判断正方体展开图对面2--Z端法
- 格式:docx
- 大小:65.68 KB
- 文档页数:3
找正方体展开图的相对面的方法总结
都昌县第五小学:段国镇
正方体的展开图是数学问题中经常遇到的问题,也一直是学生们总难以想明白的问题,为了学生更好的理解这一问题,我带领孩子们合作交流,对于如何快速准确地正方体展开图的相对面,和孩子们一起总结一些方法,现在分享给大家,希望能帮到大家。
第一种情况:一四一”型展开图;
(相同颜色为相对面)
像这种情况,在同层中有连续的四个正方形, 那么,间隔一个为对面。
剩下的上下两个为对面。
第二种情况:“二三一”型展开图
这种情况含有同层连续三个正方形,我们也可以利用“同层隔一面”
第三种情况:“二二二”型展开图
图中不存在同层连续三个或四个正方形的情况,利用“异层隔两面”的方法找到“1”和“4”隔着“2”、“3”是对面,“2”和“5”隔着“3”、“4”是对面,剩下的“3”和“6”是对面。
第四种情况:“三三”型展开图
图中含有同层连续的三个正方形,利用“同层隔一面”的方法,找到“1”和“3”是对面,“4”和“6”是对面,剩下的“2”和“5”是对面。
2019年9月。
正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”“7”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
口诀:中间没有面,三三连一线(1种摆法-33)。
初中数学巧识“对面”靠口诀
姓名:__________
指导:__________
日期:__________
巧识“对面”靠口诀
① “相邻必共边或点”;
② “相间”“Z端”是对面.
正方体的展开图中,共边或共顶点必相邻,相邻必共边或顶点,相邻面绝不相间;同一行(或列)中有三个面或四个面时,相隔一个面的两个面必是相对面,如图1中的A面和B面;成“Z”字形的两端的两个面也相对,如图2、图3中的A 面和B面.
例图4是一个正方体的平面展开图,如果将它折叠成一个正方体后相对面上的数相等,则图中x的值为_____,y的值为_____.
解析:解题的关键是能够确定此平面图形折叠成正方体后各面的数字分别是什么. 观察图形,可知3所在的面与另一个3所在的面相隔,x所在的面与7所在的面成“Z”形,y所在的面与4所在的面成“Z”形,所以它们分别相对. 所以x = 7,y = 4.
故填7,4.
同步练习
1. 图1是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字的一面的相对面上的字是().
(A)传(B)统
(C)文(D)化
2. 一个正方体的每一个面都有一个汉字,其平面展开图如图2所示,那么在该正方体中和“城”字相对的字是().
(A)丹(B)东
(C)创(D)联
3. 有一个正方体盒子,每个面上分别写一个字,一共有“数学核心素养”六个字,如图是这个正方体盒子的展开图,那么“素”字对面的字是(). (A)核(B)心
(C)学(D)数
参考答案:1. C 2. C 3. B。
立方体找对面的方法
判断立方体相对的两面,可以采取以下几种方法:
1. 规律法:每一个定点至多有三个邻面,不会有四个或更多个。
“一”形排列的三个面中,两端的面一定是对面,字母相同。
“L”形排列的三个面中,没有相同的字母,既没有对面,只有邻面。
2. 快速确定正方体的“对面”口诀是:先看相间,再看Z端是对面。
3. 间二、拐角邻面知:中间隔着两个小正方形或拐角型的三个面是正方体的邻面。
4. 时针法:对于立方体纸盒,折成后只能看到图形的三个面,时针法就是比较这三个面在立体图形与平面图形中的旋转方向来判断选项的正确与否。
时针法只适用于解决面中的小图形不涉及方向的折纸盒问题。
5. 标点法:折、拆纸盒的实质就是一个点与点重合、边与边重合的过程,当确定两个点重合并确定该点放置的位置时,该纸盒也就确定了。
标点法就是根据已知点确定由这个点出发的线条的情况,从而确定“纸盒”的形式。
以上方法仅供参考,如果需要更多信息,建议查阅数学相关书籍或咨询专业人士。
正方体展开图口诀
正方体展有规律,十一种类看仔细;
中间四个成一行,两边各一无规矩;
二三紧连错一个,三一相连一随意;
两两相连各错一,三个两排一对齐。
一条线上不过四,田七和凹要放弃;
相间Z端是对面,间二拐角面相邻。
1.中间四个成一行,两边各一无规矩
"141"型,中间一行4个作侧面。
上下两个各作为上下底面,共有6种基本图形。
2.二三紧连错一个,三一相连一随意
“231”型,中间3个作侧面,共3种基本图形
3.两两相连各错一
"222"型,两行只能有1个正方形相连
4.三个两排一对齐
5.一条线上不过四
指在正方形展开图中,一条直线上的小正方形不会超过四个。
如以下的图形都不是正方体的展开图。
6.田七和凹要放弃
指在正方体展开图中,不会有“田”字型、“凹”字型的形状。
如以下的图形都不是正方体的展开图。
7.相间Z端是对面
相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,“z”字端处的小正方形是正方体的对面。
如下面的展开图中,“1”对“5”,“2”对“4”,“3”对“6”。
8.间而拐角两面相邻
中间隔着两个小正方形或拐角型的三个面是正方形的邻面。
拐角型如下图所示。
正方体展开图16种口诀一、展开图的概念正方体是一种立体图形,它有六个面,每个面都是一个正方形。
展开图是将正方体展开成一个平面图形,使得每个面都能够呈现出来。
展开图有16种不同的排列方式,我们可以用口诀来记忆这些排列方式。
二、16种口诀1.上正下反,前正后反,左正右反,这是正方体的展开图排列方式之一。
2.上正下反,前正后反,左反右正,这是正方体的展开图排列方式之二。
3.上正下反,前反后正,左正右反,这是正方体的展开图排列方式之三。
4.上正下反,前反后正,左反右正,这是正方体的展开图排列方式之四。
5.上反下正,前正后反,左正右反,这是正方体的展开图排列方式之五。
6.上反下正,前正后反,左反右正,这是正方体的展开图排列方式之六。
7.上反下正,前反后正,左正右反,这是正方体的展开图排列方式之七。
8.上反下正,前反后正,左反右正,这是正方体的展开图排列方式之八。
9.左反右正,前正后反,上正下反,这是正方体的展开图排列方式之九。
10.左反右正,前正后反,上反下正,这是正方体的展开图排列方式之十。
11.左反右正,前反后正,上正下反,这是正方体的展开图排列方式之十一。
12.左反右正,前反后正,上反下正,这是正方体的展开图排列方式之十二。
13.左正右反,前正后反,上反下正,这是正方体的展开图排列方式之十三。
14.左正右反,前正后反,上正下反,这是正方体的展开图排列方式之十四。
15.左正右反,前反后正,上反下正,这是正方体的展开图排列方式之十五。
16.左正右反,前反后正,上正下反,这是正方体的展开图排列方式之十六。
三、口诀的用处这16种口诀可以帮助我们记忆正方体的展开图排列方式。
在解题时,我们可以根据这些口诀来确定展开图的排列方式,从而更加方便地计算正方体的表面积和体积。
口诀的使用可以提高我们的解题效率,确保我们能够正确地进行数学计算。
四、相关数学概念在学习正方体的展开图排列方式时,我们也需要了解一些相关的数学概念。
正方体的展开图与相对面分布规律正方体的展开与折叠是《图形的初步认识》这一章的重要内容,而探索正方体的展开图的相对面分布的规律更是其中的一个难点.下面就谈一谈如何快速地确定相对面,供同学们学习时参考.一、“141”型(共6种)展开图特点:在这类展开图中,最长的一行(或列)有四个正方形(如图1~6所示)在这种类型中,有4个正方形“直线"相连,其余2个正方形分别在“直线”两旁,位置任意。
相对面特点:图1~图6有四个面在同一层,可作为一类.确定相对面的方法是:一、三层的两个面是相对面,第二层四个面中不相邻的两个面是相对面。
二、“231”型(共3种)展开图特点:在这类展开图中,最长的一行(或列)有3个正方形(如图7~9).在“231”型中,“3”所在的行(或列)必须在中间,“2”、“1”所在行(或列)分属两边(前后不分)。
也就是正方体展开后,如有三个面在“直线"相连,另2个面在“直线"相连面一旁,另一面在它另一旁.故该种情况有3种。
相对面特点:图7~图9有三个面在同一层,剩下的三个面分别在上下两侧,可作为一类。
确定相对面的方法是:抓中间层;中间层中不相邻的两个面一定是相对面,中间的那个面与离它最远的面是相对面;余下的两个面是相对面。
三、“222"型(只有1种)展开图特点:在展正如开图中,最多只有2个正方形“直线”相连。
正如“二面三行,像楼梯”.如图10所示展开图相对面:,相邻两层不相邻的两个面一定是相对面,这样就可以先确定出两对不同的相对面,剩下的两个面一定是相对面.面A对面D,面B对E,面C对面F。
四、“33"型(只有1种)犹如“三面两行,两台阶”如图中相对面每层中不相邻的两个面是相对面,剩下的两个面是相对面。
面A对面C,面D对F,面B对面E。
正方体123456面找对面的窍门正方体找对面方法
找正方体展开图“相对面”办法:先找同层隔一面,再找异层隔两面回,剩下两面必相对。
(通过正方体展开图找相对面时,首先在同一层四个或三个连续相连的正方形中隔一面寻找,再在异层中隔两面寻找,剩下的两面自然相对。
)
正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:
(1)141型:中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
(2)231型:中间一行3个作侧面,共3种基本图形。
(3)222型:中间两个面,只有1种基本图形。
(4)33型:中间没有面,两行只能有一个正方形相连,只有1种基本图形。
如何快速找正方体的展开面和相对面正方体的展开与折叠是《图形的初步认识》这一章的重要内容,也是近几年中考的热点,而探索正方体的展开图的相对面分布的规律就是其中的一个考点.下面就谈一谈如何快速地确定相对面,供同学们学习时参考。
一、“141”型(共6种)展开图特点:在这类展开图中,最长的一行(或列)有四个正方形(如图1~6所示)在这种类型中,有4个正方形“直线”相连,其余2个正方形分别在“直线"两旁,位置任意。
相对面特点:图 1~图6有四个面在同一层,可作为一类.确定相对面的方法是:一、三层的两个面是相对面,第二层四个面中不相邻的两个面是相对面.二、“231”型(共3种)展开图特点:在这类展开图中,最长的一行(或列)有3个正方形(如图7~9)。
在“231”型中,“3”所在的行(或列)必须在中间,“2"、“1”所在行(或列)分属两边(前后不分)。
也就是正方体展开后,如有三个面在“直线"相连,另2个面在“直线"相连面一旁,另一面在它另一旁.故该种情况有3种。
相对面特点: 图7~图9有三个面在同一层,剩下的三个面分别在上下两侧,可作为一类。
确定相对面的方法是:抓中间层;中间层中不相邻的两个面一定是相对面,中间的那个面与离它最远的面是相对面;余下的两个面是相对面。
三、“222”型(只有1种)展开图特点:在展正如开图中,最多只有2个正方形“直线”相连.正如“二面三行,像楼梯”。
如图10所示展开图相对面:,相邻两层不相邻的两个面一定是相对面,这样就可以先确定出两对不同的相对面,剩下的两个面一定是相对面.面A对面D,面B对E,面C 对面F.四、“33"型(只有1种)犹如“三面两行,两台阶”如图中相对面每层中不相邻的两个面是相对面,剩下的两个面是相对面。
面A对面C,面D对F,面B对面E.。
初中数学巧识“对面”靠口诀
巧识“对面”靠口诀
① “相邻必共边或点”;
② “相间”“Z端”是对面.
正方体的展开图中,共边或共顶点必相邻,相邻必共边或顶点,相邻面绝不相间;同一行(或列)中有三个面或四个面时,相隔一个面的两个面必是相对面,如图1中的A面和B面;成“Z”字形的两端的两个面也相对,如图2、图3中的A面和B面.
例图4是一个正方体的平面展开图,如果将它折叠成一个正方体后相对面上的数相等,则图中x的值为_____,y的值为_____.
解析:解题的关键是能够确定此平面图形折叠成正方体后各面的数字分别是什么. 观察图形,可知3所在的面与另一个3所在的面相隔,x所在的面与7所在的面成“Z”形,y所在的面与4所在的面成“Z”形,所以它们分别相对. 所以x = 7,y = 4.
故填7,4.
同步练习
1. 图1是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字的一面的相对面上的字是().
(A)传(B)统
(C)文(D)化
2. 一个正方体的每一个面都有一个汉字,其平面展开图如图2所示,那么在该正方体中和“城”字相对的字是().
(A)丹(B)东
(C)创(D)联
3. 有一个正方体盒子,每个面上分别写一个字,一共有“数学核心素养”六个字,如图是这个正方体盒子的展开图,那么“素”字对面的字是().
(A)核(B)心
(C)学(D)数
参考答案:1. C 2. C 3. B。
正方体展开图向对面的找法如何找正方体展开图的相对面济宁高新区杨村煤矿中学:赵磊《数学课程标准》中表示:使学生在观测、实验、悖论等数学活动中,辨认出解决问题的方法,体验崭新科学知识的分解成过程。
在本节课的教学中,为学生提供更多了操作方式实验观测的平台,课前使学生搜集了正方体的包装盒,把相对的面涂上相同的颜色,课堂上以剪刀沿棱包住,进行后观测对面的规律。
学生通过对实物模型的操作方式,深入研究各类“进行图”,积极探索它们之中暗含的各种奥秘、规律,概括出来找寻“相对面”的精妙办法:先打听同层外木一面,再打听异层外木两面.剩两面必相对,规律方法妙计献上.(在通过正方体进行图形打听相对面时,首先在同层中三个正方形已连续相连的隔一面找寻,再在异层中外木两面找寻,剩的两面自然相对.)一、“一四一”型展开图;同层中存有已连续的四个正方形,所以优先利用“同层外木一面”找寻对面。
“2”和“4”外木一面“3”就是对面,“3”和“5”外木一面“4”就是对面,剩的“1”和“6”就是对面。
二、“二三一”型展开图图中所含同层已连续三个正方形,利用“同层外木一面”找出“3”和“5”就是对面,剩的利用“异层外木两面”找出“1”和“4”隔着“2”、“3”就是对面,剩的“2”和“6”就是对面。
三、“二二二”型展开图图中不存有同层已连续三个或四个正方形的情况,利用“异层外木两面”的方法找出“1”和“4”隔着“2”、“3”就是对面,“2”和“5”隔着“3”、“4”是对面,剩下的“3”和“6”是对面。
四、“三三”型进行图图中含有同层连续的三个正方形,利用“同层隔一面”的方法,找到“1”和“3”是对面,“4”和“6”是对面,剩下的“2”和“5”是对面。
4.1.1(3.2)判断正方体展开图对面2--“Z端”法
一.【知识要点】
1.“Z”字两端处的小正方形是正方体的相对面,如图,下面3幅图中的A面与B面是对面。
二.【经典例题】
1.病毒无情人有情,2020年初很多最美逆行者不顾自己安危奔赴疫情前线,我们内心因他
们而充满希望.小茜同学在一个正方体每个面上分别写了一个汉字,如图是该正方体的
一种展开图,那么,在原正方体上,与“疫”字所在面相对的面上的汉字是()
A.全B.力C.抗D.击
2.如图是一个正方体的展开图,如果正方体相对的面上标注的值相等,那么x=_______ ,y=__________.
3.(2022年绵阳期末第15题)如图是一个小正方体的展开图,把展开图折叠成小正方体后,
有“y”一面与相对面上的代数式相等,则有“xy2”一面与相对面上的代数式的和等于
(用数字作答).
三.【题库】
【A】
1.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()
A .美
B .丽
C .云
D .南
【B 】
1.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字“数”、“学”,将其围成一个正方体后,则与“5”相对的是( )
A. 0
B. 2
C. 数
D. 学
【C 】
1.要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x =____,y =______;
2.一个正方体的表面展开图如图所示,每一个面上都写有一个数,并且相对两个面上所写的两个数之和都相等,那么=a ,=b .
【D】。