长方体和正方体展开图的判断技巧
- 格式:docx
- 大小:93.12 KB
- 文档页数:3
5.由平面展开图判断哪两个面是对面?
6.总结正方体展开图的11情况
正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:
⑴1141型
中间一行4个作侧面,上下两个各作为上下底面,共有6种根本图形
⑵231型
中间一行3个作侧面,共3种根本图形。
⑶222型
中间两个面,只有1种根本图形。
⑷33型
中间没有面,两行只能有一个正方形相连,只有1种根本图形。
课堂练习〔难点稳固〕7.下列图是一个正方体的展开图,请说出1号、2号、3号面相对的各是几号?
8.如果“你〞在前面,那么哪个字在后面?
小结
通过今天的学习,我们会准确识别和区别正方体的展开图,并会在展开图中找到相对面和相邻面。
其实也可以用下面的口诀来帮助记忆今天的知识哦!
正方体展有规律,十一种图看仔细;
中间四个成一行,两边各一无规矩;
二三紧连错一个,三一相连一随意;
两两相连各错一,三个两排一对齐。
一条线上不过四,田七凸凹要放弃;
相间之端是对面,间二拐角面相邻。
长方体和正方体展开图的判断技巧
我们知道,同一个立方体图形,按不同的方式展开得到的平面展开图形一般是不一样的。
常见的正方体平面展开图究竟有几种不同的形状呢?
同学们一定熟悉这样一种操作:把一个正方形纸片平均分成6个小正方形,剪去角上四个小正方形,可以拼成一个无盖的正方体纸盒,其中五个面按习惯不妨记为下、左、右、前、后,如图一。
好啦!现在只要把刚才剪去的一个小正方形作为“上”面,就可拼成一个正方体。
作为正方体平面展开图,这个“上”应该和图1(1)中哪个面拼接在一起呢?观察图1(2),知“上”和前、后、左、右任一个面拼接都行(这四种拼接看作同一种情形),不妨和“后”拼接在一起,如图2。
根据上和下、左和右、前和后相间隔这一规律,现在我们把图2中的“左”或“右”平移,可得图3~图7五种情形。
平移图2中的“前”,可得图8;再平移图8中的“左”,可得图9、图10;把图10中的“上”向左平移,得图11;若移动图8(或图9、图10)中的“左”,又可得图12。
对正方体表面展开图的11种情况,为加深记忆,可编成如下口诀:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种。
小升初——图形的展开与折叠掌握正方体的展开与折叠,能根据所给平面图形判断是否能折叠成正方体.根据简单立体图形的形状画出它的展开图,根据展开图判断立体图形的形状.1.长方体有8个顶点,12条棱,6个面,且每个面都是长方形(正方形是特殊的长方形).长方体是四棱柱,但四棱柱不一定是长方体,四棱柱的两个底面是四边形,不一定是长方形.2.一个平面展开图,折成立体图形的方式有两种:一种是向里折,一种是向外折,一般易忽略其中一种,造成漏解.3.棱柱的表面展开图是由两个相同的多边形和一些长方形连成的,沿棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图;圆柱的表面展开图是由两个相同的圆形和一个长方形连成的;圆锥的表面展开图是由一个圆形和一个扇形连成的.【方法技巧】确定正方体展开图的方法以口诀的方式总结出来:正方体经7刀剪,可得六面十四边;中间并排达四面,两旁各一随便站;三面并排在中间,单面任意双面偏;三层两面两层三,好似阶梯入云天;再问邻面何特点,“间二”“拐角”是关键;“隔1”、“Z端”是对面,识图巧排“七”“凹”“田”.一、正方体的展开与折叠1.以下各图均有彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是()A.B.C.D.2.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体“着”相对的面上的汉字是()A.冷B.静C.应D.考3.将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG4.如图,有一正方体的房间,在房间内的一角A处有一只蚂蚁,它想到房间的另一角B处去吃食物,试问它采取怎样的行走路线是最近的?如果一只蜜蜂,要从A到B怎样飞是最近呢?请同学们互相讨论一下.BA二、三棱柱、圆柱与圆锥的展开与折叠5.左图是一个三棱柱,下列图形中,能通过折叠围成该三棱柱的是()A.B.C.D.6.如下图所示的平面图形中,不可能围成圆锥的是()A.B.C.D.7.如图是正方体的展开图,则原正方体相对两个面上的数字和最小的是( ).A. 4B. 6C. 7D.88. 将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另一条对角线对折,如图(七)所示。
长方体和正方体展开图的判断技巧
我们知道,同一个立方体图形,按不同的方式展开得到的平面展开图形一般是不一样的。
常见的正方体平面展开图究竟有几种不同的形状呢?
同学们一定熟悉这样一种操作:把一个正方形纸片平均分成6个小正方形,剪去角上四个小正方形,可以拼成一个无盖的正方体纸盒,其中五个面按习惯不妨记为下、左、右、前、后,如图一。
好啦!现在只要把刚才剪去的一个小正方形作为“上”面,就可拼成一个正方体。
作为正方体平面展开图,这个“上”应该和图1(1)中哪个面拼接在一起呢?观察图1(2),知“上”和前、后、左、右任一个面拼接都行(这四种拼接看作同一种情形),不妨和“后”拼接在一起,如图2。
根据上和下、左和右、前和后相间隔这一规律,现在我们把图2中的“左”或“右”平移,可得图3~图7五种情形。
平移图2中的“前”,可得图8;再平移图8中的“左”,可得图9、图10;把图10中的“上”向左平移,得图11;若移动图8(或图9、图10)中的“左”,又可得图12。