正方体展开图形判断技巧
- 格式:ppt
- 大小:325.00 KB
- 文档页数:20
正方体展开图16种口诀一、正方体一边展开图上边把下端抹,左右倒把先穿,里外两边搭叉,外边把右端搭在上。
二、正方体二边同时展开图上里先对搭,左右穿入侧边,外圈旋转搭至上,右边把下边压。
三、正方体三边展开图上里对搭又旋,左右同时进入,外圈围圈连搭,下边把右边压。
四、正方体四边展开图右上边倒进去,左下穿入侧边,外圈旋转连搭,左右把下边压。
五、正方体五边展开图先把左下边穿,右上边旋转压,里外两边再搭,最后右边把下边带。
六、正方体六边展开图上下先对搭,右边再进侧边,外圈旋转搭叉,最后把左端连上。
七、正方体七边展开图右上边穿入一,下底旋转压二,外边翻转三抹,最后里外两边搭。
八、正方体八边展开图右上倒入一,下底旋转压二,四边穿入三,右下把左上压。
九、正方体九边展开图右上倒进去一,里外把右下穿二,外边旋转三连,左右把左上压。
十、正方体十边展开图右上倒进去一,里外把右下穿二,外边四边带叉,最后把左上压三。
十一、正方体十一边展开图上下先对搭至,里外把右下穿,外层旋转向外翻,最后把左右上压进。
十二、正方体十二边展开图上下两边把对搭,进入正上倒一,里外又把右下穿,两边把最后四边带。
十三、正方体十三边展开图上下两边先搭,里外把右下穿,外用旋转六边带,最后把左右上压。
十四、正方体十四边展开图上下先对搭至,里外又把右下穿,外用旋转八边带,两边最后把上压。
十五、正方体十五边展开图上下两边先搭,里外八边穿一,外用旋转七边带,最后两边把可上压。
十六、正方体十六边展开图上下先对搭至,里外把右上倒,外用旋转九边连,最后把右下压住。
以上是学习正方体展开图的16种口诀,从展开图边数以1到16编号,每一种口诀中,描述了如何将正方体展开成平面图案的步骤。
正方体表面展开图(11种)速记口诀
正方体:
中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”应弃之
第一类:“1—4—1”型,共有6种。
口诀:中间四个面,上下各一面(6种摆法-141)(上下面随便放)
一四一型
第二类:“1—3—2”型,共有3种。
口诀:中间三个面,一二隔河见(3种摆-132/231)(2.3位置是固定的)
二三一型第三类:“2—2—2”型,只有1种。
口诀:中间二个面,楼梯天天见(1种摆法-222)
第四类:“3—3”型,只有1种。
中间没有面,三三连一线(1种摆法-33)“田”“凹”应弃之(1种摆法-33)
三三型1种
(不能出现“7”字,“凹”字,“田”字形)如:。
正方体展开图规律探寻
一、两种展开图肯定不能拼成正方体
(1)“田”字格型,只要所给的图形出现“田字格”,就不能拼成正方体。
如:
(2)“4+2”型,即中间有一行(列)是连续四个小正方形,还有两个小正方形出现在同一侧,如:
二、四种展开图可以能拼成正方体
(1)“1+4+1”型,即中间有一行(列)是连续四个小正方形,还有两个小正方形出现在两侧,这样的展开图可以拼成正方体。
如:
(2)“3+3”型,即有两行(列),每行(列)3个,但不能出现“田”字格,这样的展开图可以拼成正方体。
如
(3)“2+2+2”型,即有三行(列),每行(列)2个,但同样不能出现“田”字格,此型像台阶,这样的展开图可以拼成正方体。
如
(4)“1+3+2”型,即有三行(列)中,中间一行(列)有3个连续的小方形,两边分别是一个小正方形和两个小正方形,不过此型有个要求,这个“1+3+2”中的“2”,即两个小正方形要求连续,不能分开,更不能出现“田字格”,这样的展开图可以拼成正方体。
如:
无盖正方体展开图类型
一、“1+3+1”型
二、“1+2+2”型
三、“2+3”型
四“1+4”型
正方体的截面示意图一、截面是三角形
二、截面是四边形
三、截面是五边形
四、截面为六边形。
正方体的展开与折叠总共有四类情况,分别是1,4,1型;1,3,2型;2,2,2型和3、3型。
第一类:(1,4,1型),共6种。
记忆口诀:中间四个面,上下各一面。
第二类:(1,3,2型),共3种。
记忆口诀:中间三个面,一二隔河见。
第三类:(2,2,2型),共1种。
记忆口诀:中间两个面,楼梯天天见。
第四类:(3,3型),共1种。
记忆口诀:中间没有面,三三连一线。
解题技巧背一背
1、寻找正方体相对面
解题技巧:“I”型图不相连;“Z”型图在两端。
2、判断是否可以围成正方体
一线不过四(一条直线上的小正方形的个数不会超过四个);“7”、“田”、“凹”应弃之(在正方体展开图中,不会有“7”字型、“田”字型、“凹”字型)。
正方体的性质
1、正方体有有6个面,12条棱,8个顶点。
2、正方体一般指正六面体,用六个完全相同的正方形围成的立体图形叫正六面体,也称立方体、正方体。
3、且正方体的每个面都相等,展开之后的表面积也相等。
巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1)(2)(3)(4)(5)(6)以上六种展开图可归结为四方连线,即,另外两个小方块在四个方块的上下两侧,共六种情况。
二、跃马失蹄四分开(1)(2)(3)(4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。
三、两两错开一阶梯这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。
四、对面相隔不相连这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。
如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。
五、识图巧排“7”、“凹”、“田”(1) (2) (3)这里介绍的是一种排除法。
如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。
如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。
如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。
现举例说明:例1.(2004海口市实验区)下面的平面图形中,是正方体的平面展开图的是( )解析:本题可用“识图巧排 ‘7’、‘田’、‘凹’”来解决。
正方体展开图口诀
正方体展有规律,十一种类看仔细;
中间四个成一行,两边各一无规矩;
二三紧连错一个,三一相连一随意;
两两相连各错一,三个两排一对齐。
一条线上不过四,田七和凹要放弃;
相间Z端是对面,间二拐角面相邻。
1.中间四个成一行,两边各一无规矩
"141"型,中间一行4个作侧面。
上下两个各作为上下底面,共有6种基本图形。
2.二三紧连错一个,三一相连一随意
“231”型,中间3个作侧面,共3种基本图形
3.两两相连各错一
"222"型,两行只能有1个正方形相连
4.三个两排一对齐
5.一条线上不过四
指在正方形展开图中,一条直线上的小正方形不会超过四个。
如以下的图形都不是正方体的展开图。
6.田七和凹要放弃
指在正方体展开图中,不会有“田”字型、“凹”字型的形状。
如以下的图形都不是正方体的展开图。
7.相间Z端是对面
相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,“z”字端处的小正方形是正方体的对面。
如下面的展开图中,“1”对“5”,“2”对“4”,“3”对“6”。
8.间而拐角两面相邻
中间隔着两个小正方形或拐角型的三个面是正方形的邻面。
拐角型如下图所示。
正方体展开图用“口诀”我们在《丰富的图形世界》中掌握了“图形的展开与折叠”的技巧探索了立体图形与平面图形之间的转化规律但有的同学还不是很清楚为了使同学们更好地掌握其规律请同学们记住下列“口诀”“一线不过四田、凹应弃之相间、“Z”端是对面间二、拐角邻面知”下面结合中考题作一分析供同学们参考一、一线不过四是指在正方体展开图中一条直线上的小正方形不会超过四个如图1、图2都不是正方体的展开图例1.2004连云港下面每个图片都是由6个大小相同的正方形组成其中不能折成正方体的是分析因为一条直线上的小正方形不会超过四个所以应选B二、田、凹应弃之就是说在正方体表面展开图中不会有“田”字型、“凹”字型的形状如图3、图4、图5例2.2003天津在下列图形中每个小正方形皆为全等的正方形可以是一个正方体表面展开图的是分析通过观察、想象可以知道A、D含“田”字型、“凹”字型B也不能应选C三、相间、“Z”端是对面相间的两个小正方形中间隔着一个小正方形是正方体的两个对面如图6中的A 面和B面“Z”字两端处的小正方形是正方体的对面如图7、图8的A面和B面例3.2005河南如图9一个正方体的每个面上都写有一个汉字其平面展开图如图9所示那么在该正方体中和“超”相对的字是分析自—信—沉—着—超构成了竖着的Z字型所以“自”与“超”对应故应填“自”四、间二、拐角邻面知中间隔着两个小正方形或拐角型的三个面是正方体的邻面例42004镇江如图10有一个正方体纸盒在它的三个侧面分别画有三角形、正方形和圆现用一把剪刀沿着它的棱剪开成一个平面图形则展开图可以是分析我们把画有圆的一面记为a面正方形阴影面记为b面三角形阴影面记为c 面在选项A 中由Z字型结构知b与c对面与已知正方体bc相邻不符应排除在选项B中b面与c面隔着a 面b面与c面是对面也应排除在选项D中虽然a、b、c三面成拐角型是正方体的三个邻面b 面作为上面a面为正面则c面应在正方体的左面与原图不符应排除故应选C请你试一试吧1.2005年南宁如图11是正方体的平面展开图每个面上有一个汉字与“绿”字相对的面上的字是2.2005年黄冈水平放置的正方体六个面分别用“前面、后面、上面、下面、左面、右面”表达如图是一个正方体的平面展开图若图12中的“进”表示正方体的前面“步”表示右面“习”表示下面则“祝”、“你”、“学”分别表示正方体的3如图13是一个正方形纸盒的展开图若在其中的三个正方形 A、B、C内分别填入适当的数使得它们折成正方形后相对的面上的两个数互为相反数则填入正方形A、B、C内的三个数依次为( A、1、2、0 B、0、-2、1 C、-2、0、1 D、-2、1、04如图14是展开平面图的折叠过程请回答1号面、2号面、 3号面的对面是几号5猜一猜将一个正方体的纸盒沿某些棱剪开可以展成多少种不同的平面图形你能验证你的猜想吗请与同学交流你的收获与感悟答案1.应填“南”2. 后面、上面、左面3.A4. 1号面对面是4号2号面对面是6号3号面对面是5号5有11种情形。
正方体展开图口诀正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐。
一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻。
巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1)(2)(3)(4)(5)(6)以上六种展开图可归结为四方连线,即,另外两个小方块在四个方块的上下两侧,共六种情况。
二、跃马失蹄四分开(1)(2)(3)(4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。
三、两两错开一阶梯这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。
四、对面相隔不相连这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。
如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。
五、识图巧排“7”、“凹”、“田”12312345(1)(2)(3)这里介绍的是一种排除法。
如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。
如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。
口诀:
一线不过四,田凹应弃之,相间"Z"端是对面,间二拐角邻面知.
一线不过四指的是一条线上的正方形不能超过四个,
田凹应弃之指的是含有“田”“凹”的图不是,
相间"Z"端是对面中的相间指的是一条线上中间隔着一个正方形的两个正方形合成正方体时是对面,"Z"端指的是图形中"Z"字形的两个端点的正方形合成正方体时是对面。
间二拐角邻面知中的间二指的是一条线上中间隔着两个正方形的两个正方形合成正方体时是邻面,拐角的两个正方形合成正方体时也是邻面。