高三数学知识点总结
- 格式:docx
- 大小:47.41 KB
- 文档页数:31
高三数学知识点归纳总结精华以下是高三《数学》知识点的归纳总结精华:1. 极限与连续:- 学习函数极限的定义和性质,掌握常见函数的极限计算方法。
- 了解无穷级数和收敛性的概念,学习级数求和的方法。
- 熟悉函数连续的定义和判定方法,了解连续函数的性质和应用。
2. 导数与微分:- 复习导数的定义和基本性质,如导数的四则运算、链式法则等。
- 掌握高阶导数的计算方法,了解导数的应用,如最值、曲线图像等。
- 了解微分的概念和微分法则,学习函数微分和求微分方程的方法。
3. 不等式与极值:- 学习一元不等式的解法和解集表示方法,掌握不等式组的解法。
- 掌握函数图像与不等式的关系,学习函数极值的判断方法。
- 了解线性规划和最值问题的求解方法,包括单纯形法等。
4. 几何与向量:- 复习平面和空间几何的基本概念和性质,如点、线、面和立体的关系。
- 掌握向量的基本运算法则和性质,了解向量的应用,如几何证明和力学问题等。
- 学习解析几何的方法和技巧,包括直线的方程、平面的方程等。
5. 概率与统计:- 复习概率的基本概念和计算方法,包括条件概率、事件独立性等。
- 掌握统计学的基本知识和方法,了解样本调查、数据分析和误差估计等。
- 学习随机变量及其分布,如二项分布、正态分布等。
以上是高三《数学》知识点的归纳总结精华。
通过复习这些知识,可以进一步加深对数学基本概念和方法的理解,提高解题能力和数学思维的灵活性。
请注意,具体的学习内容可能因地区和教材版本的不同而有所差异,以上只是一个概括。
同时,还建议参考教材和老师的指导,全面理解和掌握各个知识点。
高三数学知识点总结第一章:集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集:N-或N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实即:①任何一个集合是它本身的子集。
AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型交集并集补集第二章:基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈-.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
高中数学知识点全总结(7篇)必背公式篇一1、一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac0抛物线标准方程y2=2pxy2=-2px2=2pyx2=-2py直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=sxh圆柱体V=pixr2h3、图形周长、面积、体积公式长方形的周长=(长+宽)某2正方形的周长=边长某4长方形的面积=长某宽正方形的面积=边长某边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)x(a+b-c)x1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r常用的三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 高中复习数学方法篇二1.多动脑思考2.强化自己学习训练要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。
高中数学是很多同学的噩梦,知识点众多而且杂,对于高一的同学们很不友好,小编建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。
下面就是小编给大家带来的高三数学知识点,希望能帮助到大家大家!高三数学知识点11、三类角的求法:①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:3、怎样判断直线l与圆C的位置关系?圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
不看后悔!清华名师揭秘学好高中数学的方法培养兴趣是关键。
学生对数学产生了兴趣,自然有动力去钻研。
如何培养兴趣呢?(1)欣赏数学的美感比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。
(2)注意到数学在实际生活中的应用。
例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解.学好数学,是现代公民的基本素养之一啊.(3)采用灵活的教学手段,与时俱进。
利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。
(4)适当看一些科普类的书籍和文章。
比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。
高三数学知识点21、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h 为其高,3、正方体a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高三数学知识点31.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,,,,,…所构成的数列1,,,,,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:序号:1234567项:45678910这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.5.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。
高三数学知识点总结1. 函数与方程- 函数的定义域、值域、单调性、奇偶性- 一次函数、二次函数、指数函数、对数函数、三角函数的图像和性质- 函数的复合、反函数、函数的零点- 函数的极值、最值问题- 函数的图像变换2. 导数与微分- 导数的概念、几何意义- 基本初等函数的导数公式- 导数的运算法则- 高阶导数- 微分的概念和运算3. 导数的应用- 利用导数研究函数的单调性、极值和最值- 曲线的切线问题- 利用导数解决实际问题4. 数列- 数列的概念和表示方法- 等差数列、等比数列的定义、通项公式和求和公式- 数列的递推关系- 数列的极限- 数列的应用5. 三角函数- 三角函数的定义- 三角函数的图像和性质- 三角恒等变换- 解三角形问题6. 平面向量- 向量的概念和表示- 向量的加减法、数乘、点积、叉积- 向量的坐标表示- 向量的几何应用7. 解析几何- 直线的方程、圆的方程- 椭圆、双曲线、抛物线的标准方程和性质 - 圆锥曲线的综合问题- 极坐标和参数方程8. 立体几何- 空间几何体的体积和表面积- 空间直线和平面的位置关系- 空间向量的应用- 立体几何的综合问题9. 概率与统计- 随机事件的概率- 离散型随机变量和连续型随机变量- 概率分布、期望值和方差- 统计图表、频率分布- 统计量的计算和应用10. 复数- 复数的概念和表示- 复数的四则运算- 复数的几何意义- 复数的极坐标形式11. 微积分初步- 极限的概念和性质- 无穷小量的比较- 定积分和不定积分的概念- 积分的基本公式和运算法则12. 线性代数初步- 矩阵的概念和运算- 行列式的概念和计算- 线性方程组的解法- 向量空间和线性变换以上是高三数学的主要知识点总结,涵盖了高中数学的核心内容,为高考复习提供了一个全面的框架。
高三数学知识点总结归纳1.直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
2.定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
3.相关点法:用动点Q的坐标____,y表示相关点P的坐标____0、y0,然后代入点P的坐标(____0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
4.参数法:当动点坐标____、y之间的直接关系难以找到时,往往先寻找____、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
5.交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
直译法:求动点轨迹方程的一般步骤①建系--建立适当的坐标系;②设点--设轨迹上的任一点P(____,y);③列式--列出动点p所满足的关系式;④代换--依条件的特点,选用距离公式、斜率公式等将其转化为关于____,Y的方程式,并化简;⑤证明--证明所求方程即为符合条件的动点轨迹方程。
高三数学上学期知识点1、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。
组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。
元素常用小写字母a、b、c、…来表示。
集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。
2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a∈A;元素a不属于集合A,记做aA。
3、集合中元素的特性(1)确定性:设A是一个给定的集合,____是某一具体对象,则____或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
例如A={0,1,3,4},可知0∈A,6A。
高三数学知识点全总结一、函数与方程1. 函数的定义及性质函数是一个或多个自变量映射到一个因变量的规则。
函数的性质包括定义域、值域、奇偶性、单调性等。
2. 一次函数与二次函数一次函数的一般形式为y = kx + b,二次函数的一般形式为y = ax^2 + bx + c。
掌握函数图像的性质及相关计算方法。
3. 指数函数与对数函数指数函数和对数函数是互为反函数的关系。
理解指数函数与对数函数的基本性质,包括指数法则、对数法则等。
4. 三角函数熟悉三角函数的定义、图像及性质,包括正弦函数、余弦函数、正切函数等。
掌握相关公式的应用,如和差化积、倍角公式等。
5. 不等式与方程组理解不等式与方程组的解集表示方法,掌握解不等式和方程组的基本方法,如代入法、加减消元法等。
二、数列与数列的极限1. 数列的概念数列是数字按照一定规律排列形成的序列。
掌握等差数列、等比数列等常见数列的特点及求和公式。
2. 数列的极限理解数列极限的定义与性质,掌握数列极限的判定方法,如夹逼准则、单调有界准则等。
应用数列极限解决相关问题。
三、导数与微分1. 导数的概念与性质理解导数的定义,掌握导数的四则运算、求导法则及应用,如链式法则、隐函数求导等。
2. 函数的极限与连续性理解函数极限和连续性的概念,掌握相关定理和判定方法。
了解无穷小与无穷大的概念及性质。
3. 微分与应用掌握微分的概念与计算方法,理解微分的几何意义。
了解微分的应用,如切线方程、极值点等。
四、平面几何1. 三角形与四边形熟悉三角形的性质,包括角的性质、三角形的相似关系、共线与共点关系等。
掌握四边形的性质,如四边形内角和、对角线性质等。
2. 圆与圆锥曲线掌握圆的性质,包括圆心角、弧长、扇形面积等计算方法。
了解圆锥曲线的基本形式及性质,如椭圆、双曲线、抛物线等。
3. 平面向量熟悉平面向量的定义与性质,掌握向量的加减法、数量积、向量积等运算。
应用平面向量解决相关几何问题。
五、立体几何1. 空间几何基本概念熟悉空间几何的基本概念,包括点、线、面等。
高三数学的知识点大全总结一、函数与方程1. 一次函数与二次函数1.1 一次函数的性质与图像1.2 二次函数的性质与图像2. 指数与对数函数2.1 指数函数的性质与图像2.2 对数函数的性质与图像3. 三角函数3.1 基本三角函数的定义与性质3.2 三角函数的图像与周期性4. 组合与逆函数4.1 组合函数的定义与性质4.2 逆函数的定义与性质5. 一元二次方程5.1 一元二次方程的解法及性质5.2 二次函数与一元二次方程的关系6. 高次方程与不等式6.1 高次方程的基本概念与解法6.2 不等式的基本概念与解法二、几何与向量1. 平面几何1.1 点、直线、平面的基本性质1.2 三角形、四边形的特性与性质2. 三维几何2.1 空间中的点、直线、平面2.2 空间图形的投影与旋转3. 二次曲线3.1 抛物线的性质与图像3.2 椭圆、双曲线的性质与图像4. 向量与坐标4.1 向量的定义与运算4.2 坐标系与向量的坐标表示5. 空间向量5.1 空间中的向量运算5.2 点、直线、平面与向量的关系三、概率与统计1. 概率1.1 事件与概率的基本概念1.2 条件概率与概率的加法规则2. 统计2.1 数据的收集与整理2.2 统计指标与统计图表的应用3. 随机变量与分布3.1 随机变量的概念与性质3.2 常见离散与连续分布的特点与应用四、数列与级数1. 数列1.1 数列的基本概念与性质1.2 等差数列与等比数列的应用2. 数列极限2.1 数列极限的定义与性质2.2 数列极限的计算方法与应用3. 级数3.1 级数的基本概念与性质3.2 等比级数与调和级数的求和五、导数与微分1. 导数的基本概念1.1 导数的定义与性质1.2 高阶导数与隐函数的导数2. 导数的计算与应用2.1 基本函数的导数2.2 最值与最优化问题的求解3. 微分学的应用3.1 泰勒展开与近似计算3.2 曲线的切线方程与法线方程六、积分与定积分1. 不定积分1.1 不定积分的基本概念与性质1.2 常见函数的不定积分公式2. 定积分2.1 定积分的基本概念与性质2.2 近似计算与定积分的应用3. 定积分的计算与应用3.1 函数的面积与曲线的长度3.2 物理问题与定积分的关系综上所述,以上是高三数学的知识点大全总结,包括函数与方程、几何与向量、概率与统计、数列与级数、导数与微分以及积分与定积分等内容。
高三数学都学哪些知识点高三数学主要学习以下知识点:一、函数与图像1. 函数的定义与性质:定义域、值域、奇偶性、周期性等。
2. 基本函数的性质:线性函数、二次函数、指数函数、对数函数、幂函数、三角函数等。
3. 函数的图像与变换:平移、伸缩、翻转等。
4. 复合函数与反函数的性质:复合函数的定义、反函数的特性。
二、数列与数列极限1. 等差数列与等差数列的求和:通项公式、前n项和公式。
2. 等比数列与等比数列的求和:通项公式、前n项和公式。
3. 递推数列与递推数列的求和:通项公式、前n项和公式。
4. 数列极限的概念与性质:数列收敛、数列发散等。
5. 无穷级数与无穷级数求和:收敛级数、发散级数等。
三、三角恒等式与解三角形1. 三角函数的基本关系式:正弦、余弦、正切、余切等。
2. 三角函数的诱导公式与化简公式:和差化积、积化和差等。
3. 三角方程与解三角形:利用三角恒等式求解三角方程、解三角形等。
四、平面向量与空间向量1. 平面向量的基本概念与表示方法:坐标表示、模长、方向等。
2. 向量的运算:加法、减法、数量积、向量积等。
3. 向量的数量积与向量积的应用:向量的投影、向量的夹角、面积等。
4. 平面与空间中的向量问题:直线与平面的位置关系、平面与平面的位置关系等。
五、导数与微分1. 导数的定义与性质:导数的几何意义、导数与函数的关系等。
2. 基本导数公式:常数函数、幂函数、指数函数、对数函数、三角函数等。
3. 导数的运算法则:和差法则、乘积法则、商法则、复合函数法则等。
4. 高阶导数与隐函数求导:高阶导数的定义、隐函数的导数等。
5. 微分的概念与性质:微分近似、微分中值定理等。
六、极限与连续1. 函数极限的定义与性质:左极限、右极限、无穷极限等。
2. 无穷小量与无穷大量:无穷小量的定义、无穷大量的定义等。
3. 函数连续与间断点:连续函数的定义、间断点的分类等。
4. 极限运算法则:四则运算法则、复合函数的极限等。
高三数学知识点全集总结一、基本数学概念1. 数与数线数的分类:自然数、整数、有理数、无理数、实数数线上的点与坐标2. 运算与代数四则运算代数表达式与代数式的化简与计算方程与不等式的解与性质3. 几何基础知识点、线、面及其相互关系角度的概念及其相互关系平行线与垂直线的性质二、函数与方程1. 函数的概念与性质函数的定义域和值域奇函数与偶函数函数的图像和性质2. 一次函数线性函数的表示与性质函数方程的解法与应用3. 二次函数二次函数的表示与性质抛物线的图像与性质二次函数方程的解法与应用4. 指数与对数函数指数函数与对数函数的定义与性质对数函数的换底公式指数与对数的运算性质与应用5. 三角函数正弦函数、余弦函数、正切函数的定义与性质三角函数的图像与周期性质三角函数的运算与应用6. 三角方程与三角恒等式的证明与应用三角方程的解法三角恒等式的基本性质与应用三、平面几何1. 三角形的基本性质三角形的分类与性质三角形的内角和定理与外角和定理2. 三角形的相似与共线相似三角形的判定与性质利用相似三角形解决问题共线定理与应用3. 四边形的性质平行四边形的性质矩形、菱形和正方形的性质4. 圆与圆的相交性质圆的性质与定义切线与弦的性质圆内切与外切的性质四、空间几何1. 空间几何体的性质点、直线、平面与空间几何体的性质与关系空间几何体的投影与投影性质2. 空间向量的概念与运算空间向量的线性运算与数量积向量的共线与垂直性质3. 空间几何体的位置关系分析夹角的定义与判定直线与平面的位置关系平面与平面的位置关系五、概率与统计1. 随机事件与概率的概念样本空间、随机事件与概率概率的运算与应用2. 排列与组合排列与组合的定义与性质应用于实际问题的排列组合3. 统计与误差分析数据的收集与整理数据的表达与分析误差的来源与处理以上是高三数学知识点的全集总结,希望对你的学习有所帮助。
请按照自己的学习进度,在每个知识点上进行深入理解和掌握。
高三数学知识点总结高三数学知识点总结总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它在我们的学习、工作中起到呈上启下的作用,不如我们来制定一份总结吧。
总结怎么写才不会流于形式呢?以下是店铺为大家整理的高三数学知识点总结,仅供参考,大家一起来看看吧。
高三数学知识点总结11、三类角的求法:①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:3、怎样判断直线l与圆C的位置关系?圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
培养兴趣是关键。
学生对数学产生了兴趣,自然有动力去钻研。
如何培养兴趣呢?(1)欣赏数学的美感比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。
(2)注意到数学在实际生活中的应用。
例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解、学好数学,是现代公民的基本素养之一啊(3)采用灵活的教学手段,与时俱进。
利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。
(4)适当看一些科普类的书籍和文章。
比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。
高三数学知识点总结2三角函数注意归一公式、诱导公式的正确性数列题1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n 的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
概率问题1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;高三数学知识点总结31.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.3.等差中项如果A=(a+b)/2,那么A叫做a与b的等差中项.4.等差数列的常用性质(1)通项公式的推广:an=am+(n-m)d(n,m∈N_).(2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N_).(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列.(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)an.(6)若n为偶数,则S偶-S奇=nd/2;若n为奇数,则S奇-S偶=a中(中间项).注意:一个推导利用倒序相加法推导等差数列的前n项和公式:Sn=a1+a2+a3+…+an,①Sn=an+an-1+…+a1,②①+②得:Sn=n(a1+an)/2两个技巧已知三个或四个数组成等差数列的一类问题,要善于设元.(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.四种方法等差数列的判断方法(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;(3)通项公式法:验证an=pn+q;(4)前n项和公式法:验证Sn=An2+Bn.注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.高三数学知识点总结4付正军:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节,主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二个是平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三,是数列,数列这个板块,重点考两个方面:一个通项;一个是求和。
第四,空间向量和立体几何。
在里面重点考察两个方面:一个是证明;一个是计算。
第五,概率和统计,这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。
第六,解析几何,这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20xx年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七,押轴题,考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。
这是高考所考的七大板块核心的考点。
高三数学知识点总结51、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h 为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、正方体a—边长,S=6a2,V=a34、长方体a—长,b—宽,c—高S=2(ab+ac+bc)V=abc5、棱柱S—底面积h—高V=Sh6、棱锥S—底面积h—高V=Sh/37、棱台S1和S2—上、下底面积h—高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1—上底面积,S2—下底面积,S0—中截面积h—高,V=h(S1+S2+4S0)/69、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)11、直圆锥r—底半径h—高V=πr^2h/312、圆台r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/313、球r—半径d—直径V=4/3πr^3=πd^3/614、球缺h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/315、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/616、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高三数学知识点总结61.不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.2.比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a-b>0?;a-b=0?;a-b<0?.另外,若b>0,则有>1?;=1?;<1?.概括为:作差法,作商法,中间量法等.3.不等式的性质(1)对称性:a>b?;(2)传递性:a>b,b>c?;(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;(5)可乘方:a>b>0?(n∈N,n≥2);(6)可开方:a>b>0?(n∈N,n≥2).复习指导1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.3.“两条常用性质”(1)倒数性质:①a>b,ab>0?<;②a<0③a>b>0,0;④0(2)若a>b>0,m>0,则①真分数的性质:<;>(b-m>0);高三数学知识点总结7一、集合与简易逻辑1.集合的元素具有确定性、无序性和互异性.2.对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集.3.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.4.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.5.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.8.充要条件二、函数1.指数式、对数式,2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.3.单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。