画⼀些纸板(六个正⽅形边与边对齐,任意连接成不同的平⾯图形),经过逐个验证,记录下所有可以折叠成正⽅体的图形,再将这些图形分类,总结并寻找出其中的规律。
那么,沿棱剪开展开⼀个正⽅体,究竟有哪些不同的形状呢?如果不考虑由于旋转或翻折等造成相对位置的不同,只从本质上讲,有以下三类共11种。
⼀、“141型”(共6种)特点:这类展开图中,最长的⼀⾏(或⼀列)有4个正⽅形(图1~图6)。
理解:有4个⾯直线相连,其余2个⾯分别在“直线”两旁,位置任意。
⼆、“231型”与“33型”(共4种)特点:这类展开图中,最长的⼀⾏(或⼀列)有3个正⽅形(如图7~图10)。
理解:在“231型”中,“3”所在的⾏(列)必须在中间,“2”、“1”所在⾏(列)分属两边(前后不分),且“2”与“3”同向,“1”可以放在“3”的任意⼀个正⽅形格旁边,这种情况共有3种,⽽“33型”只有1种。
正方体展开图16种口诀一、正方体一边展开图上边把下端抹,左右倒把先穿,里外两边搭叉,外边把右端搭在上。
二、正方体二边同时展开图上里先对搭,左右穿入侧边,外圈旋转搭至上,右边把下边压。
三、正方体三边展开图上里对搭又旋,左右同时进入,外圈围圈连搭,下边把右边压。
四、正方体四边展开图右上边倒进去,左下穿入侧边,外圈旋转连搭,左右把下边压。
五、正方体五边展开图先把左下边穿,右上边旋转压,里外两边再搭,最后右边把下边带。
六、正方体六边展开图上下先对搭,右边再进侧边,外圈旋转搭叉,最后把左端连上。
七、正方体七边展开图右上边穿入一,下底旋转压二,外边翻转三抹,最后里外两边搭。
八、正方体八边展开图右上倒入一,下底旋转压二,四边穿入三,右下把左上压。
九、正方体九边展开图右上倒进去一,里外把右下穿二,外边旋转三连,左右把左上压。
十、正方体十边展开图右上倒进去一,里外把右下穿二,外边四边带叉,最后把左上压三。
十一、正方体十一边展开图上下先对搭至,里外把右下穿,外层旋转向外翻,最后把左右上压进。
十二、正方体十二边展开图上下两边把对搭,进入正上倒一,里外又把右下穿,两边把最后四边带。
十三、正方体十三边展开图上下两边先搭,里外把右下穿,外用旋转六边带,最后把左右上压。
十四、正方体十四边展开图上下先对搭至,里外又把右下穿,外用旋转八边带,两边最后把上压。
十五、正方体十五边展开图上下两边先搭,里外八边穿一,外用旋转七边带,最后两边把可上压。
十六、正方体十六边展开图上下先对搭至,里外把右上倒,外用旋转九边连,最后把右下压住。
以上是学习正方体展开图的16种口诀,从展开图边数以1到16编号,每一种口诀中,描述了如何将正方体展开成平面图案的步骤。
正方体的十一种侧面展开图正方体的十一种侧面展开图我上立体几何课时,为了激发学生的兴趣,让学生手工制作立方体,然后总结研究它的侧面展开图有多少种情形,现总结如下:1. 141型,中间一行4个作侧面,上下两个各作为上下底面,共有六种基本图形2. 132型,中间3个作侧面,共3中基本图形3. 222型,两行只能有1个正方形相连4. 33型,两行只能有一具正方形相连5 正方体的十一种平面展开图可经历成下面口诀:一三二,一四一,一在同层可任意,两个三,日状连,三个二,成阶梯,相邻必有日,整体没有田。
七年级下册数学动点题!急需,3题以上的啊!七年级下册几何动点!2010-7-20 09:56最佳答案1.矩形ABCD中,AB=6,BC=8,P是边AD上的动点,PE⊥AC于点E,PF⊥BD于点F,PE+PF的值是多少?解:4.82.在正方形ABCD中,P为BC旁边一点,Q为CD旁边一点。
若PQ=BP+DQ,求角PAQ的度数解:办法一:延长QD至E,使DE=BP,易知△ABP≌△ADE,则AP=AE,因此△APQ≌△AEQ,因为角PAE=90度,因此角PAQ=45度.办法二:作三角形APQ中PQ旁边的高,交PQ于E点。
因QD垂直与AD,QE垂直于AE,因此AQ是角DAE的平分线,同理,AP是角BAE的平分线。
所以得角PAB+角QAD=角PAE+角QAE=1/2角BAD=45度如图,直线y=-(3分之根号3)x+1与x轴y轴分不交于B、A两点,以AB为直角边的等腰直角三角形ABC的顶点C在第一象限且∠ABC=90度(1)求A、B点坐标(这咨询别用做,答案是A(0,1)B(根号3,0))(2)将△ABC以每秒1个单位长度的速度延x轴平行挪移,挪移时刻为t(秒)平移后三角形记作△AtBtCt,设平移过程中△AtBtCt 与四边形AOBC重叠部分面积为S。
试探索S与t的关系式并写出自变量t的取值范围(有三种事情)数轴上的动点咨询题离别开数轴上两点之间的距离。
正方体的十一种侧面展开图我上立体几何课时,为了激发学生的兴趣,让学生手工制作立方体,然后总结研究它的侧面展开图有多少种情形,现总结如下:1. 141型,中间一行4个作侧面,上下两个各作为上下底面,共有六种基本图形2. 132型,中间3个作侧面,共3中基本图形3. 222型,两行只能有1个正方形相连4. 33型,两行只能有一个正方形相连5 正方体的十一种平面展开图可记忆成下面口诀:一三二,一四一,一在同层可任意,两个三,日状连,三个二,成阶梯,相邻必有日,整体没有田。
七年级下册数学动点题!急需,3题以上的啊!七年级下册几何动点!2010-7-20 09:56最佳答案1.矩形ABCD中,AB=6,BC=8,P是边AD上的动点,PE⊥AC于点E,PF⊥BD于点F,PE+PF的值是多少?解:4.82.在正方形ABCD中,P为BC边上一点,Q为CD边上一点。
若PQ=BP+DQ,求角PAQ的度数解:方法一:延长QD至E,使DE=BP,易知△ABP≌△ADE,则AP=AE,所以△APQ≌△AEQ,因为角PAE=90度,所以角PAQ=45度.方法二:作三角形APQ中PQ边上的高,交PQ于E点。
因QD垂直与AD,QE垂直于AE,所以AQ是角DAE的平分线,同理,AP是角BAE的平分线。
因此得角PAB+角QAD=角PAE+角QAE=1/2角BAD=45度如图,直线y=-(3分之根号3)x+1与x轴y轴分别交于B、A两点,以AB为直角边的等腰直角三角形ABC的顶点C在第一象限且∠ABC=90度(1)求A、B点坐标(这问不用做,答案是A(0,1)B(根号3,0))(2)将△ABC以每秒1个单位长度的速度延x轴平行移动,移动时间为t(秒)平移后三角形记作△AtBtCt,设平移过程中△AtBtCt与四边形AOBC重叠部分面积为S。
试探究S与t的关系式并写出自变量t的取值范围(有三种情况)数轴上的动点问题离不开数轴上两点之间的距离。
拼成长方体的十一种方法141 222
一、正方体的11种展开图
第一类:141型。
口诀:中间四个一随意。
第二类:231型。
口诀:二三错开一随意。
第三类:222型。
口诀:两两相连各错一。
第四类:33型。
口诀:三三两排错两位。
二、相对面关系的快速判断
1、如果是连成一串的,隔一个便是相对面的关系。
2、如果没有连成一串,成“Z”字型的两头即为相对面的关系。
比如,两个带黑色小三角的面和两个带小黑点的面之间就都是连成一串并且中间隔了一个面,所以它们就是相对面的关系。
而看两个空白面,从一个空白面到另一个空白面用手指比划出它的路径,就像一个“Z”字,所以两个空白面也是相对的。
有一无盖立方体纸箱,若将其沿棱剪成睁开图,问有多少种不一样形式的睁开图?解因总面数是5,不会出现 5 个面所有排成一行(列)的情况.(1)当一行(列)面数最多是4时,有两种情况(注意对称性),如图)(2)当一行(列)面数最多是 3 时,剩下的两个面位于这一行(列)的同一侧有两种不怜悯况,如图15-2 ( b)(3)剩下的两个面位于这一行(列)的异侧有三种不一样情况,如图(4)当一行(列)的面数最多是 2 时,仅一种情况,以下图.总数为 2+2+3+1=8 种,即有8 种不一样的睁开形式.研究正方体的睁开图将一个正方体的表面沿某些棱剪开,展成一个平面,共有哪些不一样的图形呢?要搞清这个问题,最好是着手实践,比方找一些正方体纸盒,沿着棱按不一样方式将其剪开(但不要剪断,六个面要经过边连在一同),展成平面,再察看、对照一下不一样形状的图形有哪些。
假如不简单找到足够的正方体纸盒,还能够找一些不太厚、易折叠的正方体纸板,利用逆向思想,先猜想正方体睁开图会有哪些不一样形状,并将它们画在纸板上,再将四周剩余部分剪去,而后沿所画直线直行折叠,看看哪些图形纸板能够折叠成正方体。
这种研究方法虽然有点麻烦,但操作简易易行,迅速有效。
预先可多画一些纸板(六个正方形边与边对齐,随意连结成不一样的平面图形),经过逐一考证,记录下所有能够折叠成正方体的图形,再将这些图形分类,总结并找寻出此中的规律。
那么,沿棱剪睁开开一个正方体,终究有哪些不一样的形状呢?假如不考虑因为旋转或翻折等造成相对地点的不一样,只从实质上讲,有以下三类共11 种。
一、“ 141 型”(共 6 种)特色:这种睁开图中,最长的一行(或一列)有 4 个正方形(图1~图 6)。
理解:有 4 个面直线相连,其他 2 个面分别在“直线”两旁,地点随意。
二、“ 231 型”与“ 33 型”(共 4 种)特色:这种睁开图中,最长的一行(或一列)有 3 个正方形(如图7~图 10)。
正方体的十一种展开图正方体的11种展开图如下:
确定正方体展开图的方法口诀:
正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明。
四方成线两相卫,六种图形巧组合。
跃马失蹄四分开,两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
用一个平面截正方体,可得到以下三角形、矩形、正方形、五边形、正五边形、六边形、正六边形、菱形、梯形,具体截法如下:
(1)三角形:过一个顶点与相对的面的对角线以内的范围内的线。
(2)矩形:过两条相对的棱或一条棱。
(3)正方形:平行于一个面。
(4)五边形:过四条棱上的点和一个顶点或五条棱上的点。
(5)六边形:过六条棱上的点。
(6)正六边形:过六条棱的中点。
(7)菱形:过相对顶点。
(8)梯形:过相对两个面上平行不等长的线。