北师大版数学七年级上《2.3绝对值》测试(含答案解析)
- 格式:doc
- 大小:2.35 MB
- 文档页数:12
2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题2.3绝对值姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•霍林郭勒市模拟)﹣2020的绝对值的相反数为()A.﹣2020B.2020C.12020D.−12020【分析】根据绝对值和相反数的概念求解可得.【解答】解:因为﹣2020的绝对值为2020,所以﹣2020的绝对值的相反数为﹣2020,故选:A.2.(2019春•普陀区期中)如果|3a|=﹣3a,则a一定是()A.非正数B.负数C.非负数D.正数【分析】直接利用绝对值的性质分别分析得出答案.【解答】解:∵|3a|=﹣3a,∴﹣3a≥0,∴a≤0,即a一定是非正数.故选:A.3.(2020•安丘市一模)|−23|的相反数是()A.−32B.12C.−23D.23【分析】直接利用相反数的定义以及绝对值的性质分析得出答案.【解答】解:|−23|=23的相反数是:−23.故选:C.4.(2018秋•惠民县校级月考)|x﹣3|+|y﹣2|=0 成立的条件是() A.x=3B.y=2C.x=3且y=2D.x、y为任意数【分析】根据非负数的性质列方程求解即可.【解答】解:由题意得,x﹣3=0且y﹣2=0,解得x=3,y=2.故选:C.5.(2020•滨州)下列各式正确的是()A.﹣|﹣5|=5B.﹣(﹣5)=﹣5C.|﹣5|=﹣5D.﹣(﹣5)=5【分析】根据绝对值的性质和相反数的定义对各选项分析判断即可.【解答】解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.6.(2020•岱岳区二模)下列各组数中,相等的是()A.﹣9和−19B.﹣|﹣9|和﹣(﹣9)C.9和|﹣9|D.﹣9和|﹣9|【分析】根据相反数的定义,绝对值的性质对各选项分别进行计算,然后利用排除法求解.【解答】解:A、﹣9≠−19,故本选项不符合题意;B、﹣|﹣9|=﹣9,﹣(﹣9)=9,﹣9≠9,故本选项不符合题意;C、|﹣9|=9,故本选项符合题意;D、|﹣9|=9,9≠﹣9,故本选项不符合题意.故选:C.7.(2019秋•新蔡县期中)如果x为有理数,式子2019﹣|x﹣2|存在最大值,这个最大值是() A.2016B.2017C.2019D.2021【分析】直接利用绝对值的性质得出|x﹣2|的最小值为0.进而得出答案.【解答】解:∵x为有理数,式子2019﹣|x﹣2|存在最大值,∴|x﹣2|=0时,2019﹣|x﹣2|最大为2019,故选:C.8.(2019秋•越秀区期末)满足等式|x|+5|y|=10的整数(x,y)对共有()A.5对B.6对C.8对D.10对【分析】先用含绝对值x的代数式表示绝对值y,根据等式的整数解确定x的取值范围和x的值,再确定等式整数解的对数.【解答】解:等式|x|+5|y|=10可变形为:|y|=10−|x|5=2−|x| 5∵|y|≥0,即2−|x|5≥0∴﹣10≤x≤10.∵x、y都是整数,所以x=﹣10、﹣5、0、5、10.当x=﹣10时,y=0;当x=﹣5时,y=±1;当x=0时,y=±2;当x=5时,y=±1;当x=10时,y=0.所以满足条件的整数有8对.故选:C.9.(2019秋•越秀区期末)在0,−23,−32,0.05这四个数中,最大的数是()A.0B.−23C.−32D.0.05【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵0.05>0>−23>−32,∴最大的数是0.05.故选:D.10.(2019秋•资阳区校级期中)有理数的比较,正确的是( ) A .﹣1000>0.0001 B .45<34C .﹣(﹣2)=﹣|﹣2|D .−23<−12【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可. 【解答】解:∵﹣1000<0.0001, ∴选项A 不符合题意;∵45>34,∴选项B 不符合题意;∵﹣(﹣2)>﹣|﹣2|, ∴选项C 不符合题意;∵−23<−12, ∴选项D 符合题意. 故选:D .二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上 11.(2019秋•怀柔区期末)若|x |=3,则x = ±3 . 【分析】根据绝对值的性质解答即可. 【解答】解:∵|x |=3, ∴x =±3. 故答案为:±3.12.(2020•湘西州)−13的绝对值是13.【分析】根据绝对值的意义,求出结果即可.【解答】解:根据负数的绝对值等于它的相反数可得,|−13|=13, 故答案为:13.13.(2019秋•内乡县期末)化简:﹣|−35|=−35.【分析】根据绝对值的性质化简即可求解.【解答】解:﹣|−35|=−35.故答案为:−3 5.14.(2019秋•新昌县期末)已知|a|=2020,则a=±2020.【分析】直接利用绝对值的性质得出答案.【解答】解:∵|a|=2020,∴a=±2020.故答案为:±2020.15.(2019•包头二模)若|3x﹣2|与|y﹣1|互为相反数,则3xy=2.【分析】利用非负数的性质求出x与y的值,代入所求式子计算即可求出值.【解答】解:∵|3x﹣2|+|y﹣1|=0,∴3x﹣2=0,y﹣1=0,∴x=23,y=1,所以3xy=3×23×1,故答案为:2.16.(2019秋•钟楼区期中)用“>”或“<”或“=”填空:(1)﹣|﹣2|<﹣(﹣3);(2)−45<−34.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:(1)﹣|﹣2|=﹣2,﹣(﹣3)=3,∴﹣|﹣2|<﹣(﹣3);(2)∵|−45|>|−34|,∴−45<−34.故答案为:(1)<;(2)<.17.(2019春•黄浦区期中)比较大小:﹣|﹣4.25| < ﹣(﹣414)(填“>”、“<”或“=”).【分析】根据有理数大小比较的方法即可得到结论. 【解答】解:∵﹣|﹣4.25|=﹣4.25,﹣(﹣414)=4.25,∴﹣|﹣4.25|<﹣(﹣414),故答案为:<.18.(2019秋•海淀区校级期中)比较大小:−23< −47;−(−13) > −|−13|. 【分析】根据有理数大小比较方法解答即可. 【解答】解:∵|−23|>|−47|, ∴−23<−47;∵−(−13)=13,−|−13|=−13, ∴−(−13)>−|−13|. 故答案为:<;>三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤) 19.分别写出下列各数的绝对值.−135,﹣(+6.3),+(﹣32),12,312.【分析】由于一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,所以根据绝对值的性质即可解答. 【解答】解:|−135|=135, |﹣(+6.3)|=|﹣6.3|=6.3, |+(﹣32)|=|﹣32|=32, |12|=12,|312|=312.20.(2019秋•沙雅县期中)把下列各数填在相应的括号里: ﹣8,0.275,227,0,﹣1.04,﹣(﹣3),−13,|﹣2|正数集合{ 0.275,227,﹣(﹣3),|﹣2| …}负整数集合{ ﹣8 …}分数集合{ 0.275,227,﹣1.04,−13 …}负数集合{ ﹣8,﹣1.04,−13 …}.【分析】根据正、负数以及分数的定义,在给定有理数中分别挑出正数、负整数、分数以及负数,此题得解.【解答】解:在﹣8,0.275,227,0,﹣1.04,﹣(﹣3),−13,|﹣2|中,正数有:0.275,227,﹣(﹣3),|﹣2|;负整数有:﹣8;分数有:0.275,227,﹣1.04,−13;负数有:﹣8,﹣1.04,−13. 故答案为:0.275,227,﹣(﹣3),|﹣2|;﹣8;0.275,227,﹣1.04,−13;﹣8,﹣1.04,−13.21.(2016秋•高密市校级月考)把下列各数填在相应的集合里 +7,−35,﹣10,0,0.674,﹣4,334,﹣9.08,400%,﹣|﹣12| 负分数集{ −35,﹣9.08 } 正整数集{ +7,400% }整数集 { +7,﹣10,0,﹣4,﹣400%,﹣|﹣12| } 自然数集{ +7,0,400% } 负整数集{ ﹣10,﹣4,﹣|﹣12| } 非负数集{ +7,0,0.674,334,400% }.【分析】按照有理数的分类进行判断:有理数包括:整数和分数;整数包括:正整数、0和负整数;分数包括:正分数和负分数.【解答】解:负分数集合:{−35,﹣9.08 } 正整数集合:{+7,400%}整数集合:{+7,﹣10,0,﹣4,400%,﹣|﹣12|} 自然数集合:{+7,400%,0 } 负整数集合:{﹣10,﹣4,﹣|﹣12|} 非负数集合:{+7,0,0.674,334,400%}.故答案为:−35,﹣9.08;+7,400%;+7,﹣10,0,﹣4,400%,﹣|﹣12|;+7,0,400%;﹣10,﹣4,﹣|﹣12|;+7,0,0.674,334,400%.22.(1)已知a 是非零有理数,试求a|a|的值; (2)已知a ,b 是非零有理数,试求a|a|+b|b|的值;(3)已知a ,b ,c 是非零有理数,请直接写出a|a|+b |b|+c |c|的值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,即可解答. 【解答】解:(1)当a 为正数时,a |a|=1;当a 为负数时,a |a|=−1 (2)当a ,b 同为正数时,a|a|+b |b|=2;当a ,b 同为负数时,a|a|+b |b|=−2;当a ,b 异号时,a|a|+b |b|=0(3)±1,±3.23.(2019秋•淅川县期中)画一条数轴,把数﹣|﹣3|,4,﹣1.5,﹣5,212表示在数轴上,(1)将这五个数按从小到大的顺序排列:(2)把这五个数分成两类,其中一类含三个数,另一类含两个数,并写出每类数的特征 【分析】(1)直接将各数在数轴上表示,进而比较大小即可; (2)直接利用正数和负数进行分类即可. 【解答】解:(1)如图所示:则﹣5<﹣3<﹣1.5<212<4;(2)212,4正数,﹣5,﹣3,﹣1.5负数.24.(2019秋•海州区校级期中)先在数轴上画出表示﹣3、|﹣1|、﹣5、0、﹣(﹣4.5)、212各数的点,再用“<”把这些数连接起来.【分析】先在数轴上表示出各数,再从左到右用“<”把这些数连接起来即可. 【解答】解:在数轴上表示如图所示,排列为﹣5<﹣3<0<|﹣1|<212<−(﹣4.5).。
绝对值
【学习目标】
1.一个数的绝对值,就是在数轴上该数所对应的点与原点的距离;
2.会求一个已知数的绝对值。
【学习重难点】
学习重点:知道一个数的绝对值的意义。
学习难点:数形结合思想的渗透,会在数轴上表示一个数的绝对值。
【学习过程】
一、问题情境
1.小明家在学校西边3公里处,小李家在学校东边2公里处,他们两家与学校都在同一条直线上,你能画数轴表示它们的位置吗?
它们到学校的距离分别是多少?
2.数轴上任一个数所对应的点到原点的距离,就叫这个数的绝对值。
距离不可能为负的,所以一个数的绝对值也不会为负。
0到原点的距离就是0.
即:任何一个数的绝对值均大于或等于0(即非负数)。
二、例题评讲
例1.说出数轴上点A,B,C,D,E所表示的数的绝对值。
例2.求—3.5与3的绝对值,并比较它们的大小。
强调:绝对值用符号“︱︱”表示,如-5的绝对值记作︱-5︱,︱-5︱=5
它与()不同,它表示一种运算,有这种运算时要先对它进行计算。
3︱= ,︱-4.7︱= ,︱0︱= 例3.填空:︱-3︱= ,︱
4
-︱-3︱= ,︱-3︱+︱-4︱= 。
北师大版七年级数学上册第二章 2.3.2绝对值 同步测试题一、选择题1.-2的绝对值为( )A .-12 B.12 C .-2 D .22.计算|-3|的结果是( )A .3 B.13C .-3D .±33.如图,数轴上有A ,B ,C ,D 四个点,其中表示的数的绝对值等于2的点是( )A .点AB .点BC .点CD .点D 4.-12的绝对值的相反数是( )A.12 B .-12C .2D .-2 5.下列判断:①负数没有绝对值;②绝对值最小的有理数是0;③任何数的绝对值都是非负数;④互为相反数的两个数的绝对值相等,其中正确的有( ) A .1个 B .2个 C .3个 D .4个 6.任何一个有理数的绝对值一定( ) A .大于0 B .小于0 C .小于或等于0 D .大于或等于0 7.在有理数中,绝对值等于它本身的数有( )A .一个B .两个C .三个D .无数个 8.比较大小:-2________-3.14( )A .>B .=C .<D .无法判断 9.在-3,-1,0,1这四个数中,最小的数是( )A .-3B .-1C .0D .1 10.如果a 与1互为相反数,那么|a|=( )A .2B .-2C .1D .-1 11.下列各式中正确的是( )A .|-3|>|-4|B .-2>|-5|C .0>|-0.000 1|D .-|-89|>-91012.下列说法正确的是( )A .-|a|一定是负数B .只有两个数相等时它们的绝对值才相等C .若|a|=|b|,则a 与b 相等D .若一个数小于它的绝对值,则这个数为负数 13.a ,b 两数在数轴上的对应点的位置如图,下列各式正确的是( )A .b >aB .-a <bC .|a|>|b|D .b <-a <a <-b14.如图,数轴上的单位长度为1,有三个点A ,B ,C.若点A ,B 表示的数互为相反数,则图中点C 对应的数是( )A .-2B .0C .1D .415.已知a ,b 是不为0的有理数,且|a|=-a ,|b|=b ,|a|>|b|,那么用数轴上的点来表示a ,b 时,正确的是( )A B C D二、填空题16.-5的绝对值是_____;-|-2.5|=_____;绝对值是6的数是_____. 17.计算:|4|+|0|-|-4|=_____.18.(1)①正数:|+5|=_____,|12|=12;②负数:|-7|=_____,|-15|=_____;③零:|0|=_____;(2)根据(1)中的规律发现:当a 是正数时,|a|>0;当a 是负数时,|a|>0;当a 为任意有理数时,|a|一定是一个非负数.19.用“>”或“<”填空:(1)-7_____-6.5;(2)-3_____-4. 20.若|a|=12,则a =_____.21.绝对值小于6的整数有11个,它们分别是_____;绝对值大于3且小于6的整数是_____ 22.若有理数m ,n 满足|m -2|+|2 019-n|=0,则m +n =_____.23.有理数a ,b 在数轴上的位置如图所示,且|a|=2,|b|=3,则a =_____,b =_____.24.如图,四个有理数在数轴上的对应点分别是M ,N ,P ,Q.若点M ,Q 表示的有理数互为相反数,则图中表示绝对值最小的数的点是_____.三、解答题25.求下列各数的绝对值: (1)+813;(2)-7.2; (3)0; (4)-813.26.张师傅要从6个圆形机器零件中选取2个最接近标准的零件拿去试用.经过检验,比规定直径长的记为正数,比规定直径短的记为负数,记录如下(单位:毫米):+0.3,-0.1,-0.2,-0.3,+0.4,+0.3.你认为张师傅会拿走哪两个零件?请你用绝对值的知识加以解释.27.阅读下列材料:我们知道|x|的几何意义是数轴上数x 的对应点与原点之间的距离,即|x|=|x -0|,也可以说,|x|表示数轴上数x 与数0对应点之间的距离,这个结论可以推广为|x 1-x 2|表示数轴上数x 1与数x 2对应点之间的距离.例1:已知|x|=2,求x 的值.解:在数轴上与原点距离为2的点表示的数为-2或2,所以x 的值为-2或2. 例2:已知|x -1|=2,求x 的值.解:在数轴上与1对应的点的距离为2的点表示的数为3或-1,所以x 的值为3或-1. 仿照材料中的解法,求下列各式中x 的值. (1)|x|=3; (2)|x -(-2)|=4. 参考答案北师大版七年级数学上册第二章 2.3.2绝对值 同步测试题一、选择题1.-2的绝对值为(D)A .-12 B.12C .-2D .22.计算|-3|的结果是(A)A .3 B.13C .-3D .±33.如图,数轴上有A ,B ,C ,D 四个点,其中表示的数的绝对值等于2的点是(A)A .点AB .点BC .点CD .点D 4.-12的绝对值的相反数是(B)A.12 B .-12C .2D .-2 5.下列判断:①负数没有绝对值;②绝对值最小的有理数是0;③任何数的绝对值都是非负数;④互为相反数的两个数的绝对值相等,其中正确的有(C) A .1个 B .2个 C .3个 D .4个 6.任何一个有理数的绝对值一定(D) A .大于0 B .小于0 C .小于或等于0 D .大于或等于0 7.在有理数中,绝对值等于它本身的数有(D)A .一个B .两个C .三个D .无数个 8.比较大小:-2________-3.14(A)A .>B .=C .<D .无法判断 9.在-3,-1,0,1这四个数中,最小的数是(A)A .-3B .-1C .0D .1 10.如果a 与1互为相反数,那么|a|=(C)A .2B .-2C .1D .-1 11.下列各式中正确的是(D)A .|-3|>|-4|B .-2>|-5|C .0>|-0.000 1|D .-|-89|>-91012.下列说法正确的是(D) A .-|a|一定是负数B .只有两个数相等时它们的绝对值才相等C .若|a|=|b|,则a 与b 相等D .若一个数小于它的绝对值,则这个数为负数13.a ,b 两数在数轴上的对应点的位置如图,下列各式正确的是(D)A .b >aB .-a <bC .|a|>|b|D .b <-a <a <-b14.如图,数轴上的单位长度为1,有三个点A ,B ,C.若点A ,B 表示的数互为相反数,则图中点C 对应的数是(C)A .-2B .0C .1D .415.已知a ,b 是不为0的有理数,且|a|=-a ,|b|=b ,|a|>|b|,那么用数轴上的点来表示a ,b 时,正确的是(C)A B C D16.-5的绝对值是5;-|-2.5|=-2.5;绝对值是6的数是±6. 17.计算:|4|+|0|-|-4|=0.18.(1)①正数:|+5|=5,|12|=12;②负数:|-7|=7,|-15|=15;③零:|0|=0; (2)根据(1)中的规律发现:当a 是正数时,|a|>0;当a 是负数时,|a|>0;当a 为任意有理数时,|a|一定是一个非负数.19.用“>”或“<”填空:(1)-7<-6.5;(2)-3>-4. 20.若|a|=12,则a =±12.21.绝对值小于6的整数有11个,它们分别是±5,±4,±3,±2,±1,0;绝对值大于3且小于6的整数是±5,±4.22.若有理数m ,n 满足|m -2|+|2 019-n|=0,则m +n =2_021.23.有理数a ,b 在数轴上的位置如图所示,且|a|=2,|b|=3,则a =±2,b =3.24.如图,四个有理数在数轴上的对应点分别是M ,N ,P ,Q.若点M ,Q 表示的有理数互为相反数,则图中表示绝对值最小的数的点是N .三、解答题25.求下列各数的绝对值: (1)+813;解:|+813|=813.解:|-7.2|=7.2. (3)0; 解:|0|=0. (4)-813.解:|-813|=813.26.张师傅要从6个圆形机器零件中选取2个最接近标准的零件拿去试用.经过检验,比规定直径长的记为正数,比规定直径短的记为负数,记录如下(单位:毫米):+0.3,-0.1,-0.2,-0.3,+0.4,+0.3.你认为张师傅会拿走哪两个零件?请你用绝对值的知识加以解释.解:利用数据的绝对值的大小来判断零件的质量,绝对值越小说明越接近规定标准. 因为|+0.4|>|+0.3|=|-0.3|>|-0.2|>|-0.1|, 所以张师傅会拿走记录为-0.1和-0.2的两个零件.27.阅读下列材料:我们知道|x|的几何意义是数轴上数x 的对应点与原点之间的距离,即|x|=|x -0|,也可以说,|x|表示数轴上数x 与数0对应点之间的距离,这个结论可以推广为|x 1-x 2|表示数轴上数x 1与数x 2对应点之间的距离.例1:已知|x|=2,求x的值.解:在数轴上与原点距离为2的点表示的数为-2或2,所以x的值为-2或2.例2:已知|x-1|=2,求x的值.解:在数轴上与1对应的点的距离为2的点表示的数为3或-1,所以x的值为3或-1. 仿照材料中的解法,求下列各式中x的值.(1)|x|=3;(2)|x-(-2)|=4.解:(1)在数轴上与原点距离为3的点表示的数为-3或3,所以x的值为3或-3.(2)在数轴上与-2对应的点的距离为4的点表示的数为2或-6,所以x的值为2或-6.。
北师大版(2024)七年级上册《2.3有理数的乘除运算1》2024年同步练习卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.用简便方法计算:,其结果是()A.2B.1C.0D.2.下列算式中,积为负数的是()A. B.C.D.3.下列选项错误的是()A. B.C.D.4.下面计算的过程正确的是()A. B.C.D.5.下列各式中,m 和n 互为倒数的是()A.B.C.D.6.一个数的相反数的倒数是,则这个数为()A. B.C.D.7.式子中用的运算律是()A.乘法交换律及乘法结合律B.乘法交换律及乘法对加法的分配律C.乘法结合律及乘法对加法的分配律D.乘法对加法的分配律及加法结合律8.的倒数是()A.B.C. D.9.下列计算正确的是()A.原式B.原式C.原式D.原式10.运用了()A.加法交换律B.乘法结合律C.乘法分配律D.乘法交换律和结合律11.如图所示,数轴上点A,B,C分别表示有理数a,b,c,若a,b,c三个数的乘积为正数,这三个数的和与其中一个数相等,则下列正确的是()A. B. C. D.12.如果两个有理数的积是正数,那么这两个有理数()A.同号,且均为负数B.异号C.同号,且均为正数D.同号二、填空题:本题共6小题,每小题3分,共18分。
13.写出下列各数的倒数.的倒数是______;的倒数是______;的倒数是______;的倒数是______;的倒数是______.14.两数相乘,同号______异号______,并把______相乘;任何数与0相乘都得______.15.填空题.______;______;______;______;______;______.16.若a、b互为倒数,则______.17.一个有理数的倒数等于它本身,则这个数只能是______判断对错18.已知有理数,我们把为a的差倒数,如:2的差倒数是,的差倒数是如果,是的差倒数,是的差倒数,是的差倒数……依此类推,那么…的值是______三、计算题:本大题共1小题,共6分。
2.3绝对值一.填空题(共9小题)1.如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是.2.﹣的绝对值是;1的相反数是.3.|x+1|+|x﹣2|+|x﹣3|的值为.4.已知|2a+4|+|3﹣b|=0,则a+b=.5.若|a4|=﹣|a4|,则a是.6.已知|x﹣2|+|y+2|=0,则x+y=.7.请写出一个比﹣π大的负整数:.8.如图,用“>”或“<”号填空:ab.9.四个数w、x、y、z满足x﹣2001=y+2002=z﹣2003=w+2004,那么其中最小的数是,最大的数是.二.选择题(共12小题)10.代数式|x﹣1|+|x+2|+|x﹣3|的最小值为()A.2 B.3 C.5 D.611.如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是()A.b为正数,c为负数B.c为正数,b为负数C.c为正数,a为负数D.c为负数,a为负数12.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和113.已知x为一切实数.则求出|x+1|+|x﹣2|+|x﹣4|+|x+2|+|x﹣6|最小值是()A.13 B.15 C.16 D.1114.若|x+2|+|y﹣3|=0,则x﹣y的值为()A.5 B.﹣5 C.1或﹣1 D.以上都不对15.已知|x﹣2006|+|y+2007|=0,则()A.x<y B.x>y C.x<﹣y<0 D.x>﹣y>016.若a、b为实数,且|a+1|+|b﹣1|=0,则(ab)2014的值为()A.0 B.1 C.﹣1 D.±117.若|x﹣5|与|y+7|互为相反数,则3x﹣y的值是()A.22 B.8 C.﹣8 D.﹣2218.在如图的数线上,O为原点,数线上的点P、Q、R、S所表示的数分别为a、b、c、d、请问下列哪一个大小关系是不正确的()A.|a|<|d|B.|b|=|c|C.|a|>|b|D.|O|<|b|19.如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=,其中P是压强,F是压力,S是受力面积,则p1,p2,p3,的大小关系正确的是()A.p1>p2>p3B.p1>p3>p2C.p2>p1>p3D.p3>p2>p120.已知x=1234567×1234564,y=1234566×1234565,则x、y的大小关系是()A.x<y B.x>y C.x=y D.无法确定21.已知a=42,b=58,c=(﹣10)4,则a,b,c三个数的大小关系是()A.b>c>a B.b>a>c C.c>a>b D.a>b>c三.解答题(共9小题)22.求下列各数的绝对值:﹣5,4.5,﹣0.5,+1,0,π﹣3.23.当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,求相应x的取值范围,并求出最小值.24.已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.25.若|x﹣2|+|y+3|+|z﹣5|=0,计算:(1)x,y,z的值.(2)求|x|+|y|+|z|的值.26.(1)已知|x﹣5|=3,求x的值;(2)已知n=4,且|x﹣5|+|y﹣2n|=0,求x﹣y+8的值.27.已知|a+1|与|b﹣2|互为相反数,求a﹣b的值.28.如图,数轴上有点a,b,c三点(1)用“<”将a,b,c连接起来.(2)b﹣a1(填“<”“>”,“=”)(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|(4)用含a,b的式子表示下列的最小值:①|x﹣a|+|x﹣b|的最小值为;②|x﹣a|+|x﹣b|+|x+1|的最小值为;③|x﹣a|+|x﹣b|+|x﹣c|的最小值为.29.有理数:,﹣1,5,0,3.5,﹣2(1)将上面各数在下图的数轴上表示出来,并把这些数用“<”连接.(2)请将以上各数填到相应的横线上;正有理数:;负有理数:.30.有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)|b﹣1|+|a﹣1|=;(3)化简|a+b|+|a﹣c|﹣|b|+|b﹣c|.参考答案一.填空题1.0.04.2.;﹣13..4.1.5.0.6.0.7.﹣3.(答案不唯一)8.<.9.w、z.二.选择题10.C.11.C.12.C.13.A.14.B.15.B.16.B.17.A.18.A.19.D.20.A.21.A.三.解答题22.解:各数的绝对值分别为5,4.5,0.5,1,0,π﹣3.23.解:当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,相应x的取值范围是﹣1≤x≤3,最小值是14.24.解:∵|a﹣1|=9,|b+2|=6,∴a=﹣8或10,b=﹣8或4,∵a+b<0,∴a=﹣8,b=﹣8或4,当a=﹣8,b=﹣8时,a﹣b=﹣8﹣(﹣8)=0,当a=﹣8,b=4时,a﹣b=﹣8﹣4=﹣12.综上所述,a﹣b的值为0或﹣12.25.解:(1)由题意,得,解得.即x=2,y=﹣3,z=5;(2)当x=2,y=﹣3,z=5时,|x|+|y|+|z|=|2|+|﹣3|+|5|=2+3+5=10.26.解:(1)由题意可得方程:x﹣5=3或x﹣5=﹣3,解方程:x﹣5=3得x=8,解方程x﹣5=﹣3得x=2故x的值为8或2;(2)因为|x﹣5|≥0,且|y﹣2n|≥0,所以得x﹣5=0且y﹣2n=0,解得:x=5,y=2n=8,所以x﹣y+8=5﹣8+8=5.27.解:∵|a+1|与|b﹣2|互为相反数,∴|a+1|+|b﹣2|=0,∴a+1=0,b﹣2=0,解得a=﹣1,b=2,所以,a﹣b=﹣1﹣2=﹣3.28.解:(1)根据数轴上的点得:b>a>c;(2)由题意得:b﹣a<1;(3)|c﹣b|﹣|c﹣a+1|+|a﹣1|=b﹣c﹣(a﹣c﹣1)+a﹣1=b﹣c﹣a+c+1+a﹣1=b;(4)①当x在a和b之间时,|x﹣a|+|x﹣b|有最小值,∴|x﹣a|+|x﹣b|的最小值为:x﹣a+b﹣x=b﹣a;②当x=a时,|x﹣a|+|x﹣b|+|x+1|=0+b﹣x+x﹣(﹣1)=b+1为最小值;③当x=a时,|x﹣a|+|x﹣b|+|x﹣c|=0+b﹣a+a﹣c=b﹣c为最小值.故答案为:<;b﹣a;b+1;b﹣c.29.解:(1)如图所示:把这些数用“<”连接为:﹣2<﹣1<0<<3.5<5.(2)正有理数:,5,3.5;负有理数:﹣1,﹣2.故答案为:,5,3.5;﹣1,﹣2.30.解:∵b<﹣1<c<0<1<a,|a|=|b|,∴(1)b<0,a+b=0,a﹣c>0,b﹣c<0;(2)|b﹣1|+|a﹣1|=﹣b+1+a﹣1=a﹣b;(3)|a+b|+|a﹣c|﹣|b|+|b﹣c|=0+(a﹣c)+b﹣(b﹣c)=0+a﹣c+b﹣b+c=a.故答案为:<,=,>,<;a﹣b.。
2010-2023历年北师大版初中数学七年级上2第1卷一.参考题库(共20题)1.=_______;2._______;3.下列各式中,正确的是A.->0B.>C.>D.<04.比较大小(要有解答过程):5.比较大小(要有解答过程):6.绝对值小于4的整数有_______.7.=_______;8.在-0.1,这四个数中,最小的一个数是()A.-0.1B.C.D.9.=_______.10.+=_______;11.计算:+ ;12.若a=-3则-=( )A.-3B.3C.-3或3D.以上都不对13.用“>”连接,,-,0,正确的是()A.>->0B.>0>-C.-<< 0D.0< -<14.绝对值最小的数是_______,绝对值最小的整数是_______.15.已知=2,=2,=3,且有理数a,b,c在数轴上的位置如图所示,计算a+b+c的值。
16.某制衣厂本周计划每日生产100套西服,由于工人实行轮休,每日上班人数不一定相等,实行每日生产量与计划量相比情况如下表(增加的套数为正数,减少的套数为负数):星期一二三四五增减+7-3+4-2-5请问产量最少的是星期几?生产量是多少?17.下列各组数中,互为相反数的是A.B.C.D.18.计算:.19.=_______;20.绝对值等于的数是_______,他们互为_______.第1卷参考答案一.参考题库1.参考答案:2试题分析:先算绝对值,再算除法,即可得到结果.=考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.2.参考答案:试题分析:根据绝对值的定义即可得到结果..考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.3.参考答案:C试题分析:根据绝对值的定义即可得到结果.A.,B. ,D. ,故错误;C. >,本选项正确.考点:本题考查的是绝对值,有理数的大小比较点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.4.参考答案:试题分析:根据有理数的大小比较法则即可判断.考点:本题考查的是有理数的大小比较点评:解答本题的关键是熟练掌握有理数的大小比较法则:正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小.5.参考答案:试题分析:根据有理数的大小比较法则即可判断.考点:本题考查的是有理数的大小比较点评:解答本题的关键是熟练掌握有理数的大小比较法则:正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小.6.参考答案:0,±1,±2,±3试题分析:根据绝对值的定义即可得到结果.绝对值小于4的整数有0,±1,±2,±3.考点:本题考查的是绝对值,有理数的大小比较点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.7.参考答案:-3试题分析:根据绝对值的定义即可得到结果.考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.8.参考答案:B试题分析:根据有理数的大小比较法则即可得到结果.,∴最小的一个数是,故选B.考点:本题考查的是有理数的大小比较点评:有解答本题的关键是熟练掌握有理数的大小比较法则:正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小.9.参考答案:1试题分析:先算绝对值,再算减法,即可得到结果.=考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.10.参考答案:10试题分析:先算绝对值,再算加法,即可得到结果.+=考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.11.参考答案:12 试题分析:先算绝对值,再算加减,即可得到结果.+考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.12.参考答案:A试题分析:根据绝对值的定义即可得到结果.若a=-3则-=-3,故选A.考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.13.参考答案:B试题分析:根据绝对值的定义即可得到结果.,,,故选B.考点:本题考查的是绝对值,有理数的大小比较点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.14.参考答案:0,0试题分析:根据绝对值的定义即可得到结果.绝对值最小的数是0,绝对值最小的整数是0.考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.15.参考答案:3试题分析:根据有理数a,b,c在数轴上的位置即可得到a,b,c 的值,从而得到结果.由数轴可得a=2,b=-2,c=3,则a+b+c=3.考点:本题考查的是数轴的知识,绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.16.参考答案:星期五生产的西服产量最小,生产量为95套。
第二章有理数及其运算01 分点突破知识点1 有理数的概念及分类1.下列数-91,1.5,23,-136,7,0中,负数的个数是( )A .1B .2C .3D .4 2.下列说法错误的是( )A .-2是负有理数B .0不是整数 C.25是正有理数 D .-0.25是负分数3.把下面的有理数填在相应的大括号里:15,-38,0,-30,0.15,-128,225,+20,-2.6.(1)非负数集合:{,…}; (2)负数集合:{ ,…}; (3)正整数集合:{ ,…}; (4)负分数集合:{,…}.知识点2 数轴、相反数、绝对值与倒数 4.如图,在数轴上点A 表示的数可能是( )A .1.5B .-1.5C .-2.6D .2.6 5.(东营中考)|-13|的相反数是( )A.13 B .-13C .3D .-36.-2的倒数是________,|-2 016|=________,-5的倒数的相反数是________. 知识点3 有理数的大小比较7.(绍兴中考)比较-3,1,-2的大小,正确的是( ) A .-3<-2<1 B .-2<-3<1 C .1<-2<-3 D .1<-3<-2 8.绝对值不大于11.1的整数有( )A .11个B .12个C .22个D .23个9.有理数a 、b 、c 在数轴上的位置如图所示,下列结论错误的是( )A .c <b <aB .-c >aC .b <0,c <0D .-a >-c 知识点4 有理数的混合运算及其应用 10.计算:(1)(-49)-90-(-6)+(-9);(2)23×(-3)-(-2)÷(-164);(3)24×(12+13-112).11.初一年级共110名学生,在一次数学测试中以90分为标准,超过的记为正,不足的记为负,成绩如下:人 数 10 20 5 14 12 18 10 4 9 6 2 成 绩-1+3-2+1+10+2-77-9-12知识点5 科学记数法与近似数12.(菏泽中考)现在网购越来越多地成为人们的一种消费方式,在2014年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57 000 000 000元,将数字57 000 000 000用科学记数法表示为( ) A .5.7×109 B .5.7×1010 C .0.57×1011 D .57×10913.计算一个式子,计算器上显示的结果1.597 583,将这个结果精确到0.01是________. 02 综合训练14.(丽水中考)如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A .-4B .-2C .0D .4 15.(毕节中考)下列说法正确的是( ) A .一个数的绝对值一定比0大 B .一个数的相反数一定比它本身小 C .绝对值等于它本身的数一定是正数 D .最小的正整数是116.某地一天下午4时的温度是6 ℃,过了6时气温下降了4 ℃,又过了2时气温下降了3 ℃,第二天0时的气温是________. 17.计算:(1)(-3)2-112×29-6÷|-23|2;(2)(佛山中考)2×[5+(-2)3]-(-|-4|÷12).18.一天,小红与小丽利用温差测量山的高度,小红在山顶测得温度是-4 ℃,小丽此时在山脚测得温度是6 ℃.已知该地区高度每增加100米,气温大约降低0.8 ℃,这个山峰的高度大约是多少米?19.若a ,b 都是非零的有理数,那么a |a |+b |b |+ab|ab |的值是多少?参考答案分点突破1.B 2.B 3.(1)15,0,0.15,225,+20 (2)-38,-30,-128,-2.6 (3)15,+20 (4)-38,-2.6 4.C 5.B 6.-12 2 016 15 7.A 8.D 9.D 10.(1)原式=-49-90+6-9=-142. (2)原式=-69-128=-197. (3)原式=12+8-2=18. 11.-1×10+20×3+5×(-2)+14×1+12×10+18×2+10×0+4×(-7)+9×7+6×(-9)+2×(-12)=-10+60-10+14+120+36-28+63-54-24=167,90+167÷110≈91.5.答:这次考试的平均成绩是91.5分. 12.B 13.1.60 综合训练14.B 15.D 16.-1 ℃ 17.(1)原式=9-13-6÷49=9-13-272=-456. (2)原式=2×(5-8)-(-4×2)=2×(-3)-(-8)=2. 18.由题意,得[6-(-4)]÷0.8×100=12.5×100=1 250(米).答:这个山峰的高度大约是1 250米. 19.当a>0,b>0时,原式=a a +b b +ab ab =1+1+1=3;当a>0,b<0时,原式=a a +b -b +ab-ab =1+(-1)+(-1)=-1;当a<0,b>0时,原式=a -a +b b +ab -ab =-1+1+(-1)=-1;当a<0,b<0时,原式=a -a +b -b +abab =-1+(-1)+1=-1.综上所述,a |a|+b |b|+ab|ab|的值为3或-1.《第3章整式及其加减》一、选择题1.下列各说法中,错误的是()A.代数式x2+y2的意义是x、y的平方和B.代数式5(x+y)的意义是5与(x+y)的积C.x的5倍与y的和的一半,用代数式表示为5x+D.比x的2倍多3的数,用代数式表示为2x+32.当a=3,b=1时,代数式的值是()A.3 B.C.2 D.13.下面的式子中正确的是()A.3a2﹣2a2=1 B.5a+2b=7abC.3a2﹣2a2=2a D.5xy2﹣6xy2=﹣xy24.代数式的值一定不能是()A.6 B.0 C.8 D.245.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.126.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.这个三位数可表示成()A.10b+a B.ba C.100b+a D.b+10a7.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+b B.C.D.8.已知a,b两数在数轴上的位置如图所示,则化简代数式|a+b|﹣|a﹣1|+|b+2|的结果是()A.1 B.2b+3 C.2a﹣3 D.﹣19.在排成每行七天的日历表中取下一个3×3方块(如图).若所有日期数之和为189,则n的值为()A.21 B.11 C.15 D.910.某种商品进价为a元,商店将价格提高30%作零售价销售.在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件该商品的售价为()A.a元B.0.8a元C.1.04a元D.0.92a元二、填空题11.若x+y=4,a,b互为倒数,则(x+y)+5ab的值是.12.已知2a﹣3b2=5,则10﹣2a+3b2的值是.13.如图:(1)阴影部分的周长是:;(2)阴影部分的面积是:;(3)当x=5.5,y=4时,阴影部分的周长是,面积是.14.若a﹣2b=3,则2a﹣4b﹣5= .15.去括号:﹣6x3﹣[4x2﹣(x+5)]= .16.一个学生由于粗心,在计算35﹣a的值时,误将“﹣”看成“+”,结果得63,则35﹣a的值应为.17.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是.18.已知甲、乙两种糖果的单价分别是x元/千克和12元/千克.为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y千克乙种糖果混合而成的什锦糖的单价应是元/千克.三、解答题(共46分)19.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x﹣2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.20.化简关于x的代数式(2x2+x)﹣[kx2﹣(3x2﹣x+1)],当k为何值时,代数式的值是常数?21.一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.22.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第几个图形有2013颗黑色棋子?请说明理由.23.观察下面的变形规律: =1﹣;=﹣; =﹣;…解答下面的问题:(1)若n为正整数,请你猜想= ;(2)证明你猜想的结论;(3)求和: +++…+.24.一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工重量减少了20%,价格增加了40%,问:(1)x千克这种蔬菜加工后可卖多少钱?(2)如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?25.任意写出一个数位不含0的三位数,任取三个数字中的两个,组合成所有可能的两位数(6个).求出所有这些两位数的和,然后将它除以原三位数上的数字之和.例如对于三位数223,取其两个数字组成所有可能的两位数有:22,23,23,22,32,32.它们的和是154.三位数223各个数位上的数字之和为7,154÷7=22.再换几个数试一试,你发现了什么?运用代数式的知识说明你的发现是正确的.《第3章整式及其加减》参考答案与试题解析一、选择题1.下列各说法中,错误的是()A.代数式x2+y2的意义是x、y的平方和B.代数式5(x+y)的意义是5与(x+y)的积C.x的5倍与y的和的一半,用代数式表示为5x+D.比x的2倍多3的数,用代数式表示为2x+3【考点】列代数式;代数式.【分析】根据代数式的意义对各选项分析判断后利用排除法求解.【解答】解:A、代数式x2+y2的意义是x、y的平方和正确,故本选项错误;B、代数式5(x+y)的意义是5与(x+y)的积正确,故本选项错误;C、x的5倍与y的和的一半,用代数式表示为(5x+y),故本选项正确;D、比x的2倍多3的数,用代数式表示为2x+3正确,故本选项错误.故选C.【点评】本题考查了列代数式,是基础题.2.当a=3,b=1时,代数式的值是()A.3 B.C.2 D.1【考点】代数式求值.【专题】计算题.【分析】将a=3,b=1直接代入代数式,化简计算即可.【解答】解:当a=3,b=1,=.故选B.【点评】本题考查了求代数式的值,本题属于常规代入求值法,代数式求值,除了按常规代入求值法,还要根据题目的特点,灵活运用恰当的方法和技巧,才能达到预期的目的.3.下面的式子中正确的是()A.3a2﹣2a2=1 B.5a+2b=7abC.3a2﹣2a2=2a D.5xy2﹣6xy2=﹣xy2【考点】合并同类项.【分析】根据合并同类项的定义,所含字母相同,且相同字母的指数也相同的项叫做同类项,将多项式中的同类项合并为一项,叫做合并同类项,合并时,将系数相加,字母和字母指数不变,再选出正确的选项.【解答】解:根据合并同类项时,将系数相加,字母和字母指数不变,A:3a2﹣2a2=a2,故A,C错误,B:5a+2b不是同类项,不能相加,故错误,D:5xy2﹣6xy2=﹣xy2,故选D.【点评】本题考查了同类项的定义,及合并时,将系数相加,字母和字母指数不变,难度适中.4.代数式的值一定不能是()A.6 B.0 C.8 D.24【考点】分式的值.【专题】计算题.【分析】可以假设式子的值等于各个选项的数值,判断a的值是否存在即可.【解答】解:A、当a=10时, =6,故选项错误;B、分式的值等于0的条件是分子等于0而分母不等于0,这个式子的分母不等于0,则式子的值一定不等于0,故选项正确;C、当a=4时, =8,故选项错误;D、当a=12时, =24,故选项错误.故选B.【点评】本题主要考查了分式的值是0的条件:分子等于0而分母不等于0,这两个条件必须同时具备.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【专题】计算题.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.这个三位数可表示成()A.10b+a B.ba C.100b+a D.b+10a【考点】列代数式.【分析】b原来的最高位是个位,现在的最高位是千位,扩大了100倍;a不变.【解答】解:两位数的表示方法:十位数字×10+个位数字;三位数字的表示方法:百位数字×100+十位数字×10+个位数字.a是两位数,b是一位数,依据题意可得b扩大了100倍,所以这个三位数可表示成100b+a.故选C.【点评】主要考查了三位数的表示方法,该题的易错点是表示百位数字b时忘了a是个2位数,错写成(10b+a).7.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+b B.C.D.【考点】整式的加减.【分析】此题可先列出所求代数式的两倍,然后再除以2即可.【解答】解:依题意得[(a+2b)﹣(﹣2a+b)]÷2=.故选D.【点评】整式的加减运算实际上就是去括号、合并同类项.合并同类项时,注意是系数相加减,字母与字母的指数不变.去括号时,括号前面是“﹣”号,去掉括号和“﹣”号,括号里的各项都要改变符号.8.已知a,b两数在数轴上的位置如图所示,则化简代数式|a+b|﹣|a﹣1|+|b+2|的结果是()A.1 B.2b+3 C.2a﹣3 D.﹣1【考点】整式的加减;数轴;绝对值.【专题】计算题.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,即可得到结果.【解答】解:由数轴可知﹣2<b﹣1,1<a<2,且|a|>|b|,∴a+b>0,则|a+b|﹣|a﹣1|+|b+2|=a+b﹣(a﹣1)+(b+2)=a+b﹣a+1+b+2=2b+3.故选B.【点评】此题考查了整式的加减,数轴,以及绝对值,判断出绝对值里边式子的正负是解本题的关键.9.在排成每行七天的日历表中取下一个3×3方块(如图).若所有日期数之和为189,则n的值为()A.21 B.11 C.15 D.9【考点】一元一次方程的应用.【专题】应用题.【分析】观察图片,可以发现日历的排布规律,因此可得出日历每个方块的代数式,从而求出n的值.【解答】解:日历的排布是有一定的规律的,在日历表中取下一个3×3方块,当中间那个是n的话,它的上面的那个就是n﹣7,下面的那个就是n+7,左边的那个就是n﹣1,右边的那个就是n+1,左边最上面的那个就是n﹣1﹣7,最下面的那个就是n﹣1+7,右边最上面的那个就是n+1﹣7,最下面的那个就是n+1+7,若所有日期数之和为189,则n+1+7+n+1﹣7+n﹣1+7+n﹣1﹣7+n+1+n﹣1+n+7+n﹣7+n=189,9n=189,解得:n=21.故选A.【点评】此题的关键是联系生活实际找出日历的规律,所以学生平时要养成爱观察爱动脑的习惯.10.某种商品进价为a元,商店将价格提高30%作零售价销售.在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件该商品的售价为()A.a元B.0.8a元C.1.04a元D.0.92a元【考点】列代数式.【分析】根据题意列出等量关系,商品的售价=原售价的80%.直接列代数式求值即可.【解答】解:依题意可得:a(1+30%)×0.8=1.04a元.故选C.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.注意数字通常写在字母的前面.二、填空题11.若x+y=4,a,b互为倒数,则(x+y)+5ab的值是.【考点】代数式求值.【专题】整体思想.【分析】根据已知ab互为倒数,可知ab=1,再把ab=1,x+y=4同时代入所求代数式,计算即可.【解答】解:∵a,b互为倒数,∴ab=1,又∵x+y=4,∴(x+y)+5ab=×4+5×1=7.故答案是7.【点评】本题考查的是代数式求值、倒数的概念、整体代入的思想.12.已知2a﹣3b2=5,则10﹣2a+3b2的值是.【考点】代数式求值.【专题】计算题.【分析】先将10﹣2a+3b2进行变形,然后将2a﹣3b2=5整体代入即可得出答案.【解答】解:10﹣2a+3b2=10﹣(2a﹣3b2),又∵2a﹣3b2=5,∴10﹣2a+3b2=10﹣(2a﹣3b2)=10﹣5=5.故答案为:5.【点评】此题考查了代数式求值的知识,属于基础题,解答本题的关键是掌握整体思想的运用.13.如图:(1)阴影部分的周长是:;(2)阴影部分的面积是:;(3)当x=5.5,y=4时,阴影部分的周长是,面积是.【考点】代数式求值;列代数式.【分析】(1)将各段相加可得出周长.(2)先计算整个长方形的面积,然后减去空白的面积即可.(3)将x=5.5,y=4代入(1)(2)的关系式可得出答案.【解答】解:(1)周长=0.5x+y+0.5x+y+x+2y+2x+2y=4x+6y.(2)面积=4xy﹣0.5xy=3.5xy.(3)将x=5.5,y=4代入(1)(2)可得周长=46,面积=88﹣11=77.【点评】本题考查列代数式和代数式求值的知识,比较简单,关键是获取图形所反映的信息.14.若a﹣2b=3,则2a﹣4b﹣5= .【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.15.去括号:﹣6x3﹣[4x2﹣(x+5)]= .【考点】去括号与添括号.【分析】首先去掉小括号,然后去中括号即可求解.【解答】解:﹣6x3﹣[4x2﹣(x+5)]=﹣6x3﹣(4x2﹣x﹣5)=﹣6x3﹣4x2+x+5.故答案是:﹣6x3﹣4x2+x+5.【点评】本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.16.一个学生由于粗心,在计算35﹣a的值时,误将“﹣”看成“+”,结果得63,则35﹣a的值应为.【考点】代数式求值.【专题】计算题.【分析】根据题意列出等式,求出a的值,即可确定出所求式子的值.【解答】解:由题意可知35+a=63,即a=28,则35﹣a=35﹣28=7.故答案为:7.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.17.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是.【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.18.已知甲、乙两种糖果的单价分别是x元/千克和12元/千克.为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y千克乙种糖果混合而成的什锦糖的单价应是元/千克.【考点】列代数式(分式).【分析】此题要根据题意列出代数式.先求出20千克的甲种糖果和y千克乙种糖果的总价钱,即20x+12y,混合糖果的重量是20+y,由此我们可以求出20千克甲种糖果和y千克乙种糖果混合而成的什锦糖的单价.【解答】解:.【点评】本题考查列代数式.注意混合什锦糖单价=甲种糖果和乙种糖果的总价钱÷混合糖果的重量.三、解答题(共46分)19.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x﹣2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,将a的值代入计算即可求出值.【解答】解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.化简关于x的代数式(2x2+x)﹣[kx2﹣(3x2﹣x+1)],当k为何值时,代数式的值是常数?【考点】整式的加减.【专题】计算题.【分析】代数式去括号合并得到最简结果,根据结果为常数即可求出k的值.【解答】解:(2x2+x)﹣[kx2﹣(3x2﹣x+1)]=2x2+x﹣kx2+(3x2﹣x+1)=2x2+x﹣kx2+3x2﹣x+1=2x2+x﹣kx2+3x2﹣x+1=(5﹣k)x2+1,若代数式的值是常数,则5﹣k=0,解得k=5.则当k=5时,代数式的值是常数.【点评】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.【考点】整式的加减.【专题】数字问题.【分析】设原来的两位数是10a+b,则调换位置后的新数是10b+a.原来的两位数与新两位数的差为(10b+a)﹣(10a+b),可化为9b﹣9a=9(b﹣a),所以这个数一定能被9整除.【解答】解:设原来的两位数是10a+b,则调换位置后的新数是10b+a.∴(10b+a)﹣(10a+b)=9b﹣9a=9(b﹣a).∴这个数一定能被9整除.【点评】本题考查列代数式.要求会用代数式正确表示数与数之间的关系.22.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第几个图形有2013颗黑色棋子?请说明理由.【考点】规律型:图形的变化类.【分析】(1)根据图中所给的黑色棋子的颗数,找出其中的规律,即可得出答案;(2)根据(1)所找出的规律,列出式子,即可求出答案.【解答】解:(1)第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.答:第5个图形有18颗黑色棋子.(2)设第n个图形有2013颗黑色棋子,根据(1)得3(n+1)=2013解得n=670,所以第670个图形有2013颗黑色棋子.【点评】此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.23.观察下面的变形规律: =1﹣;=﹣; =﹣;…解答下面的问题:(1)若n为正整数,请你猜想= ;(2)证明你猜想的结论;(3)求和: +++…+.【考点】分式的加减法.【专题】规律型.【分析】(1)观察规律可得: =﹣;(2)根据分式加减法的运算法则求解即可证得结论的正确性;(3)利用上面的结论,首先原式可化为:1﹣+﹣+﹣+…+﹣,继而可求得答案.【解答】解:(1)=﹣;(2)﹣=﹣==;(3)+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.【点评】此题考查了分式的加减运算法则.此题难度适中,解题的关键是仔细观察,得到规律=﹣,然后利用规律求解.24.一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工重量减少了20%,价格增加了40%,问:(1)x千克这种蔬菜加工后可卖多少钱?(2)如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?【考点】列代数式;代数式求值.【专题】应用题.【分析】(1)求出加工后的蔬菜重量和价格,即可求出代数式;(2)将数字代入(1)中代数式即可.【解答】解:(1)x千克这种蔬菜加工后重量为x(1﹣20%)千克,价格为y(1+40%)元.x千克这种蔬菜加工后可卖x(1﹣20%)•y(1+40%)=1.12xy元.(2)加工后可卖1.12×1000×1.5=1680元,1.12×1000×1.5﹣1000×1.5=180(元)比加工前多卖180元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.要掌握销售问题的价格与重量之间的关系.25.任意写出一个数位不含0的三位数,任取三个数字中的两个,组合成所有可能的两位数(6个).求出所有这些两位数的和,然后将它除以原三位数上的数字之和.例如对于三位数223,取其两个数字组成所有可能的两位数有:22,23,23,22,32,32.它们的和是154.三位数223各个数位上的数字之和为7,154÷7=22.再换几个数试一试,你发现了什么?运用代数式的知识说明你的发现是正确的.【考点】列代数式.【专题】应用题.【分析】根据特例,首先猜想:所有组成的数的和除以这几个数字的和恒等于22,然后用字母表示数进行证明.注意用字母表示数的方法.【解答】解:猜想:所有可能的两位数的和除以这几个数字的和恒等于22.证明如下:设几个非零的数字是a,b,c.则所有的两位数是10a+b,10a+c,10b+a,10b+c,10c+a,10c+b.则(10a+b+10a+c+10b+a+10b+c+10c+a+10c+b)÷(a+b+c)=(22a+22b+22c)÷(a+b+c)=22(a+b+c)÷(a+b+c)=22.【点评】特别注意能够正确运用字母表示一个数.本题先根据题中材料猜想结论,然后用字母表示两位数计算可得出结论.。
七年级上册第二章第三节绝对值课时练习一、选择题(共10题)1.有理数的绝对值一定是()A.正数B.负数C.零或正数D.零或负数答案:C解析:解答:根据绝对值的定义可知:正数的绝对值是它本身,负数的绝对值是正数,零的绝对值是零;所以答案选择C选项分析:考查有理数的绝对值,注意正数的绝对值是它本身,负数的绝对值是正数,零的绝对值是零2.绝对值等于它本身的数有()A.0个B.1个C. 2个D .无数个答案:D解析:解答:根据绝对值得定义可知正数和零的绝对值是它本身,所以答案选择D选项分析:考查绝对值这一知识点.3.相反数等于-5的数是()A.5B.-5C.5或-5D.不能确定答案:A解析:解答:根据相反数的定义可知,互为相反数的两个数只有符号不同,所以答案选择A 选项分析:考查相反数的基本概念.4.绝对值等于5的数是()A.5B.—5C.5或—5D.不能确定答案:C解析:解答:根据绝对值的定义可知5的绝对值是5,—5的绝对值是5,故答案选C选项分析:注意绝对值是正数的数有两个,且这两个互为相反数5.绝对值等于其相反数的数一定是()A.负数B.正数C.负数或零 D.正数或零答案:C解析:解答:我们知道负数的绝对值等于它的相反数,零的绝对值还是零,故答案选择C. 分析:考查绝对值和相反数的基础知识.6.在数轴上距离原点上的距离是2个单位长度的点表示的数是()A.2B.2或—2C.—2D.不能确定答案:B解析:解答:在数轴上绝对值等于2的点有两个,分别为2和—2,故答案选择B分析:注意到原点距离相等的点有两个,左边一个右边一个7. 下列说法中,正确的是()A.一个有理数的绝对值不小于它自身B.若两个有理数的绝对值相等,则这两个数相等C.若两个有理数的绝对值相等,则这两个数互为相反数D.-a的绝对值等于a答案:A解析:解答::根据绝对值的定义可知:正数的绝对值是它本身,负数的绝对值是正数,零的绝对值是零,由此可以判断一个有理数的绝对值不小于它本身,即大于等于它本身;故答案选择A分析:考查绝对值和相反数的基本定义.8. 绝对值最小的有理数的倒数是()A.1B.0C.—1D.不存在答案:D解析:解答:我们知道绝对值最小的数是0,但是0不存在倒数,故答案选择D分析:考查绝对值最小的数是几的问题,注意0没有倒数9.下列说法错误的是()A.一个正数的绝对值一定是正数B.一个负数的绝对值一定是正数C.任何数的绝对值都不是负数D.任何数的绝对值一定是正数答案:D解析:解答:任何数的绝对值不一定都是正数,例如0的绝对值还是0,0既不是正数也不是负数.分析:注意0既不是正数也不是负数.10. 如果|a|>a,那么a是()A.正数B.负数C.零D.不能确定答案:B解析:解答:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0,题目中可知一个数的绝对值大于它本身只能是负数,所以答案选择B选项分析:正负数的绝对值的特点二、填空题(共10题)11. 若|x|=4,则x=_______________.答案:4或—4解析:解答:根据数轴的定义我们可知4或—4的绝对值等于4.分析:注意有两个答案12. 若x<0,则|x|=______________答案:—x解析:解答:负数的绝对值等于它的相反数分析:考查负数的绝对值这一知识点13. 若a<1,则|a-1|=_____________答案:1—a解析:解答:因为a<1,a—1˂0,因为负数的绝对值等于它的相反数,故答案是1—a分析:注意当代数式是负的时候,它的绝对值等于它的相反数14.-|a|=-3.2,则a是______答案:3.2或—3.2解析:解答:我们可以判断3.2或—3.2的绝对值的相反数等于—3.2,所以本题答案是3.2或—3.2.分析:考查一个正负数的绝对值15. 已知|a|+|b|+|c|=0,则a=_____,b=_____,c=_____.答案:0|0︳0解析:解答:我们知道一个数的绝对值是非负的,所以当三个非负数相加等于0的时候,它们都是0才成立,即答案为0︳0︳0分析:考查绝对值的非负性16.在数轴上原点右侧的离原点越远的点表示的数越___________答案:大解析:解答:数轴上的点在原点的右边离原点越远表示的数越大分析:考查数轴上的数的大小分布情况17.绝对值相等的数它们互为_______答案:相反数解析:解答:互为相反数的两个数的绝对值相等,所以本题的答案是相反数分析:考查互为相反数的两个数的绝对值相等18.若b<0且a=|b|,则a与b的关系是______答案:互为相反数解析:解答:因为b是负数,所以它的绝对值是正数,即a是正数,所以a和b互为相反数分析:互为相反数的两个数的绝对值相等19.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越____答案:近解析:解答:绝对值越小,那么在数轴上距离原点越接近.分析:考查数轴上的数的绝对值大小和原点的关系20. 绝对值最小的数是______答案:0解析:解答:正数的绝对值是正数,负数的绝对值是正数,零的绝对值还是零,故答案是0 分析:考查绝对值的大小问题三、解答题(共5题)21. 某班举办“迎七一”知识竞赛,规定答对一题得10分,不答得0分,答错一题扣10分,今有甲、乙、丙、丁四名同学所得分数,分别为+50,+20,0,-30,请问哪个同学分数最高,哪个最低,为什么?最高分高出最低分多少?答案:甲︱乙︱甲分数为正,乙为负︱80解析:解答:甲同学分数最高,丁同学分数最低,因为甲同学得分为正,且绝对值最大,所以分数最高,最高分比最低分高80分分析:考察正负数和绝对值相互结合的问题22. 一个正数的相反数小于它的倒数的相反数,在数轴上,这个数对应的点在什么位置? 答案:在1的右边解析:解答:设这个正数是a ,那么a >0,根据题意可知—a ˂—1a ,解得a >1,所以本题的答案a 是在1的右边分析:注意要考虑到a 的取值范围23.化简|1-a |+|2a +1|+|a |,其中a <-2.答案:—5a解析:解答:因为a <-2,所以1-a >0,2a +1˂0,因为负数的绝对值等于它的相反数,所以原式=1-a —2a —1—a =—5a分析:考查如何去绝对值符号24. 由n m =,一定能得到n m =吗?请说明理由答案:不一定解析:解答:因为互为相反数的两个数的绝对值相等,所以m 和n 可能相等,也可能互为相反数分析:注意互为相反数的两个数的绝对值相等25. 若22x x --=-1,求x 的取值范围。
北师大版七年级数学上《绝对值》练习题.111.$-3.7=-\frac{37}{10}$;$-\frac{7}{10}-\frac{1}{2}=-\frac{9}{10}$;$-(-3.3)=3.3$;$-0.75=-\frac{3}{4}$。
2.$\frac{152}{343}$;$--1=1$;$+--=+$。
3.$-10+(-5)=-15$;$-6\div (-3)=2$;$-6.5-(-5.5)=-1$。
4.$0$的相反数是它本身;$\pm a$的绝对值是$a$;$\pm a$的绝对值是$|a|$。
5.这个数为$\pm\frac{2}{3}$。
6.$a=0$;$a>0$。
7.$4$或$-4$。
8.A。
9.$-5$;$-\frac{1}{3}$。
10.$-\frac{3}{5}$;$-2.31$;$\pi$。
11.$-4$。
12.$-a=3$,$a=-3$。
13.B。
14.3个。
15.A。
16.(1)在$-2$的左边;(2)在$-\frac{1}{2}$的右边;(3)在$-2.5$的右边;(4)在$3$的两侧。
17.需要给出表格才能回答。
1.+0.0018-0.0023+0.0025-0.0015+0.0012+0.0010,求合乎要求的瓶子和净含量最接近规定净含量的瓶子。
答:合乎要求的瓶子是指误差范围内的瓶子。
根据绝对值的定义可知,误差范围内的瓶子对应的绝对值小于等于0.0025.因此,+0.0018、-0.0023、+0.0025、-0.0015、+0.0012、+0.0010中,绝对值小于等于0.0025的有+0.0018、+0.0025、+0.0012、+0.0010,因此这四瓶是合乎要求的。
净含量最接近规定净含量的瓶子是指误差最小的瓶子。
根据绝对值的定义可知,误差越小,对应的绝对值越小。
因此,净含量最接近规定净含量的瓶子对应的绝对值最小。
从+0.0018、-0.0023、+0.0025、-0.0015、+0.0012、+0.0010中,可以看出+0.0018和+0.0010的绝对值相等且最小,因此这两瓶的净含量最接近规定净含量。
第1页 共12页绝对值 测试时间:60分钟 总分: 100一、选择题(本大题共10小题,共30.0分) 1.,则a 一定是A. 负数B. 正数C. 零或负数D. 非负数2.若,则的取值不可能是A. 0B. 1C. 2D.3. 实数a 、b在数轴上的位置如图,则等于A. 2aB. 2bC.D.4.若,,则为A.B.C.和D.和5. 若a 、b 都是不为零的数,则的结果为A. 3或B. 3或C. 或1D. 3或或16.的绝对值是A. 5B.C.D.7. 如图,M ,N ,P ,R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若,则原点是A. M 或RB. N 或PC. M 或ND. P 或R8.的绝对值是A. B. 6 C. D.9.的绝对值是A. B. 2 C. D.10.若a为有理数,且满足,则A. B. C. D.二、填空题(本大题共10小题,共30.0分)11.已知,则______ ,______ .12.有理数a、b、c在数轴上的位置如图所示,化简:______ .13.______.14.若,,则______ ,______ .15.绝对值等于它本身的数是______和______.16.实数a、b在数轴上的位置如图所示,则化简的结果为______ .17.已知,,,,化简______ .18.若,则m、n之间的关系为______ .19.如图,a、b、c在数轴上的位置如图所示,则______.20.如果,则______.三、计算题(本大题共4小题,共24.0分)21.如图:化简:第3页 共12页22. 如果a ,b 互为倒数,c ,d 互为相反数,且m 的绝对值是1,求代数式的值.23. 已知有理数a 、b 、c在数轴上的对应点如图所示,化简:.24.若,,且,求的值.已知,计算的值.四、解答题(本大题共2小题,共16.0分)25. a 的相反数为b ,c 的倒数d ,m 的绝对值为6,试求的值.26.已知有理数,,且,,求的值.答案和解析【答案】1. C2. B3. A4. D5. B6. B7. A8. B9. B10. D11. ;12.13. 414. 4或或14或;或4或或1415. 0;正数16.17.18. 或19. 020.21. 解:根据题意得:,且,,,,,则原式.22. 解:根据题意得:,,或,当时,原式;当时,原式.23. 解:根据数轴上点的位置得:,,,,则原式.24. 解:根据题意得:,;,,则或;,第5页共12页,,,则.25. 解:、b互为相反数,c、d互为倒数,m的绝对值是6,、,,当时,;当时,.26. 解:,,,.,,,或,.又,,..【解析】1. 解:的相反数是,且,一定是负数或零.故选C.根据绝对值的定义,绝对值等于它的相反数的数是负数或零.本题主要考查了绝对值的定义,属于基础题型注意不要忽略零.2. 解:分3种情况:两个数都是正数;,两个数都是负数;,其中一个数是正数另一个是负数,所以,原式.的取值不可能是1.故选B.由于m、n为非零的有理数,根据有理数的分类,m、n的值可以是正数,也可以是负数那么分三种情况分别讨论:两个数都是正数;两个数都是负数;其中一个数是正数另一个是负数,针对每一种情况,根据绝对值的定义,先去掉绝对值的符号,再计算即可.此题主要考查了绝对值的定义及有理数的加法法则由于m、n为非零的有理数,则有3种情况要考虑到,用到了分类讨论的思想.3. 解:根据数轴上点的位置得:,且,,,则原式.故选A.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键.4. 解:,,,;,;,;,;则或2或或16.故选:D.根据题意,利用绝对值的代数意义求出x与y 的值,即可确定出的值.此题考查了有理数的减法,绝对值,熟练掌握运算法则是解本题的关键.5. 解:当,时则;当,时第7页共12页;当,时;当,时;故选B.可从a、b同号,a、b异号,分类讨论得出结论.本题考查了绝对值的意义及分式的化简正数和0的绝对值是它本身,负数和0的绝对值是它的相反数互为相反数除外的两个数的商为1,相同两个数除外的商为1.6. 解:的绝对值是,故选:B.根据绝对值实数轴上的点到原点的距离,可得一个数的绝对值.本题考查了绝对值,负数的绝对值是它的相反数.7. 解:,,;当原点在N或P点时,,又因为,所以,原点不可能在N或P点;当原点在M、R时且时,;综上所述,此原点应是在M或R点.故选A.先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.主要考查了数轴的定义和绝对值的意义解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.8. 解:的绝对值是6.故选:B.根据负数的绝对值是它的相反数,可得答案.本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.9. 解:的绝对值是:2.故选:B.直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.10. 解:,,,即a为负数或0.故选D.根据绝对值的性质即可得到,从而得到答案.本题考查了绝对值的性质:若,则;若,;若,.11. 【分析】由非负数的性质可知,本题主要考查的是非负数的性质,掌握非负数的性质是解题的关键.【解答】解:,,,解得:,.故答案为:;.12. 解:从数轴可知:,,,,第9页共12页故答案为:.根据数轴得出,,求出,再去掉绝对值符号合并同类项即可.本题考查了整式的加减,数轴的应用,注意:整式的加法实质就是合并同类项.13. 解:.因为,由绝对值的性质,可得的值.本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.14. 解:,,;,;,;,;则或或14或.或4或或14.故答案为:4或或14或;或4或或14.根据题意,利用绝对值的代数意义求出x与y的值,即可确定出,的值.此题考查了有理数的减法,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.15. 解:绝对值等于它本身的数是0和正数.故答案为0,正数.根据绝对值的性质解答一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.此题考查了绝对值的性质,同时要明确绝对值的定义:数轴上的点到原点距离叫表示该点的数的绝对值.16. 解:由图可知,,,所以,,,所以,,,.故答案为:.根据数轴判断出a、b的正负情况并确定出和的正负情况,再根据绝对值的性质去掉绝对值号,然后合并同类项即可.本题考查了实数与数轴,绝对值的性质,准确识图并判断出a、b的正负情况以及大小范围是解题的关键.17. 解:,,,为非正数,b为非正数,c为非负数,,,,则原式,故答案为:根据题意,利用绝对值的代数意义判断出a,b,c的正负,原式利用绝对值的代数意义化简即可得到结果.此题考查了有理数的减法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.18. 解:,或.故答案为:或.根据绝对值的性质回答即可.本题主要考查的是绝对值的性质,掌握绝对值的性质是解题的关键.19. 解:根据数轴图可知:、、,.根据数轴的意义,、、,结合绝对值的性质化简给出的式子.此题把数轴的意义和绝对值的性质结合求解.注意借助数轴化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.20. 解:,则.故答案为.根据负数的绝对值是它的相反数可得所求的绝对值.考查绝对值的意义;用到的知识点为:负数的绝对值是它的相反数.21. 根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22. 利用倒数,相反数以及绝对值的代数意义求出ab ,,m的值,代入原式计算即可得到结果.第11页共12页此题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握各自的定义是解本题的关键.23. 根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.24. 根据a小于b,利用绝对值的代数意义求出a与b的值,即可确定出的值;利用非负数的性质求出a,b,c的值,代入原式计算即可得到结果.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.25. 由a、b互为相反数,c、d互为倒数,m的绝对值是6得出、,,代入计算即可,注意讨论.本题主要考查相反数、倒数及绝对值的计算,掌握互为相反数的两数和为0、互为倒数的两数积为1是解题的关键.26. 依据有理数的乘法法则可知a、b异号,然后依据有理数的加法法则可知正数的绝对值较大,故此可确定出a、b的值,然后代入求解即可.本题主要考查的是绝对值、有理数的加法、有理数的乘法法则,求得a、b的值是解题的关键.。