测量风速的方法
- 格式:doc
- 大小:82.00 KB
- 文档页数:7
1.引言大气层中的风向和风速测量对于许多领域都非常重要,例如气象、航空、海洋、环境保护等。
因此,研究和发展具有高精度和高可靠性的风向和风速测量方法具有重要意义。
2.风向测量方法2.1.风向标法风向标法是最简单和最直观的风向测量方法。
它通过观察风向标上的指针或其他标志物的方向来确定风向。
这种方法适用于低空风向测量和风向变化缓慢的情况。
2.2.风袋法风袋法是一种基于气体动力学原理的风向测量方法。
它利用风袋在风中的变形来测量风向。
风袋通常由两个或更多的薄膜构成,它们之间充满了气体。
当风吹过风袋时,其中一个膜会向风口方向凸起,另一个则凹陷。
这种变形可以通过测量两个膜的形态来确定风向。
2.3.旋转杆法旋转杆法是一种基于摩擦力原理的风向测量方法。
它利用一个固定在地面上的杆,杆顶安装有一个旋转的指针或标志物。
当风吹过杆时,风力会使得指针或标志物旋转,其方向指向风的来向,从而确定风向。
3.风速测量方法3.1.热线法热线法是一种基于热传导原理的风速测量方法。
它利用一个细丝电阻作为热线,将其加热到一定温度。
当气体通过热线时,它会带走部分热量,从而降低热线温度。
通过测量热线的电阻变化来计算气体的流速,进而确定风速。
3.2.声波法声波法是一种基于声学原理的风速测量方法。
它利用声波在气体中的传播速度和方向与气体运动速度和方向之间的关系来计算风速。
这种方法需要使用专门的声速计来测量声波的传播速度,因此适用于高精度的风速测量。
3.3.激光多普勒测速法激光多普勒测速法是一种基于激光多普勒效应的风速测量方法。
它利用激光束对气体中的微粒进行散射,并通过测量散射光的频率变化来计算气体的速度,从而确定风速。
这种方法具有高精度和非接触性,适用于远距离和高速风速测量。
4.结论风向和风速是大气层中最基本的气象要素之一,对于许多领域都具有重要意义。
本文介绍了几种常见的风向和风速测量方法,包括风向标法、风袋法、旋转杆法、热线法、声波法和激光多普勒测速法。
风速测量方法
一、迎面法,手持风表向正前方伸出,按照路线移动风表,由于面对风流测出值低于实际风速因此测得风速乘以系数是真风速。
V均=1.14V测m/s
二、侧身法,测风员背对巷道壁手持风表向垂直风流方向伸出,按照路线移动风表,测得风速实际大于巷道风速。
V均=KV测m/s K=(S-0.4)/S
1、测量测风地点温度、瓦斯、二氧化碳浓度。
2、用卷尺测量巷道断面,根据巷道的断面形状(矩形、半圆拱形)选择计算方法。
3、根据所测地点的风速,选择合适的风表。
高速大于10 m/s;中速0.5-10 m/s;低速0.3-0.5 m/s。
4、取出风表和秒表,将风表指针和秒表回零,然后使风表迎着风流,并与风流方向垂直,风表空转30秒后同时打开风表和秒表开关,开始测定。
风表距人体0.6-0.8米否则会产生大的误差。
5、选用风表移动路线:可以采用折线法(六线法)、四线法、迂回八线法、12点法、标准线路法等方法之一。
6、测风过程中,风表移动要平稳、匀速,不允许在测量过程中,为了保证在1分钟内走完全过程,而改变风表移动速度。
风表在移动时,测风员要持表姿势应采用侧身法。
7、在一分钟时同时关闭风表、秒表开关,读出表速。
在同一断面处测风不得少于3次,每次的结果误差不应超过5%。
8、根据风表校正曲线的公式计算所测巷道的实际风速。
9、计算所测巷道的实际风速。
计算出现场实际风量。
管道内风速的测量方法管道内风速的测量方法引言测量管道内风速是工程中常见的需求。
准确测量风速对于设计和优化管道系统至关重要。
本文将介绍几种常见的测量方法。
1. 风速计•热线风速计:利用热基元适应风速测量。
通过测量冷热基元之间的温差,来计算出风速。
•热敏风速计:基于测量风速对热敏元件的冷却效应。
通过测量电阻的变化来估计风速。
•回旋杆风速计:基于旋转杆的滑行速度来测量风速。
风速愈快,滑行速度愈快。
2. 风速传感器•基于旋翼风速传感器:利用安装在旋转轴上的旋翼来测量风速。
根据旋转轴旋转的速度来计算风速。
•基于激光多普勒测速仪的风速传感器:通过测量激光的多普勒频移来确定风速。
3. 流体力学方法•风洞实验:将管道内风速模拟到风洞中,利用压力差来计算风速。
•CFM方法:结合压力测量和流量测量,通过管道内风速对应的压力差来近似计算风速。
4. 数值模拟方法•CFD模拟:利用计算流体动力学(CFD)方法,通过对管道内流体的模拟来计算风速。
5. 小结通过以上介绍,我们了解了几种常见的测量方法。
根据实际情况,我们可以选择合适的方法进行管道内风速的测量。
在选择测量方法时,需要考虑精度、可行性和成本等方面的因素,以获得准确可靠的测量结果。
希望这篇文章对管道内风速的测量方法有所启发,帮助读者更好地理解和应用这些方法。
6. 补充说明在实际应用中,针对不同的管道和测量要求,可能还会有其他方法或技术被使用。
以下是一些补充说明:•超声波测量技术:利用超声波传感器在管道内测量风速的方法。
通过测量超声波的传播时间和频率变化来确定风速。
•风动式测量器:使用风动装置产生一个与风速相关的力,通过测量这个力来计算风速。
•雷达测量技术:利用雷达技术对气流进行探测和测量,通过信号反射和时间延迟来计算风速。
•烟雾法:通过向管道中引入一定量的烟雾,观察烟雾在管道中移动的速度来估算风速。
这些方法在特定的场景和应用中可能更加适用,但也需要根据实际情况进行选择和判断。
风速测量方法
一、迎面法,手持风表向正前方伸出,按照路线移动风表,由于面对风流测出值低于实际风速因此测得风速乘以系数是真风速。
V均=1.14V测m/s
二、侧身法,测风员背对巷道壁手持风表向垂直风流方向伸出,按照路线移动风表,测得风速实际大于巷道风速。
V均=KV测m/s K=(S-0.4)/S
1、测量测风地点温度、瓦斯、二氧化碳浓度。
2、用卷尺测量巷道断面,根据巷道的断面形状(矩形、半圆拱形)选择计算方法。
3、根据所测地点的风速,选择合适的风表。
高速大于10 m/s;中速0.5-10 m /s;低速0.3-0.5 m/s。
4、取出风表和秒表,将风表指针和秒表回零,然后使风表迎着风流,并与风流方向垂直,风表空转30秒后同时打开风表和秒表开关,开始测定。
风表距人体0.6-0.8米否则会产生大的误差。
5、选用风表移动路线:可以采用折线法(六线法)、四线法、迂回八线法、12点法、标准线路法等方法之一。
6、测风过程中,风表移动要平稳、匀速,不允许在测量过程中,为了保证在1分钟内走完全过程,而改变风表移动速度。
风表在移动时,测风员要持表姿势应采用侧身法。
7、在一分钟时同时关闭风表、秒表开关,读出表速。
在同一断面处测风不得少于3次,每次的结果误差不应超过5%。
8、根据风表校正曲线的公式计算所测巷道的实际风速。
9、计算所测巷道的实际风速。
计算出现场实际风量。
测量风速的分类及原理测量风速是指通过各种技术手段来测量大气中风的速度的过程。
风速的测量对气象、航空、建筑、环境监测等领域有着重要的意义。
根据原理和技术方法的不同,测风仪器可以分为直接测量和间接测量两种类型。
直接测量是通过直接测量大气中风对测量器件的作用力或者通过测量风速梯度来得出风速的方法。
常见的直接测量风速的仪器有动力测量法、速率测量法、浮标法和声速测量法等。
动力测量法是指通过测量风速对单位面积的力来计算出风速。
一种常见的动力测风方法是使用风速计,其中包括风力计和风向仪。
风力计是一种能够直接测量风速的仪器。
它通常由一个测量罩和一个零部件组成。
测量罩是一个圆柱形的器件,它将风从不同方向引入到传感器中。
当风速改变时,传感器将产生相应的变化,从而得出风速的测量结果。
风向仪是一种用于测量风的方向的仪器。
它通常由一个风向窗、一个风向指针和一个传感器组成。
当风吹过风向窗时,传感器将检测到风向的变化,并通过旋转风向指针来指示风向。
速率测量法是指通过测量风速梯度来得出风速的方法。
这种方法通常使用数个测量点来测量风速,并将这些点之间的差异作为风速的指标。
常用的速度测量器包括消磁传感器、超声波风速测量仪和激光风速测量仪。
消磁传感器是通过测量磁场的变化来得出风速的。
当风吹过传感器时,传感器的磁场随之发生变化,从而得出风速的测量值。
超声波风速测量仪是通过发射和接收超声波信号来测量风速的。
测量仪器会在给定距离处发射超声波,并测量超声波从这个点到另一个点的传播时间来计算风速。
激光风速测量仪是通过使用激光束来测量风速的。
它将激光束送入空气中,然后通过测量激光束的反射和散射来计算风速。
浮标法是指通过测量漂浮物在水面上漂移的距离来得出风速的方法。
这种方法主要应用于测量低空风速。
常见的漂浮物包括小球、纸片和浮标等。
通过记录漂移的距离和时间来计算风速。
声速测量法是指通过测量声音在空气中传播的速度来得出风速的方法。
这种方法的原理是风会改变声音的传播速度。
火灾现场的风向风速测量方法火灾是一种危险且具有毁灭性的自然灾害,对人类和环境造成了巨大的威胁。
在火灾现场,了解并准确测量风向和风速是非常重要的,因为这可以帮助相关人员采取正确的应对措施,确保火灾扑灭工作的顺利进行。
本文将介绍几种常用的火灾现场风向风速测量方法。
1.望远镜观测法望远镜观测法是一种简单而有效的测量风向风速的方法。
在火灾现场,工作人员可以安装一个固定的测风仪,然后用望远镜观测远处的风向标志物,例如树木、旗帜或建筑物。
观测时需要记录下观测时间和观测者的位置,以便后续分析。
根据观测到的风向和观测时间的变化,可以计算出风速。
2.烟雾追踪法烟雾追踪法是一种常用的测量风向的方法。
在火灾现场,当火势较大时会产生大量的烟雾。
工作人员可以观察烟雾的流动方向,并结合现场地形和建筑物的情况,推测出风向。
此外,可以使用烟雾追踪装置,如烟雾发生器或烟雾弹,释放烟雾,并观察其飘散方向来确定风向。
3.风力计测量法风力计是一种专门用来测量风速的仪器。
在火灾现场,工作人员可以使用风力计来直接测量风速。
风力计通常由一个旋转式测风杆以及一个配有风速刻度的转盘组成。
通过观察转盘转动的速度和风向杆的旋转情况,可以准确测量出风速和风向。
4.雷达测量法雷达是一种高精度的测量工具,也可以用来测量火灾现场的风向和风速。
通过使用气象雷达,可以检测到空气中的微小颗粒和湍流运动,从而获得准确的风向和风速数据。
然而,使用雷达测量方式需要专业的设备和技术支持,对于一般的火灾扑灭工作可能不常用。
总结起来,火灾现场的风向风速测量方法有望远镜观测法、烟雾追踪法、风力计测量法和雷达测量法。
这些方法各有优劣,可以根据现场实际情况以及需要测量的精度来选择合适的方法。
在火灾扑灭过程中,准确测量风向和风速对于决策和行动来说至关重要,因此工作人员应该熟悉并掌握这些测量方法,以确保扑灭工作的顺利进行。
气象学中的风力的测量和分析方法在气象学中,风力的测量和分析是非常重要的,因为风是大气运动的基本要素之一,对天气的形成与变化有着重要的影响。
为了准确地预测天气变化,科学家们提出了一系列的风力测量和分析方法。
本文将介绍一些常见的方法,以及它们的优缺点。
一、风速的测量方法1. 风力计测量法风力计是一种专门用于测量风速的仪器。
它通常包括一个风车,根据风车的旋转速度可以判断风的强弱。
这种方法测量简便,且精度相对较高,适用于风速较小的情况。
然而,当遇到风速较大的情况时,风力计的结构可能无法承受风力,从而导致测量结果不准确。
2. 流体动力学模拟法流体动力学模拟法通过建立数学模型,仿真风场的运动。
这种方法可以模拟不同地点、不同高度的风速分布情况,可以提供详细的风速数据。
然而,由于模拟过程复杂,需要大量的计算资源和较高的专业知识,所以在实际应用中较为局限。
二、风向的测量方法1. 风向标测量法风向标是一种常见的风向测量仪器,它通常由一个旗帜或者箭头构成,指示风的吹向。
这种方法操作简单,价格低廉,适用于简单的风向测量需求。
然而,风向标只能提供风的大致方向,无法提供具体的风向角度。
2. 疏散分析法疏散分析法通过观测某种气味物质在风中传播的方式,来推测风的方向。
这种方法在空气污染控制等领域得到广泛应用。
然而,它对特殊气味物质的要求较高,并且只能提供风的平均方向,不适用于瞬时风向的测量。
三、风力的分析方法1. 风速频率分析法风速频率分析法是通过统计不同风速区间内风向的出现次数,来推测风力的概率分布。
这种方法适用于对大量风速数据进行分析,并可以确定不同风力等级的出现频率。
然而,它只能提供风力的统计特征,无法直接反映具体的风力值。
2. 风场模式分析法风场模式分析法通过观测和分析某一特定时期内的风场分布情况,来推测风力的变化规律。
这种方法可以提供风场的时空分布特征,对于气象灾害的预测和防御具有重要意义。
然而,由于气象系统的复杂性,风场模式分析法需要大量的观测数据和精细的计算模型支持。
风速计算方法与步骤引言风速计算是一种用于测量气象条件中风速的方法。
了解风速对于许多行业和领域来说都非常重要,例如气象学、能源领域以及建筑设计等。
本文将介绍风速计算方法与步骤,帮助读者了解如何准确测量风速。
计算方法计算风速的方法通常基于测量物体或者环境中的风的运动速度。
常用的方法包括以下几种:1. 估算风速:这是一种简单而常用的方法,通过观察植物摇动、风旗的摆动程度或者人体感受风的强弱来估算风速。
这种方法并不精确,但在某些情况下可作为一种简单快捷的估计方式。
2. 比例法:这种方法使用风速计来直接测量风速。
常用的风速计包括罗宾逊式和卡特黑尔式风速计。
通过测量旋转部件的转速或者压力差来计算风速。
3. 数学建模法:这种方法利用数学方程和计算机模拟来预测风速。
它基于气象数据、地形特征和其他环境因素来计算风场和风速。
这种方法相对复杂,需要专业知识和软件支持。
计算步骤在进行风速计算时,按照以下步骤进行操作:1. 确定测量点:选择一个合适的测量点位,确保该点能够准确反映整个区域的风速情况。
2. 选择风速计:根据需要选择合适的风速计进行测量。
根据实际情况选择罗宾逊式或卡特黑尔式风速计。
3. 安装风速计:将风速计安装在测量点位。
确保风速计与地面平行,并尽可能远离遮挡物,以减少测量误差。
4. 启动测量仪器:根据风速计的使用说明,启动测量仪器并进行校准。
5. 进行测量:在风速计稳定后,开始进行测量。
记录所测得的风速数据,并根据需要进行多次测量来获取更准确的结果。
6. 数据处理:对测量得到的数据进行处理和分析。
可以计算平均风速、最大风速、风向等指标。
7. 结果报告:根据需要将测量结果整理成报告或者图表形式,以便进一步分析和使用。
结论风速计算是一种重要的测量方法,用于了解风速条件。
准确测量风速对于许多领域至关重要。
通过选择合适的计算方法和按照正确的步骤操作,可以获得准确可靠的风速数据。
风速测量的方法和内容嘿,咱今儿就来唠唠风速测量这档子事儿!你说风速这玩意儿,看不见摸不着的,可还真挺重要呢!就好比咱人走路,知道走得快慢,那才心里有底呀。
那怎么测量风速呢?嘿,方法可不少嘞!最简单直接的,那就是用风速仪呀!这就好比是咱吃饭用的筷子,专门对付风速的。
把它往那儿一放,嘿,风速就出来啦!还有一种办法,就像咱看天上的云飘得快慢来估摸风的大小一样,通过观察一些物体在风中的状态也能有个大概的了解。
比如说旗子飘得多欢快呀,或者树叶被吹得哗啦啦响的程度,虽然没那么精确,但也能有个谱儿不是?你想想啊,要是咱不知道风速,那多麻烦呀!比如说放风筝,风大了小了都不合适,得知道个大概风速,才能让风筝在天上飞得稳稳当当的。
再比如说航海的那些人,不了解风速那可不行,风太大了船可能翻了,风太小了又走不动,你说这多关键呀!那风速测量都包含哪些内容呢?这可得好好说道说道。
首先就是风速本身呀,这是最核心的。
就像咱知道自己跑多快一样重要。
然后呢,还有风向!光知道风速快不快还不行,还得知道往哪儿吹呢,这就像咱走路得知道往哪个方向走一样。
还有啊,不同高度的风速也可能不一样呢,就像爬楼梯,每层的感觉可能都不同。
测量风速可不是随随便便就能搞定的事儿,得认真对待。
就像咱做一件重要的事儿,得用心去做,才能做好呀。
而且不同的场合对风速测量的要求也不一样呢。
在气象站,那可得精确得很,关系到天气预报准不准呢。
在工地上,也得了解风速,要不然那些高楼大厦盖起来可不安全。
咱平时可能不怎么会特意去想风速的事儿,但它其实在很多地方都默默发挥着重要作用呢。
好比一个幕后英雄,虽然不显眼,但没它还真不行。
所以啊,咱可别小瞧了这风速测量,它可是有大学问的嘞!总之,风速测量是个挺有意思也挺重要的事儿。
它能让我们更好地了解周围的环境,让我们的生活和工作更顺利。
下次当你感觉到风吹在脸上的时候,说不定就会想起咱今天说的这些关于风速测量的事儿呢!哈哈!。
风向风速的测试方法1. 引言风向和风速是气象学中重要的观测参数,对于气象、航空、能源等领域具有重要的意义。
准确测量风向和风速对于天气预报、飞行安全、风能利用等方面都具有重要的作用。
本文将介绍风向和风速的测试方法,包括常用的仪器设备、测试原理、测试步骤和数据处理方法。
2. 风向测试方法2.1 传统风向标传统的风向标是一种常见的测量风向的工具,通常由一个带有指针的杆状物体和一个标有方向的圆盘组成。
风向标安装在一个固定的支架上,通过风的吹向来指示风的方向。
风向标的精度取决于其制作工艺和安装位置,通常可以达到几度的精度。
2.2 风向传感器风向传感器是一种电子设备,可以实时测量风的方向。
风向传感器通常采用磁敏元件或光敏元件来感知风向,通过与电路连接并输出电信号来表示风向。
风向传感器的精度可以达到几度甚至更高,具有较高的测量精度和稳定性。
2.3 雷达测风仪雷达测风仪是一种先进的风向测量设备,通过发射和接收雷达波来测量风向。
雷达测风仪可以实现对风向的连续监测和高精度的测量,适用于气象、航空等领域对风向要求较高的应用。
3. 风速测试方法3.1 翼型测风仪翼型测风仪是一种常用的测量风速的工具,它利用风的吹动产生的压力差来测量风速。
翼型测风仪通常由多个静压孔和一个压力传感器组成,通过测量静压差来计算风速。
翼型测风仪的测量精度和响应速度较高,适用于多种应用场景。
3.2 热线式风速传感器热线式风速传感器是一种基于热传导原理的风速测量设备,它通过加热丝和测温丝的温度差来计算风速。
热线式风速传感器具有响应速度快、精度高、体积小等优点,广泛应用于气象、环境监测等领域。
3.3 激光多普勒测风仪激光多普勒测风仪是一种高精度的风速测量设备,它利用激光束的多普勒效应来测量风速。
激光多普勒测风仪可以实现对风速的非接触式测量,具有高精度、高分辨率和高响应速度等优点,适用于航空、气象等领域。
4. 测试步骤4.1 风向测试步骤•安装风向测试设备,确保其固定稳定。
测量风速的方法X曦计算机科学与技术10级1班高空风观测测量近地面直至30公里高空的风向风速。
通常将飞升气球作为随气流移动的质点,用地面设备(经纬仪或雷达)跟踪气球的飞升轨迹,读取其时间间隔的仰角、方位角、斜距,确定其空间位置的坐标值,可求出气球所经过高度上的平均风向风速。
高空风的测量一般指从地面到空中30km各高度上的风向、风速的测定。
其测量方法有:一.利用示踪物随气球漂浮,观测示踪物位移来确定空中的风向和风速;常用测风气球作为气流示踪物,使用地点跟踪设备观测其运动轨迹,测定其在空间各个时刻的位置,再用图解法、解析法或矢量法确定相应大气层中的平均风向、风速。
气球空间位置的确定需要测定三个参数:仰角δ、方位角α和球高H。
测风经纬仪是一种跟踪观测和测定空中测风气球仰角、方位角的光学仪器。
在实际测量中,可以采用单经纬仪测风,也可采用双经纬仪测风(基线测风法)。
其中后者准确度较高,可用来鉴定其它测风方法的准确性,但这种方法的观测和计算较复杂。
用双经纬仪测风计算高度时,可采用投影法(包括水平面投影法、铅直面投影法和矢量投影法)。
二.利用大气中的质点或湍流团块与无线电波、声波、光波的相互作用,由多普勒效应引起的频率变化推算空中的风向、风速;在我国,目前主要采用59型探空仪和701型二次测风雷达组成59—701高空探测系统,进行高空温、压、湿、风的综合测量。
三.利用系留气球、风筝、飞机、气象塔等观测平台,使测风仪器安置在不同高度上,根据气流对测风仪器的动力作用来测量空中的风向、风速。
导航测风就是借助导航台信号,由气球携带的探空仪自身确定其位置,并将位置信号、气象资料信号一起发回基站,然后在基站进行处理,计算高空风的方法。
近地面层以上大气风场的探测。
通常用气球法测风。
高空风探测也是气象飞机探测、气象火箭探测、大气遥感的内容之一。
气球法测风是把气球看作随气流移动的质点,用仪器测量气球相对于观测点的角坐标、斜距或高度,确定它的空间位置和轨迹;根据气球在某时段内位置的变化,就可以简易地算出它的水平位移,从而求出相应大气层中的平均水平风向、风速。
在气球的上升过程中,可测得它所经各高度上的风向、风速。
1809年英国J.沃利斯和T.福雷斯特首创测风气球观测高空风。
气球法测风常用光学经纬仪、无线电经纬仪、一次雷达和二次雷达,以及导航系统等。
光学经纬仪测风有单经纬仪测风和双经纬仪测风两种。
单经纬仪只能测定气球的角坐标(方位、仰角)。
气球高度一是根据气球升速(决定于气球净举力、气球大圆周长和地面空气密度)和升空历经的时间来确定。
但由于大气湍流、铅直气流速度和空气密度随高度变化等因素对气球升速的影响,这种方法确定的高度误差大,测风精度低,一般只在数千米高度以下使用。
二是根据无线电探空仪测得的气压、温度和湿度资料,通过计算推得高度。
这种方法测风精度较高。
用双经纬仪测风,是根据位于选定基线两端的两个经纬仪同步观测获得的角坐标值,通过几何图解或计算,得出各高度上的平均风向、风速。
光学经纬仪测风一般只适用于能见度好的少云晴天,夜间必须在气球上挂灯笼或其他可见光源,阴雨天气则只能在可见气球的高度内测风。
无线电经纬仪测风它是利用无线电定向原理,跟踪气球携带的探空发射机信号,测得角坐标数据。
气球所在的高度则由无线电探空仪测量的温、压、湿值算出。
因此无线电经纬仪测风适用于全天候,但当气球低于无线电经纬仪最低工作仰角时,测风精度迅速降低。
雷达测风一次雷达测风是雷达跟踪气球携带的无源反射靶,接收反射靶的反射信号来实现定位并计算风向、风速。
二次雷达测风是跟踪气球携带的工作于应答状态的探空发射机信号来实现定位的。
此法可以获取角坐标和斜距数据,从而计算出高空风,无需依赖无线电探空仪探测的温、压、湿数据计算气球高度。
二次雷达测风当气球低于雷达最低工作仰角时,要放弃仰角数据。
此外,气象多普勒雷达更可测量云中流场的细微结构。
导航测风利用导航系统来测定风。
气球携带微型导航接收机,检出导航信号,并调制探空发射机将信号转发到地面而被接收,根据这些信号,可确定气球的轨迹,并计算出各相应高度上的风速和风向。
如图所示,任意甲、乙两个导航台的导航信号在空间某点被接收时存在时间差,对应不同的等时间差,构成空间一组双曲线族(实线);同理甲、丙两个导航台的导航信号,在空间任意点接收到的等时间差,也在空间形成另一组双曲线族(虚线)。
气球在空间某点测得甲、乙两台的时间差,可以确定它位于一根相对应的双曲线l1上。
同时测得甲、丙两台的时间差后,也可以找到位于另一根相对应的双曲线l2。
l1和l2两根双曲线的交点P,便是气球的地理位置。
根据各时段气球理地位置的水平位移即可计算出高空的风速和风向。
至于气球的高度则由气球上的无线电探空仪测定。
船舶和飞机等活动观测平台通常使用导航测风。
从20世纪60年代开始,气象卫星探测的高空风场(见卫星测风),为观测站稀少地区提供了资料。
地面风的测量风是空气流动时产生的一种自然现象。
空气流动有上下流动和左右流动,上下流动为垂直运动,也叫对流;左右流动为水平运动,也就是风。
风是一个矢量,用风向和风速表示。
地面风指离地平面10─12米高的风。
风向指风吹来的方向,一般用16个方位或360°表示。
以360°表示时,由北起按顺时针方向度量。
风速指单位时间内空气的水平位移,常以米/秒、公里/小时、海里/小时表示。
1805年英国人F·蒲福根据风对地面(或海面)物体的影响,提出风力等级表,几经修改后得下表。
目测风时,根据风力等级表中各级风的特征,即可估计出相应的风速。
蒲福风力等级表32.7 118 64(1)风向测量仪器:风向标是一种应用最广泛的测量风向仪器的主要部件,由水平指向杆、尾翼和旋转轴组成。
在风的作用下,尾翼产生旋转力矩使风向标转动,并不断调整指向杆指示风向。
风向标感应的风向必须传递到地面的指示仪表上,以触点式最为简单,风向标带动触点,接通代表风向的灯泡或记录笔电磁铁,作出风向的指示或记录,但它的分辨只能做到一个方位(22.5°)。
精确的方法有自整角机和光电码盘。
(2)风速测量仪器:a)风杯风速表是应用最广泛的一种风速表,由三个(或四个)半球形或抛物形空杯,都顺一面均匀分布在一水平支架上,支架与转轴相连。
在风力作用下,风杯绕转轴旋转,其转速正比于风速。
转速可以用电触点、测速发电机、齿轮或光电计数器等记录。
b)桨叶式风速表是由若干片桨叶按一定角度等间隔地装置在一铅直面内,能逆风绕水平轴转动,其转速正比于风速。
桨叶有平板叶片的风车式和螺旋桨式两种。
最常见的是由三叶式四叶螺旋桨,装在形似飞机机身的流线形风向标前部,风向标使叶片旋转平面始络对准风的来向。
c)热力式风速表是被电流加热的细金属丝或微型球体电阻,放置在气流中,其散热率与风速的平方根成线性关系。
通常在使加热电流不变时,测出被加热物体的温度,就能推算出风速。
热力式风速表感应速度快,时间常数只有百分之几秒,在小风速时灵敏度较高,宜应用于室内和野外的大气湍流实验,也是农业气象测量的重要工具。
常用的仪器有杯状风速计、翼状风速计、卡他温度计和热球式电风速计。
翼状和杯状风速计使用简便,但其惰性和机械磨擦阻力较大,只适用于测定较大的风速。
风速计(anemometer)顾名思义是测量空气流速的仪器。
它的种类较多,气象台站最常用的为风杯风速计,它由3个互成120°固定在支架上的抛物锥空杯组成感应部分,空杯的凹面都顺向一个方向。
整个感应部分安装在一根垂直旋转轴上,在风力的作用下,风杯绕轴以正比于风速的转速旋转。
另一种旋转式风速计为旋桨式风速计,由一个三叶或四叶螺旋桨组成感应部分,将其安装在一个风向标的前端,使它随时对准风的来向。
桨叶绕水平轴以正比于风速的转速旋转。
风速计其基本原理是将一根细的金属丝放在流体中,通电流加热金属丝,使其温度高于流体的温度,因此将金属丝称为“热线”。
当流体沿垂直方向流过金属丝时,将带走金属丝的一部分热量,使金属丝温度下降。
根据强迫对流热交换理论,可导出热线散失的热量Q与流体的速度v之间存在关系式。
标准的热线探头由两根支架X紧一根短而细的金属丝组成,如图2.1所示。
金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。
常用的丝直径为5μm,长为2 mm;最小的探头直径仅1μm,长为0.2 mm。
根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。
为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头,如图2.2所示。
热线探头在使用前必须进行校准。
静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。
0至100m/s的流速测量X围可以分为三个区段:低速:0至5m/s;中速:5至40m/s;高速:40至100m/s。
风速仪的热敏式探头用于0至5m/s的精确测量;风速仪的转轮式探头测量5至40m/s的流速效果最理想;而利用皮托管则可在高速X围内得到最佳结果。
正确选择风速仪的流速探头的一个附加标准是温度,通常风速仪的热敏式传感器的使用温度约达+-70C。
特制风速仪的转轮探头可达350C。
皮托管用于+350C以上。
1、风速仪的热敏式探头风速仪的热敏式探头的工作原理是基于冷冲击气流带走热元件上的热量,借助一个调节开关,保持温度恒定,则调节电流和流速成正比关系。
当在湍流中使用热敏式探头时,来自各个方向的气流同时冲击热元件,从而会影响到测量结果的准确性。
在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式探头。
以上现象可以在管道测量过程中观察到。
根据管理管道紊流的不同设计,甚至在低速时也会出现。
因此,风速仪测量过程应在管道的直线部分进行。
直线部分的起点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。
流体截面不得有任何遮挡。
(棱角,重悬,物等)2、风速仪的转轮式探头风速仪的转轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对转轮的转动进行“计数”并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。
风速仪的大口径探头(60mm,100mm)适合于测量中、小流速的紊流(如在管道出口)。
风速仪的小口径探头更适于测量管道横截面大于探险头横截面貌一新100倍以上的气流。
1、测量平均流动的速度和方向。
2、测量来流的脉动速度及其频谱。
3、测量湍流中的雷诺应力及两点的速度相关性、时间相关性。
4、测量壁面切应力(通常是采用与壁面平齐放置的热膜探头来进行的,原理与热线测速相似)。