基于PLC锅炉水温控制系统设计
- 格式:docx
- 大小:37.47 KB
- 文档页数:2
1 设计任务设计一个基于PLC的锅炉水温PID控制系统,要现锅炉水温为80度,稳态误差1度,最大超调1度。
当锅炉的水温低于或者高于80度时,可以通过外部端子的开关或者远程监控,使系统自动进行PID运算,保证最后锅炉的水温能够维持在80度左右。
2 系统硬件设计2.1 器件选择本温度控制系统采用德国西门子S7-200 PLC。
S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测与控制的自动化。
S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。
因此S7-200系列具有极高的性能/价格比。
S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。
此系统选用的S7-200 CPU226,CPU 226集成24输入/16输出共40个数字量I/O 点。
可连接7个扩展模块,最大扩展至248路数字量I/O 点或35路模拟量I/O 点。
13K字节程序和数据存储空间。
6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。
2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。
I/O端子排可很容易地整体拆卸。
在温度控制系统中,传感器将检测到的温度转换成4-20mA的电流信号,系统需要配置模拟量的输入模块把电流信号转换成数字信号再送入PLC中进行处理。
在这里我们选择西门子的EM235 模拟量输入/输出模块。
EM235 模块具有4路模拟量输入/一路模拟量的输出。
它允许S7-200连接微小的模拟量信号,±80mV围。
用户必须用DIP开关来选择热电偶的类型,断线检查,测量单位,冷端补偿和开路故障方向:SW1~SW3用于选择热电偶的类型,SW4没有使用,SW5用于选择断线检测方向,SW6用于选择是否进行断线检测,SW7用于选择测量方向,SW8用于选择是否进行冷端补偿。
所有连到模块上的热电偶必须是一样类型。
基于PLC系统的锅炉内胆水温控制系统设计1.引言锅炉是工业生产和生活中常用的热能转化设备之一,用于产生蒸汽或热水。
为了确保锅炉运行安全可靠,以及能够满足不同工况下的需求,锅炉内胆水温控制系统的设计十分重要。
2.系统结构设计锅炉内胆水温控制系统主要由PLC控制器、传感器、执行器和人机界面组成。
2.1PLC控制器PLC控制器是系统的核心,用于获取传感器反馈的温度信号,并根据设定的控制策略调整执行器的工作状态。
PLC控制器具有良好的实时性、可靠性和通信能力。
2.2传感器传感器用于测量锅炉内胆水温度,并将其转化为电信号发送给PLC控制器。
常用的传感器有热电偶和温度传感器。
热电偶适用于高温环境,具有较高的测量精度;温度传感器则适用于一般工况,有多种类型可供选择。
2.3执行器执行器根据PLC控制器的指令,调节锅炉内胆的工作状态,以实现水温的控制。
常用的执行器有电动调节阀和电加热器。
电动调节阀通过改变水流量来调节水温;电加热器则通过加热元件加热水体。
2.4人机界面人机界面用于人机交互操作,显示当前的水温、设定温度和控制状态,以及提供参数调整和报警信息等功能。
一般使用触摸屏作为人机界面,操作简单直观。
3.系统控制策略设计锅炉内胆水温控制系统的控制策略可以根据实际需求进行优化设计。
常用的控制策略有比例控制、比例积分控制和模糊控制等。
3.1比例控制比例控制根据当前的温度误差大小,调节执行器的开度。
开度与误差成正比,以获得较好的稳态和动态响应。
3.2比例积分控制比例积分控制在比例控制基础上加入积分项,用于补偿比例控制的静差。
通过积分项的积累,使负反馈控制系统具有零静差特性。
3.3模糊控制模糊控制可以根据实际的工作状态,自适应地调整控制策略。
通过建立模糊规则库,根据当前温度误差和变化率等信息,确定输出控制量。
4.系统硬件设计根据设计需求,选择合适的硬件设备进行系统实现。
主要包括PLC控制器、传感器、执行器和人机界面等。
摘要本设计论述了基于PLC和组态技术的锅炉内胆水温和夹套水温构成的串级控制系统的设计过程。
下位机编程软件采用SIEMENS公司的STEP 7软件,选用西门子S7-400PLC控制锅炉温度的控制系统,介绍了西门子S7-400PLC和系统硬件及软件的具体设计过程。
上位机组态画面软件采用SIMATIC WINCC,对其进行了简单介绍,并详细介绍了项目的创建、变量的新建、画面的组态。
上位机进行程序编写实现控制,下位机组态画面,建立人机界面,进行远程控制。
锅炉水温具有非线性、时变性、大滞后和不对称性等特点,采用传统的控制方法所得到的控制量的控制品质不高。
锅炉内胆与夹套构成串级控制。
由于串级控制具有有效改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等特点,所以在克服被控系统的时滞方面能够取得较好的效果。
串级控制中的主副回路是控制夹套和内胆的温度,温度是一个多变且不易控制的量,而PID控制在这方面具有突出的优点,很适合采用PID控制技术。
综合以上得到一个品质比较高的控制系统。
关键词PLC;组态技术;串级控制;锅炉水温;PID控制ABSTRACTThis design is discussed based on PLC and configuration technology of water temperature and clip boiler water tank consists of cascade control system design process. Lower level computer programming software using the SIEMENS company's STEP 7 software, choose SIEMENS s7-400plc control boiler temperature control system, introduces SIEMENS s7-400plc and system hardware and software, and the specific design process. Upper unit used in the software configuration screen WINCC, the SIMATIC simply introduced, and introduces the creation, variable of project construction, picture configuration. PC for programming realize control, lower frame) unit, establish normal screen man-machine interface, carries on the remote control.Boiler water temperature with nonlinearness, time delay and asymmetry wait for a characteristic, USES the traditional control method can get control portion control quality is not high. Boiler of the bladder and clip constitutes a cascade control. Due to the cascade control has effectively improve the dynamic characteristics, improve process working frequency, reducing the time constant and accelerate equivalent process characteristic, the response speed of the controlled system in overcome delay to the good result is achieved. Cascade control the principal deputy loop is control of the temperature of the clamping and bladder, temperature is a variable and not easy to control, and the amount of PID control in this respect has outstanding advantages, very suitable PID control technology. Comprehensive above gets a quality higher control system.Key words plc;configuration technology;cascade control;boiler water temperature;pid control目录1 引言 (4)1.1 系统的设计背景 (4)1.2 系统设计内容及技术要求 (5)1.3 系统的设计原理 (5)1.4 系统的整体设计方案 (6)2 串级控制系统设计 (7)2.1 串级控制系统的概述 (7)2.2 PID控制系统的简介 (8)2.3 PID控制器的参数整定 (10)3 硬件系统设计 (13)3.1 PLC的基本介绍 (13)3.2 S7-400简介 (14)3.3 其它器件介绍 (16)4 STEP 7简介及组态硬件、程序编写 (18)4.1 STEP 7简介 (18)4.2 STEP 7项目的创建 (20)4.3 组态硬件 (22)4.4 SETP 7编程介绍 (25)4.5 变量及系统程序 (26)5 WINCC简介及人机界面组态 (33)5.1 WinCC简介 (33)5.2 WinCC系统功能 (34)5.3 WinCC的项目创建及组态方法 (35)6 控制系统整体调试 (46)6.1 系统整体测试 (46)6.2 系统测试的结果 (47)结束语 (48)参考文献 (49)致谢 (51)1 引言1.1 系统的设计背景自70年代以来,由于工业过程控制的需要,特别是在电子技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化自适应参数自整定等方面取得成果。
基于PLC的锅炉温度控制系统设计方案目录摘要 (1)第一章绪论 (3)1.1课题背景及研究目的和意义 (3)1.2国内外研究现状 (3)1.3项目研究内容 (4)第二章 PLC和组态软件基础 (5)2.1可编程控制器基础 (5)2.1.1可编程控制器的产生和应用 (5)2.1.2可编程控制器的组成和工作原理 ············错误!未定义书签。
2.1.3可编程控制器的分类及特点 (7)2.2组态软件的基础 (8)2.2.1组态的定义 (8)2.2.2组态王软件的特点 (8)2.2.3组态王软件仿真的基本方法 (8)第三章 PLC控制系统的硬件设计 (9)3.1 PLC控制系统设计的基本原则和步骤 (9)3.1.1 PLC控制系统设计的基本原则 (9)3.1.2 PLC控制系统设计的一般步骤 (9)3.1.3 PLC程序设计的一般步骤 (10)3.2 PLC的选型和硬件配置 (11)3.2.1 PLC型号的选择 (11)3.2.2 S7-200CPU的选择 (12)3.2.3 EM235模拟量输入/输出模块 (12)3.2.5 可控硅加热装置简介 (12)3.3 系统整体设计方案和电气连接图 (13)3.4 PLC控制器的设计 (14)3.4.1 控制系统数学模型的建立 (14)3.4.2 PID控制及参数整定 (14)第四章 PLC控制系统的软件设计 (16)4.1 PLC程序设计的方法 (16)4.2 编程软件STEP7--Micro/WIN 概述 (17)4.2.1 STEP7--Micro/WIN 简单介绍 (17)4.2.2 计算机与PLC的通信 (18)4.3 程序设计 (18)4.3.1程序设计思路 (18)4.3.2 PID指令向导 (19)4.3.3 控制程序及分析 (25)第五章组态画面的设计 (29)5.1组态变量的建立及设备连接 (29)5.1.1新建项目 (29)5.2创建组态画面 (33)5.2.1新建主画面 (33)5.2.2新建PID参数设定窗口 (34)5.2.3新建数据报表 (34)5.2.4新建实时曲线 (35)5.2.5新建历史曲线 (35)5.2.6新建报警窗口 (36)第六章系统测试 (37)6.1启动组态王 (37)6.2实时曲线观察 (38)6.3分析历史趋势曲线 (38)6.4查看数据报表 (40)结束语 (43)参考文献 (44)摘要从上世纪80年代至90年代中期,PLC得到了快速的发展,在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC 逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。
基于PLC锅炉温度控制系统的设计报告.doc一、设计目的本设计旨在搭建一个基于PLC的锅炉温度控制系统,通过对锅炉水温度的检测和控制,实现锅炉水温度的稳定控制,提高锅炉的工作效率,确保锅炉的稳定运行,降低发生事故的概率,保证工业生产的平稳进行。
二、设计内容1、系统硬件设计2、系统软件设计3、系统调试与实验三、系统设计的可行性分析本系统采用PLC作为控制核心,辅以温度传感器,执行元件等辅助部件,相比于传统的控制方法,其具有反应速度快,可靠性高,维护方便等优点,所以具有高度的可行性。
四、系统工作流程1、温度传感器将温度信号传输给PLC控制器2、PLC控制器根据设定的温度值和实时检测的温度值进行比较,判断当前温度状态3、根据判断结果,控制PLC输出的控制信号,控制加热电源调整电压,使锅炉水温度达到设定值4、如温度达到设定值,系统返回到检测阶段,进行下一轮温度检测和控制,如温度未达到设定值,锅炉继续加热,直至达到设定值,系统返回到检测阶段。
五、系统设计的技术要点1、采用模拟信号采集电路;2、采用PID算法控制,通过比较设定值和实际值来调节加热元件输出;3、使用触摸屏界面设计,用户可以通过界面设置温度值和查询运行状态;4、前后台通信采用Modbus协议。
六、系统检测与调试本系统设计完成后,需要进行硬件和软件的实现,并进行整体的调试测试,工程师需严格按照设计流程,全面检查各个部件的连接情况和参数设置,确保系统能够正常稳定地运行,运行过程中出现问题要及时解决。
七、总结与展望本设计成功地搭建了基于PLC的锅炉温度控制系统,系统具有实时性强,稳定性高,调节精度高等优点,提高了设备工作效率,大大降低了工业生产过程中锅炉事故的发生可能性。
在未来的研究中,可以通过结合智能算法等技术,进一步优化系统设计,提升锅炉温度控制系统的性能和应用范畴。
设计基于PLC 的锅炉控制系统需要考虑到控制逻辑、传感器选择、执行器配置、人机界面以及安全性等多个方面。
以下是一个基本的PLC 锅炉控制系统设计方案:1. 控制逻辑设计:-设定温度和压力设定值,根据实际情况设定控制策略。
-设计启动、停止、调节锅炉火焰和水位控制等具体操作逻辑。
2. 传感器选择:-温度传感器:用于监测锅炉管道和水箱的温度。
-压力传感器:监测锅炉的压力情况。
-液位传感器:监测水箱水位,确保水位在安全范围内。
-其他传感器:根据需要选择氧含量传感器、烟气排放传感器等。
3. 执行器配置:-配置控制阀门、泵等执行器,用于控制水流、燃料供应、风扇转速等。
-确保执行器与PLC 的通讯稳定可靠,实现远程控制和监控。
4. 人机界面设计:-设计人机界面,包括触摸屏或按钮控制板,显示关键参数和状态信息。
-提供操作界面,方便操作员设定参数、监控运行状态和进行故障诊断。
5. 安全性设计:-设计安全保护系统,包括过压保护、过温保护、水位保护等,确保锅炉运行安全。
-设置报警系统,当参数超出设定范围时及时警示操作员。
6. 通讯接口:-考虑与其他系统的通讯接口,如SCADA 系统、远程监控系统等,实现数据传输和远程控制。
7. 程序设计:-使用PLC 编程软件编写程序,包括控制逻辑、报警逻辑、自诊断等功能。
-测试程序逻辑,确保系统稳定可靠,符合设计要求。
以上是基于PLC 的锅炉控制系统设计方案的基本步骤,具体设计还需根据实际情况和需求进行调整和优化。
在设计过程中,还需遵循相关标准和规范,确保系统安全可靠、运行稳定。
基金颁发部门:北京市教育委员会;项目名称:基于Profibus现场总线的多变量智能控制系统;编号:Km200611417007;基金申请人:李红星电热锅炉温度-液位双回路控制系统任俊杰李红星李永霞张益农(北京联合大学,北京100101)摘要:以PLC作控制器,结合温度变送器、液位变送器以及晶闸管和变频器等执行元件,组成电热锅炉温度-液位双回路控制系统,详细介绍了控制系统的构成原理、硬件配置和软件控制流程。
系统中的PID调节功能用PLC集成的PID指令实现。
在实验室进行了系统调试,收到了比较满意的控制效果。
系统安全、可靠、易于实现、维修方便。
关键词:PLC;电热锅炉;PID;双回路控制中图分类号:TP273 文献标识码:BDouble-loop control system of electrothermal boiler’ s temperature and level REN JUNJIE LI HONGXING LI YONGXIA ZHANG YINONG(Beijing Union University,Beijing,China)Abstract: Based on PLC, combined with temperature transmitter, level transmitter, thyristor and frequency converter, a double-loop control system of electrothermal boiler’ s temperature and level is composed。
The structure and control principle are introduced in details. The hardware configuration and software control flowchart are also described. The PID function is achieved with the PID instruction integrated in PLC. The system is debugged in the laboratory and a satisfactory control can be received.Key words: PLC Eectrothermal boiler PID Double-loop control1 引言电热锅炉是一种将电能转换成热能、用来加热水或产生蒸汽的装置。
基于plc的锅炉供热控制系统的设计工业控制系统中,PLC(可编程逻辑控制器)被广泛应用于各种设备的控制和监控。
本文将重点讨论基于PLC的锅炉供热控制系统的设计。
一、系统概述锅炉供热控制系统是指通过对锅炉进行温度、压力等参数的监测和控制,实现对供热系统的稳定运行和效率优化。
基于PLC的控制系统能够实现自动化控制,节约人力资源,提高系统运行效率。
二、系统组成1. PLC控制器:作为控制系统的核心,PLC负责接收各种传感器采集的数据,并根据预先设定的控制策略执行相应的控制动作。
2. 传感器:用于监测锅炉的各项参数,如温度传感器、压力传感器等。
3. 执行元件:包括电磁阀、泵等执行元件,通过PLC控制输出信号来实现对锅炉操作的控制。
三、系统设计1. 硬件设计:选择适合的PLC型号和合适的IO模块,根据实际需要设计合理的接线和布置。
2. 软件设计:编写PLC程序,包括主控程序和各个子程序,实现对供热系统的全面控制和监控。
四、系统功能1. 温度控制:根据设定的温度范围,实现对锅炉加热的自动控制,确保供热系统温度稳定。
2. 压力保护:设定压力上下限,一旦超过范围即刻停止加热,确保系统安全运行。
3. 水位控制:通过水位传感器监测水位,保持恰当的水位以确保供热效果。
4. 故障诊断:PLC系统能够实时监测各个元件的运行状态,一旦有异常即可及时报警并进行故障诊断。
五、系统优势1. 自动化程度高:基于PLC的供热控制系统可以实现全自动化控制,减少人为干预,节约人力成本。
2. 稳定可靠:系统通过对各项参数的实时监测和控制,确保供热系统的稳定性和可靠性。
3. 灵活性强:PLC程序可以根据实际需要进行定制化设计,满足不同应用场景的需求。
六、总结基于PLC的锅炉供热控制系统的设计,能够实现对供热系统的智能化控制和监测,提高系统的稳定性和效率,减少运行成本,是目前工业控制领域的主流趋势。
希望本文的介绍能够对您有所帮助。
感谢阅读!。
基于PLC的锅炉加热温度控制系统设计锅炉加热温度控制系统设计是一个非常重要的工程项目,特别是在工业生产中。
PLC(可编程逻辑控制器)是一种高级自动化控制设备,可以实现对锅炉加热温度的精确控制。
本文将介绍一个基于PLC的锅炉加热温度控制系统的设计。
【系统概述】该系统的基本目标是稳定地控制锅炉的加热温度,保证锅炉在正常工作范围内运行,并尽可能地提高热效率。
具体来说,系统需要实现以下功能:1.实时监测锅炉温度。
2.控制锅炉加热功率。
3.响应温度变化,并自动调整加热功率。
4.报警和故障保护功能。
【系统设计】1.硬件设计:硬件部分包括传感器、执行机构和PLC。
传感器用于实时监测锅炉温度,常用的温度传感器有热电偶和敏感电阻。
执行机构用于控制加热功率,可采用电磁阀或电加热器。
PLC负责处理数据和控制信号,可以选择常用的西门子、施耐德等PLC。
2.软件设计:软件部分主要包括PLC编程和人机界面设计。
PLC编程可以使用基于LD(梯形图)或SFC(时序功能图)的编程语言,根据具体控制要求,设计合适的控制算法和逻辑。
人机界面设计可以使用HMI(人机界面)或SCADA(监控与数据采集系统),实时显示锅炉温度、加热功率和系统状态,并提供控制和设定温度的功能。
3.控制策略设计:控制策略需要根据具体情况进行设计,一般分为开环控制和闭环控制两种。
开环控制是根据经验或数学模型预先设定温度和加热功率曲线,直接输出控制信号。
闭环控制则根据实时监测的温度反馈信息,通过控制算法动态调整加热功率,使实际温度尽可能接近设定温度。
4.报警和故障保护设计:系统需要具备报警和故障保护功能,当温度超出设定范围或系统出现故障时,及时发出警报并采取相应的措施,以保护锅炉和工艺安全。
【实施与测试】在实施前,需要进行系统调试,确保PLC编程和硬件连接正常。
在实际运行中,需要对系统进行定期检测和维护,以保证系统的稳定性和可靠性。
总结起来,基于PLC的锅炉加热温度控制系统的设计是一个复杂的工程,需要综合考虑硬件和软件的因素。
基于PLC锅炉水温控制系统设计
摘要:
该文主要研究基于PLC的锅炉水温控制系统,并提出了一种基于PID控制算法的水温控制算法。
本文设计了一个完整的PLC水温控制系统,包括传感器、控制器和执行器,通过PID控制算法控制水温。
根
据实验结果,本文设计的PLC控制器可以有效地控制锅炉水温在目标
温度范围内波动,并且与传统的控制方法相比,具有更优的控制效果。
关键词:PLC;PID;水温控制;控制算法
1. 研究背景
随着现代化工业的不断发展,锅炉已经成为各种工业生产中必不
可少的能源设备,因为它可以提供所需的高温高压水蒸气。
然而,如
果锅炉水温控制不当,将导致锅炉的安全性下降,生产效率下降,甚
至是事故的发生。
因此,锅炉水温控制在现代工业中变得越来越重要。
现代电气自动化技术的快速发展,尤其是基于PLC的控制方案,
使得锅炉水温控制系统的设计和实现更加简单、可靠和高效。
锅炉水
温控制系统的功能是通过给定温度范围内无缝控制锅炉水温,以实现
锅炉水温的稳定,同时最大程度地降低能源消耗。
PID控制算法是现代自动化控制中最常用的控制算法之一,通过调整比例、积分、微分三
个参数,快速、准确地控制温度。
2. 控制系统设计
基于PLC的水温控制系统主要由传感器、控制器、执行器三部分
组成。
2.1 传感器
传感器是水温控制系统中最基本的组成部分。
在本文中,我们选
择了一种PT100型号的温度传感器,它可以测量水的温度,并将温度
值转换为一定数量的电信号。
该信号将被传输到控制器中以进行进一
步的处理。
2.2 控制器
控制器是水温控制系统中最关键的部分。
在本文中,我们选择了
一个Siemens S7-200系列PLC为控制器。
PLC将传感器从水温读数转
换为数字信号,并使用PID控制算法计算最佳输出值,以便控制水温
保持在稳定的范围内。
该PLC电路设计实现了水温基准值的设定、水
温的PID控制等功能。
2.3 执行器
执行器是控制系统的最后一步。
本文中,我们将使用一个差压控
制阀,它通过控制水流的通道来调整水流,以控制水温。
PLC将计算得到的输出值传输到执行器中,控制阀开度来调整水流,从而控制水温。
3. 控制算法实现
在本文中,我们基于PID控制算法实现了水温控制。
该算法需要
调整比例、微分和积分三个参数,以获得最佳的温度控制效果。
比例
项将在保持温度误差的前提下增加控制量,积分项将在一段时间内积
累误差,微分项反映了变化的速度。
4. 实验结果分析
本文使用了一台锅炉来测试PLC水温控制系统。
我们针对三种不
同操作条件分别设计了实验,包括系统升温、系统降温、系统波动情
况下的控制和稳定水温等情况。
结果表明,本文设计的PLC控制器可
以非常稳定地控制锅炉水温,并且可以在短时间内实现非常精确的温
度控制。
相比传统的控制方法,本文方法的控制效果更好,更加灵活,更加可靠。
5. 结论
本文提出了一种基于PLC的锅炉水温控制系统,通过PID控制算
法控制水温。
实验结果表明,本文设计的PLC控制器可以有效地控制
锅炉水温在目标温度范围内波动,并且与传统的控制方法相比,具有
更优的控制效果。