1.1.1导数及其应用第1课时
- 格式:doc
- 大小:130.50 KB
- 文档页数:2
第一章导数及其应用1.1导数的概念1.1.1 平均变化率(教师用书独具)●三维目标1.知识与技能通过丰富的实例,让学生经历平均变化率概念的形成过程,体会平均变化率是刻画变量变化快慢程度的一种数学模型.2.过程与方法理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率.3.情感、态度与价值观感受数学模型刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力.●重点难点重点:平均变化率的概念.难点:平均变化率概念的形成过程.为了使得平均变化率概念的引入自然流畅,可创设实际问题情境,如气球吹气时的平均膨胀率、跳板跳水某段起跳后的平均速度,通过具体的实例提出问题;借助天气预报中某天气温的变化曲线,以形助数,让学生有一个直观的认识,然后从数学的角度,描述这种现象就一目了然了.(教师用书独具)●教学建议本节课是起始课,对导数概念的形成起着奠基作用.平均变化率是个核心概念,它在整个高中数学中占有极其重要的地位,是研究瞬时变化率及其导数概念的基础.在这个过程中,要注意特殊到一般、数形结合等数学思想方法的渗透.●教学流程创设问题情境,提出问题,根据气球的平均膨胀率得出平均变化率的概念.⇒应用平均变化率的概念,完成例1及其变式训练.⇒实际问题中的平均变化率,完成例2及其变式训练.⇒通过例3及其变式训练,进一步理解平均变化率的意义及其应用.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.在吹气球时,气球的半径r(单位:dm )与气球空气容量(体积)V(单位:L )之间的函数关系是r(V)=33V4π.1.当空气容量V 从0增加到1 L 时,气球的平均膨胀率是多少? 【提示】 平均膨胀率为r (1)-r (0)1-0≈0.621=0.62(dm /L ).2.当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 【提示】 平均膨胀率为r (V 2)-r (V 1)V 2-V 1.一般地,函数y =f(x)在区间[x 1,x 2]上的平均变化率为f (x 2)-f (x 1)x 2-x 1,其中Δy=f(x 2)-f(x 1)是函数值的改变量.如图所示,函数y =f(x)图象上四点A ,B ,D ,E.1.由Δy =f(x 2)-f(x 1)能否判断曲线在A→B 段的陡峭程度? 【提示】 不能.2.平均变化率f (x 2)-f (x 1)x 2-x 1能否近似刻画曲线在A→B 段的陡峭程度?为什么?曲线段AB 与曲线段DE 哪段更陡峭?【提示】 能.因为k AB =f (x 2)-f (x 1)x 2-x 1表示A ,B 两点所在直线的斜率,所以可近似地刻画曲线段AB 的陡峭程度.由于k DE >k AB ,知曲线段DE 更加陡峭.从平均变化率的定义知,其几何意义是经过曲线y =f(x)上两点P(x 1,y 1),Q(x 2,y 2)的直线PQ 的斜率.因此平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.已知函数f(x)=x 2+x ,分别计算f(x)在区间[1,3],[1,2],[1,1.5]上的平均变化率.【思路探究】 对于给定的三个区间,分别求函数值的增量Δy 与自变量的增量Δx 的比值ΔyΔx. 【自主解答】 (1)函数f(x)在区间[1,3]上的平均变化率为f (3)-f (1)3-1=32+3-(12+1)2=5.(2)函数f(x)在区间[1,2]上的平均变化率为 f (2)-f (1)2-1=22+2-(12+1)1=4.(3)函数f(x)在区间[1,1.5]上的平均变化率为f (1.5)-f (1)1.5-1=1.52+1.5-(12+1)0.5=3.5.1.本题主要依据平均变化率的意义代入公式直接计算,解题的关键是弄清自变量与函数值的增量.2.求函数y =f(x)在区间[x 1,x 2]上的平均变化率的步骤: (1)作差:求Δx =x 2-x 1,Δy =f(x 2)-f(x 1); (2)作商:求Δy Δx ,即f (x 2)-f (x 1)x 2-x 1的值.求函数y =5x 2+6在区间[2,3]上的平均变化率.【解】 函数在区间[2,3]上的平均变化率为f (3)-f (2)3-2=5×32+6-5×22-61=45-20=25.在高台跳水运动中,运动员相对于水面的高度h(单位:m )与起跳后的时间t(单位:s )存在函数关系h(t)=-4.9t 2+6.5t +10.(1)求运动员在第一个0.5 s 内高度h 的平均变化率;(2)求高度h 在1≤t≤2这段时间内的平均变化率.【思路探究】 (1)求函数h(t)=-4.9t 2+6.5t +10在区间[0,0.5]上的平均变化率;(2)求函数h(t)=-4.9t 2+6.5t +10在区间[1,2]上的平均变化率.【自主解答】 (1)运动员在第一个0.5 s 内高度h 的平均变化率为h (0.5)-h (0)0.5-0=4.05(m /s ).(2)在1≤t≤2这段时间内,高度h 的平均变化率为h (2)-h (1)2-1=-8.2(m /s ).1.结合物理知识可知,在第一个0.5 s 内高度h 的平均变化率为正值,表示此时运动员在起跳后处于上升过程;在1≤t≤2这段时间内,高度h 的平均变化率为负值,表示此时运动员已开始向水面下降.事实上平均变化率的值可正、可负也可以是0.2.平均变化率的应用主要有:求某一时间段内的平均速度,物体受热膨胀率,高度(重量)的平均变化率等等.解决这些问题的关键在于找准自变量和因变量.已知某物体运动位移与时间的关系为s(t)=12gt 2,试分别计算t 从3 s 到3.1 s ,3.001s 各段的平均速度,通过计算你能发现平均速度有什么特点吗?【解】 设物体在区间[3,3.1],[3,3.001]上的平均速度分别为V 1,V 2, 则ΔS 1=S(3.1)-S(3)=12g ×3.12-12g ×32=0.305g(m ). ∴物体从3 s 到3.1 s 时平均速度V 1=ΔS 13.1-3=0.305g 0.1=3.05g(m /s ),同理V 2=ΔS 23.001-3=0.003 000 5g 0.001=3.000 5g(m /s ).通过计算可以发现,随着时间间隔Δt 的变小,平均速度在向3g m /s 靠近,而3g m /s 为物体做自由落体运动时,t =3 s 时的瞬时速度.2012年冬至2013年春,我国北部某省冬麦区遭受严重干旱,根据某市农业部门统计,该市小麦受旱面积如图1-1-1所示,据图回答:图1-1-1(1)2012年11月至2012年12月间,小麦受旱面积变化大吗?(2)哪个时间段内,小麦受旱面积增幅最大?(3)从2012年11月到2013年2月,与从2013年1月到2013年2月间,试比较哪个时间段内,小麦受旱面积增幅较大?【思路探究】利用平均变化率的计算公式及其实际意义进行分析.【自主解答】(1)在2012年11月至2012年12月间,Δs变化不大,即小麦受旱面积变化不大.(2)由图形知,在2013年1月至2013年2月间,平均变化率ΔsΔt较大,故小麦受旱面积增幅最大.(3)在2012年11月至2013年2月间,平均变化率=s B -s A3, 在2013年1月至2013年2月间,平均变化率=s B -s C1=s B -s C ,显然k BC >k AB ,即s B -s C >s B -s A3,∴在2013年1月至2013年2月间,小麦受旱面积增幅较大.1.本例中的(2)(3)可数形结合,利用平均变化率进行分析,抓住平均变化率的几何意义.2.在实际问题中,平均变化率具有现实意义,应根据问题情境,理解其具体意义.为了检测甲、乙两辆车的刹车性能,分别对两辆车进行了测试,甲车从25 m /s 到0 m /s 花了5 s ,乙车从18 m /s 到0 m /s 花了4 s ,试比较两辆车的刹车性能.【解】 甲车速度的平均变化率为0-255=-5(m /s 2),乙车速度的平均变化率为0-184=-4.5(m /s 2),平均变化率为负值说明速度在减少,因为刹车后,甲车的速度变化相对较快,所以甲车的刹车性能较好.实际问题中平均变化率意义不明致误甲、乙二人跑步,路程与时间关系以及百米赛跑路程与时间关系分别如图1-1-2中①②所示,试问:图1-1-2(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?【错解】(1)对于图①,设甲、乙两曲线的右端点分别为A,B,显然有k OB>k OA,故乙的平均变化率大于甲的平均变化率,所以乙比甲跑得快.(2)对于图②,在[0,t0]上,甲、乙的时间、路程相同,平均变化率相等,速度相等,所以两人跑得一样快.【错因分析】在(2)中,题意不明,误求甲、乙在[0,t0]上的平均变化率认为是终点附近的平均速度.【防范措施】(1)在实际问题中,理解平均变化率具有的现实意义;(2)弄清题目的要求,区别平均速度与瞬时速度.【正解】(1)同上面解法.(2)对于图②,在[0,t0]上,甲、乙的平均变化率是相等的,但甲的平均变化率是常数,而乙的变化率逐渐增大,快到终点时,乙的变化率大于甲的变化率,所以,快到终点时,乙跑得较快.1.准确理解平均变化率的意义是求解平均变化率的关键,其实质是函数值增量Δy与自变量取值增量Δx的比值.涉及具体问题,计算Δy很容易出现运算错误,因此,计算时要注意括号的应用,先列式再化简,这是减少错误的有效方法.2.函数的平均变化率在生产生活中有广泛的应用,如平均速度、平均劳动生产率、面积体积变化率等.解决这类问题的关键是能从实际问题中引出数学模型并列出函数关系式,需注意是相对什么量变化的.1.函数y=2x+2在[1,2]上的平均变化率是________.【解析】(2×2+2)-(2×1+2)2-1=2.【答案】 22.圆的半径r 从0.1变化到0.3时,圆的面积S 的平均变化率为________. 【解析】 ∵S=πr 2, ∴ΔS Δr =S (0.3)-S (0.1)0.3-0.1=0.09π-0.01π0.2=0.4π. 【答案】 0.4π3.如图1-1-3,函数y =f(x)在A ,B 两点间的平均变化率是________.图1-1-3【解析】 ∵k AB =y A -y B x A -x B =3-11-3=-1,由平均变化率的意义知y =f(x)在A ,B 两点间的平均变化率为-1. 【答案】 -14.甲企业用2年时间获利100万元,乙企业投产6个月时间就获利30万元,如何比较和评价甲、乙两企业的生产效益?(设两企业投产前的投资成本都是10万元)【解】 甲企业生产效益的平均变化率为100-1012×2-0=154.乙企业生产效益的平均变化率为30-106-0=103.∵154>103, ∴甲企业的生产效益较好.一、填空题1.函数f(x)=1x 在[2,6]上的平均变化率为________.【解析】 f (6)-f (2)6-2=16-126-2=-112.【答案】 -1122.函数f(x)=log 2x 在区间[2,4]上的平均变化率是________. 【解析】 函数的平均变化率是f (4)-f (2)4-2=2-12=12.【答案】 123.已知某质点的运动规律为s(t)=5t 2(单位:米),则在1 s 到3 s 这段时间内,该质点的平均速度为________.【解析】 s (3)-s (1)3-1=5×32-5×122=20(m /s ).【答案】 20 m /s4.若函数f(x)=x 2-c 在区间[1,m]上的平均变化率为3,则m 等于________. 【解析】 由题意得(m 2-c )-(12-c )m -1=3,∴m =2(m =1舍去). 【答案】 25.在雨季潮汛期间,某水文观测员观察千岛湖水位的变化,在24 h 内发现水位从102.7m 上涨到105.1 m ,则水位涨幅的平均变化率是________m /h .【解析】105.1-102.724=0.1(m /h ).【答案】 0.16.服药后,人吸收药物的情况可以用血液中药物的浓度c(单位:mg /mL )来表示,它是时间t(单位:min )的函数,表示为c =c(t),下表给出了c(t)的一些函数值.). 【解析】c (70)-c (30)70-30=0.90-0.9840=-0.002 mg /(mL ·min ). 【答案】 -0.0027.已知某物体运动的速度与时间之间的关系式是v(t)=t +13t 3,则该物体在时间间隔[1,32]内的平均加速度为________.【解析】 平均加速度Δv Δt =32+13·(32)3-(1+13)32-1=3112.【答案】3112图1-1-48.如图1-1-4所示,显示甲、乙在时间0到t 1范围内路程的变化情况,下列说法正确的是________.①在0到t 0范围内甲的平均速度大于乙的平均速度; ②在0到t 0范围内甲的平均速度小于乙的平均速度; ③在t 0到t 1范围内甲的平均速度大于乙的平均速度; ④在t 0到t 1范围内甲的平均速度小于乙的平均速度.【解析】 在[0,t 0]内甲、乙的平均速度为s 0t 0,①②错.在[t 0,t 1]上,v 甲=s 2-s 0t 1-t 0,v乙=s 1-s 0t 1-t 0. ∵s 2-s 0>s 1-s 0,且t 1-t 0>0, ∴v 甲>v 乙,故③正确,④错误. 【答案】 ③ 二、解答题9.求函数f(x)=x 2+1x+4在区间[1,2]上的平均变化率.【解】 f(x)=x 2+1x +4在区间[1,2]上的平均变化率为22+12+4-(12+11+4)2-1=52.10.假设在生产8到30台机器的情况下,生产x 台机器的成本是c(x)=x 3-6x 2+15x(元),而售出x 台的收入是r(x)=x 3-3x 2+12x(元),则生产并售出10台至20台的过程中平均利润是多少元?【解】 依题意,生产并售出x 台所获得的利润是 L(x)=r(x)-c(x)=3x 2-3x(元), ∴x 取值从10台至20台的平均利润为L (20)-L (10)20-10=3×202-3×20-(3×102-3×10)10=87(元),故所求平均利润为87元.11.(2013·泰安高二检测)巍巍泰山为我国五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗?图1-1-5【解】 山路从A 到B 高度的平均变化率为 h AB =Δy Δx =10-050-0=15, 山路从B 到C 高度的平均变化率为h BC =Δy Δx =15-1070-50=14, ∴h BC >h AB ,∴山路从B 到C 比从A 到B 要陡峭得多.(教师用书独具)已知气球的体积为V(单位:L )与半径r(单位:dm )之间的函数关系是V(r)=43πr 3.(1)求半径r 关于体积V 的函数r(V);(2)比较体积V 从0 L 增加到1 L 和从1 L 增加到2 L 半径r 的平均变化率;哪段半径变化较快(精确到0.01)?此结论可说明什么意义?【自主解答】 ∵V=43πr 3,∴r 3=3V 4π,r = 33V 4π,即r(V)= 33V4π.(2)函数r(V)在区间[0,1]上的平均变化率约为 r (1)-r (0)1-0=33×14π-01≈0.62(dm /L ),函数r(V)在区间[1,2]上的平均变化率约为r (2)-r (1)2-1= 33×24π- 33×14π≈0.16(dm /L ).显然体积V 从0 L 增加到1 L 时,半径变化快,这说明随着气球体积的增加,气球的半径增加得越来越慢.一块正方形的铁板在0 ℃时,边长为10 cm ,加热铁板会膨胀,当温度为t ℃时,边长变为10(1+at)cm ,a 为常数,试求0~10 ℃内铁板面积S 的平均变化率.【解】 铁板面积S =102(1+at)2, 在区间[0,10]上,S 的平均变化率为S (10)-S (0)10-0=102(1+10a )2-10210=200a +1 000a 2,即0~10 ℃内铁板面积S 的平均变化率为(200a +1 000a 2)cm 2/℃.1.1.2 瞬时变化率——导数(教师用书独具)●三维目标1.知识与技能了解导数概念的实际背景;理解函数在某点处导数以及在某个区间的导函数的概念;会用定义求瞬时速度和函数在某点处的导数.2.过程与方法用函数的眼光来分析研究物理问题;经历由平均速度与瞬时速度关系类比由平均变化率过渡到瞬时变化率的过程,体会数形结合、特殊到一般、局部到整体的研究问题的方法.3.情感、态度与价值观通过导数概念的形成过程,体会导数的思想及其内涵;激发学生兴趣,在从物理到数学,再用数学解决物理问题的过程中感悟数学的价值.●重点难点重点:函数在某一点处的导数的概念及用导数概念求函数在一点处的导数.难点:从实例中归纳、概括函数瞬时变化率的定量分析过程,及函数在开区间内的导函数的理解.为了突出重点、突破难点,在导数概念的教学中,积极创设问题情境,从学生已有的认知入手,例如物理学中的瞬时速度、曲线割线的斜率等,采用相互讨论、探究规律和引导发现的教学方法,通过不断出现的一个个问题,一步步创设出使学生有兴趣探索知识的“情境”,通过反映导数思想和本质的实例,引导学生经历由平均变化率到瞬时变化率的过程,从而更好地理解导数概念.(教师用书独具)●教学建议新课标对“导数及其应用”内容的处理有较大的变化,它不介绍极限的形式化定义及相关知识,而是按照“平均变化率——曲线在某一点处的切线——瞬时速度(加速度)——瞬时变化率——导数的概念”这样的顺序来安排,用“逼近”的方法来定义导数,这种概念建立的方式直观、形象、生动,又易于理解,突出导数概念的形成过程.因此,在教学中采用教师启发诱导与学生动手操作、自主探究、合作交流相结合的教学方式,引导学生动手操作、观察、分析、类比、抽象、概括,并借助excel及几何画板演示,调动学生参与课堂教学的主动性和积极性.●教学流程利用割线逼近切线的方法探究曲线上一点处的切线.⇒通过缩小时间间隔,由平均速度得出瞬时速度.⇒会求瞬时速度和瞬时加速度,完成例1与变式训练.⇒利用瞬时变化率得出导数的概念,会求函数在某点处的导数,完成例2及互动探究.⇒根据导数的几何意义,完成例3及其变式训练.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.1.曲线的切线与曲线只有一个公共点吗?曲线上在某一点处的切线的含义是什么?【提示】 切线与曲线不一定只有一个公共点,如图,曲线C 在点P 处的切线l 与曲线C 还有一个公共点Q.曲线上某一点处的切线,其含义是以该点为切点的切线.2.运动物体在某一时刻的瞬时加速度为0,那么该时刻物体是否一定停止了运动? 【提示】 不是.瞬时加速度刻画的是速度在某一时刻的变化快慢,瞬时加速度为0,并不是速度为0.1.曲线上一点处的切线设Q 为曲线C 上不同于P 的一点,这时,直线PQ 称为曲线的割线,随着点Q 沿曲线C 向点P 运动,割线PQ 在点P 附近越来越逼近曲线C.当点Q 无限逼近点P 时,直线PQ 最终就成为在点P 处最逼近曲线的直线l ,这条直线l 称为曲线在点P 处的切线.2.瞬时速度、瞬时加速度(1)如果当Δt 无限趋近于0时,运动物体位移S(t)的平均变化率S (t 0+Δt )-S (t 0)Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时速度,即位移对于时间的瞬时变化率.(2)如果当Δt 无限趋近于0时,运动物体速度v(t)的平均变化率v (t 0+Δt )-v (t 0)Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时加速度,即速度对于时间的瞬时变化率.1.导数设函数y =f(x)在区间(a ,b)上有定义,x 0∈(a ,b),若Δx 无限趋近于0时,比值Δy Δx=f (x 0+Δx )-f (x 0)Δx无限趋近于一个常数A ,则称f(x)在x =x 0处可导,并称该常数A 为函数f(x)在x =x 0处的导数,记作f ′(x 0).2.导数的几何意义导数f′(x 0)的几何意义就是曲线y =f(x)在点P(x 0,f(x 0))处的切线的斜率,切线PT 的方程是y -f(x 0)=f ′(x 0)(x -x 0).求瞬时速度、瞬时加速度已知质点M的运动速度与运动时间的关系为v=3t2+2(速度单位:cm/s,时间单位:s),(1)当t=2,Δt=0.01时,求ΔvΔt;(2)求质点M在t=2时的瞬时加速度.【思路探究】【自主解答】ΔvΔt=v(t+Δt)-v(t)Δt=3(t+Δt)2+2-(3t2+2)Δt=6t+3Δt.(1)当t=2,Δt=0.01时,ΔvΔt=6×2+3×0.01=12.03(cm/s2).(2)当Δt无限趋近于0时,6t+3Δt无限趋近于6t,则质点M在t=2时的瞬时加速度为12 cm/s2.1.求瞬时速度的关键在于正确表示“位移的增量与时间增量的比值”,求瞬时加速度的关键在于正确表示“速度的增量与时间增量的比值”,注意二者的区别.2.求瞬时加速度:(1)求平均加速度ΔvΔt;(2)令Δt →0,求出瞬时加速度.质点M 按规律s(t)=at 2+1做直线运动(位移单位:m ,时间单位:s ).若质点M 在t =2 s 时的瞬时速度为8 m /s ,求常数a 的值.【解】 ∵Δs =s(2+Δt)-s(2)=a(2+Δt)2+1-a·22-1=4a Δt +a(Δt)2, ∴ΔsΔt=4a +a Δt. 当Δt →0时,ΔsΔt→4a. ∵在t =2时,瞬时速度为8 m /s ,∴4a =8,∴a =2.求函数y =f(x)=x -1x在x =1处的导数.【思路探究】求Δy =f (1+Δx )-f (1)―→求Δy Δx→令Δx →0,求ΔyΔx→A 的值 【自主解答】 ∵Δy =(1+Δx)-11+Δx -(1-11)=Δx +1-11+Δx =Δx +Δx1+Δx.∴ΔyΔx=Δx +Δx 1+Δx Δx =1+11+Δx ,当Δx →0时,ΔyΔx→1+1=2. ∴f ′(1)=2.1.本题是利用定义求f′(1),解题的关键是求出ΔyΔx并化简,利用定义求解的步骤为:①求函数的增量Δy =f(x 0+Δx)-f(x 0);②求平均变化率ΔyΔx;③当Δx 无限趋近于0时,确定ΔyΔx的无限趋近值. 2.求f′(x 0)也可先求出导函数f′(x),再将x =x 0代入,即求出f′(x)在点x =x 0处的函数值.在例题中,若条件改为f′(x 0)=54,试求x 0的值.【解】 ∵Δy =f(x 0+Δx)-f(x 0)=(x 0+Δx)-1x 0+Δx -(x 0-1x 0)=Δx +Δxx 0(x 0+Δx )∴Δy Δx =1+1x 0(x 0+Δx )当Δx →0时,Δy Δx →1+1x 20. 又f′(x 0)=54,则1+1x 20=54.∴x 0=±2.已知抛物线y =2x 2,求抛物线在点(1,2)处的切线方程.【思路探究】 根据导数的几何意义求出切线的斜率,然后利用点斜式即可写出切线方程.【自主解答】 因为点(1,2)在抛物线上,所以抛物线在点(1,2)处的切线斜率为函数y =2x 2在x =1处的导数f′(1).因为Δy Δx =f (1+Δx )-f (1)Δx =2(1+Δx )2-2×12Δx=4+2Δx ,当Δx 无限趋近于0时,4+2Δx 无限趋近于4,所以f ′(1)=4. 所以切线方程为y -2=4(x -1),即4x -y -2=0.1.本题是“给出曲线和切点(x 0,f(x 0))求切线方程”,此时切线的斜率就是f′(x 0),则该点处的切线方程为y -f(x 0)=f′(x 0)(x -x 0).2.若求“过点(x 0,y 0)的切线方程”,此时所给的点有可能不是切点,切线的斜率还用f′(x 0)则可能会出错.此时应先设出切点坐标P(x′0,y ′0),由已知条件列出切点横坐标的方程,求x′0,然后再求解.曲线y =x 3+11在点P(1,12)处的切线与y 轴交点的纵坐标是________.【解析】 ∵Δy Δx =(x 0+Δx )3+11-x 30-11Δx=3x 0Δx +3x 20+(Δx)2,∴当x 0=1,Δx →0时,k =f′(1)=3.∴曲线y =x 3+11在点P(1,12)处的切线为y =3x +9. ∴当x =0时,y =9.因此所求切线与y 轴交点的纵坐标为9. 【答案】 9对导数定义理解不透彻致误已知f′(1)=-2,则当Δx →0时,f (1+2Δx )-f (1)Δx→________.【错解】 当Δx →0时,f (1+2Δx )-f (1)Δx →-2.【答案】 -2【错因分析】 产生错解的原因是对导数定义的理解不透彻,一味地套用公式.本题分子中自变量的增量是2Δx ,即(1+2Δx)-1=2Δx ,而错解中分母中的增量为Δx ,二者不是等量的.【防范措施】 在导数定义中,增量Δx 的形式是多种多样的,但无论如何变化,其实质是分子中的自变量的增量与分母中的增量必须保持一致.【正解】f (1+2Δx )-f (1)Δx =2·f (1+2Δx )-f (1)2Δx当Δx →0时,f (1+2Δx )-f (1)2Δx →f ′(1),∴2·f (1+2Δx )-f (1)2Δx →2f ′(1)=2×(-2)=-4. 【答案】 -41.不管是求切线的斜率、瞬时速度和瞬时加速度,还是求实际问题中的瞬时变化率,它们的解题步骤都是一样的——(1)计算Δy ,(2)求Δy Δx ,(3)看Δx 无限趋近于0时,Δy Δx无限趋近于哪个常数.2.准确理解导数的概念,正确求y =f(x)在点x =x 0处的导数注意两点:(1)Δy =f(x +Δx)-f(x)不能误认为Δy =f(Δx);(2)求解时不给出Δx 的具体值,否则求出的是平均变化率,而不是瞬时变化率(导数).3.求过某点曲线的切线方程的类型及求法.(1)若已知点(x 0,y 0)为切点,则先求出函数y =f(x)在点x 0处的导数,然后根据直线的点斜式方程,得切线方程y -y 0=f′(x 0)(x -x 0).(2)若题中所给的点(x 0,y 0)不是切点,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.因此求曲线的切线方程一定要明确切点的位置,分清楚是“曲线在某点处的切线”还是“过某点的曲线切线”.1.如果质点A 按规律s =3t 2运动,则在t =3时的瞬时速度为________.【解析】 Δs Δt =3(3+Δt )2-3×32Δt=18+3Δt ,当Δt →0时,ΔsΔt→18+3×0=18. ∴质点A 在t =3时的瞬时速度为18. 【答案】 182.已知f(x)=2x +5,则f(x)在x =2处的导数为________.【解析】 Δy =f(2+Δx)-f(2)=2(2+Δx)+5-(2×2+5)=2Δx , ∴ΔyΔx=2,∴f ′(2)=2. 【答案】 23.抛物线y =14x 2在点Q(2,1)处的切线方程为______.【解析】 Δy Δx =14(2+Δx )2-14×22Δx =1+14Δx.当Δx →0时,ΔyΔx→1,即f′(2)=1, 由导数的几何意义,点Q 处切线斜率k =f′(2)=1. ∴切线方程为y -1=1(x -2)即y =x -1. 【答案】 y =x -14.求函数y =x 在x =1处的导数. 【解】 法一 ∵Δy =1+Δx -1,∴Δy Δx =1+Δx -1Δx =11+Δx +1, 当Δx 无限趋近于0时,Δy Δx =11+Δx +1无限趋近于12, ∴函数y =x 在x =1处的导数为12.法二Δy Δx =x +Δx -x Δx =1x +Δx +x, 当Δx →0时,Δy Δx →12x ,所以y′=12x. 当x =1时,y ′=12.∴函数y =x 在x =1处的导数为12.一、填空题1.设函数f(x)在x =x 0处可导,当h 无限趋近于0时,对于f (x 0+h )-f (x 0)h 的值,以下说法中正确的是________.①与x 0,h 都有关;②仅与x 0有关而与h 无关; ③仅与h 有关而与x 0无关;④与x 0,h 均无关.【解析】 导数是一个局部概念,它只与函数y =f(x)在x =x 0处及其附近的函数值有关,与h 无关.【答案】 ②2.(2013·徐州高二检测)函数f(x)=x 2在x =3处的导数等于________.【解析】 Δy Δx =(3+Δx )2-32Δx=6+Δx ,令Δx →0,得f′(3)=6. 【答案】 63.(2013·合肥高二检测)函数y =f(x)的图象在点P 处的切线方程是y =-2x +9,若P 点的横坐标为4,则f(4)+f′(4)=________.【解析】 由导数的几何意义,f ′(4)=-2. 又f(4)=-2×4+9=1. 故f(4)+f′(4)=1-2=-1. 【答案】 -14.已知物体的运动方程为s =-12t 2+8t(t 是时间,s 是位移),则物体在t =2时的速度为________.【解析】 Δs =-12(2+Δt)2+8(2+Δt)-(8×2-12×22)=6Δt -12(Δt)2,则Δs Δt =6-12Δt , 当Δt →0时,ΔsΔt→6. 【答案】 65.曲线f(x)=x 3在x =0处的切线方程为________.【解析】 Δy Δx =f (0+Δx )-f (0)Δx =(Δx )3-0Δx=(Δx)2.当Δx →0时,ΔyΔx→0. ∴由导数的几何意义,切线的斜率k =f′(0)=0. 因此所求切线方程为y =0. 【答案】 y =06.若点(0,1)在曲线f(x)=x 2+ax +b 上,且f′(0)=1,则a +b =________. 【解析】 ∵f(0)=1,∴b =1.又Δy Δx =f (0+Δx )2-f (0)Δx=Δx +a. ∴当Δx →0时,ΔyΔx→a ,则f′(0)=a =1. 所以a +b =1+1=2. 【答案】 27.高台跳水运动员在t 秒时距水面高度h(t)=-4.9t 2+6.5t +10(单位:米),则该运动员的初速度为________米/秒.【解析】 Δh Δt =-4.9(Δt )2+6.5·(Δt )+10-10Δt=6.5-4.9Δt∵当Δt 无限趋近于0时,-4.9Δt +6.5无限趋近于6.5, ∴该运动员的初速度为6.5米/秒. 【答案】 6.58.(2013·泰州高二检测)已知函数f(x)在区间[0,3]上的图象如图1-1-6所示,记k 1=f′(1),k 2=f′(2),k 3=f(2)-f(1),则k 1,k 2,k 3之间的大小关系为________.图1-1-6【解析】 k 1表示曲线在x =1处的切线的斜率,k 2表示曲线在x =2处的切线的斜率, k 3表示两点(1,f(1)),(2,f(2))连线的斜率, 由图可知:k 1>k 3>k 2. 【答案】 k 1>k 3>k 2 二、解答题9.已知函数f(x)=2x 2+4x ,试求f′(3). 【解】 Δy =f(3+Δx)-f(3)=2(3+Δx)2+4(3+Δx)-30=2(Δx)2+16Δx , ∴ΔyΔx=2Δx +16, 当Δx →0时,ΔyΔx→16. 因此f′(3)=16.10.子弹在枪筒中的运动可以看作匀加速直线运动,运动方程为s =12at 2,如果它的加速度是a =5×105m /s 2,子弹在枪筒中的运动时间为1.6×10-3s ,求子弹射出枪口时的瞬时速度. 【解】 运动方程为s =12at 2.因为Δs =12a(t 0+Δt)2-12at 20=at 0(Δt)+12a(Δt)2,所以Δs Δt =at 0+12a(Δt).所以当Δt →0时,ΔsΔt→at 0. 由题意知,a =5×105m /s 2,t 0=1.6×10-3s ,所以at 0=8×102=800(m /s ), 即子弹射出枪口时的瞬时速度为800 m /s . 11.已知曲线y =1t -x 上两点P(2,-1),Q(-1,12). 求:(1)曲线在点P ,Q 处的切线的斜率; (2)曲线在点P ,Q 处的切线方程. 【解】 将P(2,-1)代入y =1t -x ,得t =1,∴y =11-x ,设f(x)=11-x, ∵f (x +Δx )-f (x )Δx =11-(x +Δx )-11-x Δx=Δx[1-(x +Δx )](1-x )Δx=1(1-x -Δx )(1-x ),∴当Δx →0时,1(1-x -Δx )(1-x )→1(1-x )2.∴f ′(x)=1(1-x )2.(1)由导数的几何意义,知曲线在点P 处的切线斜率f′(2)=1. 曲线在点Q 处的切线斜率f′(-1)=14.(2)曲线在点P 处的切线方程为y -(-1)=x -2,即x -y -3=0,曲线在点Q 处的切线方程为y -12=14[x -(-1)],即x -4y +3=0.(教师用书独具)已知曲线y =2x +1,问曲线上哪一点处的切线与直线y =-2x +3垂直,并求切线方程.【自主解答】 设切点坐标为(x 0,y 0),Δy Δx =2x 0+Δx +1-(2x 0+1)Δx=2x 0+Δx -2x 0Δx =2[(x 0+Δx )2-(x 0)2]Δx (x 0+Δx +x 0)=2x 0+Δx +x 0.当Δx →0时,2x 0+Δx +x 0→2x 0+x 0=1x 0, 又直线y =-2x +3的斜率为-2, 所以所求切线的斜率为12,故1x 0=12.所以x 0=4,y 0=5,所以切点坐标为(4,5), 切线方程为y -5=12(x -4),即x -2y +6=0.已知曲线y =x 2+1,问是否存在实数a ,使得经过点(1,a)能够作出该曲线的两条切线?若存在,求出实数a 的取值范围;若不存在,请说明理由.【解】 设切点为P(t ,t 2+1).∵Δy Δx =(t +Δx )2+1-(t 2+1)Δx=2t +Δx , 当Δx →0时,ΔyΔx→2t. 由导数的几何意义,在点P(t ,t 2+1)处切线的斜率k =f′(t)=2t , ∴切线方程为y -(t 2+1)=2t(x -t), 将(1,a)代入,得a -(t 2+1)=2t(1-t), 即t 2-2t +(a -1)=0, 因为切线有两条,所以Δ=(-2)2-4(a -1)>0, 解得a <2.故存在实数a,使得经过点(1,a)能够作出该曲线的两条切线,a的取值范围是(-∞,2).1.2导数的运算1.2.1 常见函数的导数(教师用书独具)●三维目标1.知识与技能能够用导数的定义求几个常用函数的导数,会利用它们解决简单的问题.2.过程与方法使学生掌握由定义求导数的三个步骤,推导四种常见函数的导数公式.3.情感、态度与价值观通过本节的学习进一步体会导数与物理知识之间的联系,提高数学的应用意识,注意培养学生归纳类比的能力.●重点难点重点:利用导数公式,求简单函数的导数.难点:对导数公式的理解与记忆.在初等函数的求导公式中,对数函数与指数函数的求导公式比较难记忆,要区分公式的结构特征,找出他们之间的差异去记忆.(教师用书独具)●教学建议导数的定义不仅阐明了导数概念的实质,也给出了利用定义求导数的方法,但是,如果对每一个函数都直接按定义去求它的导数,往往是极为复杂和困难的,甚至是不可能的,因此,我们希望找到一些简单函数的导数(作为我们的基本公式),借助它们来简化导数的计算过程.因此教材直接给出了基本初等函数的导数公式,使得用定义求导数比较麻烦、计算量很大的问题得以解决,为以后导数的研究带来了方便,同时也将所学的导数和实际应用问题结合起来,使得导数的优越性发挥得淋漓尽致.●教学流程创设情境,回忆导数的概念与导数的求法.⇒利用导数的定义求y=x n(n=1,2,3,。
导数在实际生活中的运用1. 引言1.1 导数的定义导数的定义是微积分学中的重要概念,它描述了函数在某一点处的变化率。
在几何意义上,导数可以理解为函数图像在某一点的切线斜率。
具体地说,如果函数f(x)在x=a处的导数存在,那么导数f'(a)表示了当自变量x在a处发生一个小的变化Δx时,函数值f(x)将相应地发生多大的变化Δf,这种变化率可以用导数来描述。
导数的概念不仅仅在数学中有重要的应用,它在实际生活中也有着广泛的应用价值。
导数的定义让我们能够更好地理解和描述各种现象中的变化规律,帮助我们预测未来的发展趋势。
掌握导数的概念可以帮助我们更好地解决各种实际问题,提高工作和生活的效率。
了解导数的定义及其在实际生活中的重要性对于我们每个人都是有益的。
在接下来的内容中,我们将探讨导数在不同领域的具体应用,展示导数在实际生活中的广泛应用。
1.2 导数在实际生活中的重要性导数在实际生活中的重要性可以说是不可忽视的。
导数是微积分中的一个重要概念,在实际生活中有着广泛的应用。
通过导数,我们可以描述物体在某一时刻的变化率,帮助我们更好地理解和分析现实世界中的各种现象。
在经济学中,导数被广泛运用于描述市场需求和供给的变化趋势,分析价格弹性和收益最大化等问题。
导数的概念也被应用于金融领域,帮助投资者和分析师预测股价的波动和变化趋势。
在物理学中,导数被用来描述物体的运动状态,例如速度和加速度的变化。
通过导数,我们可以计算出物体在不同时间点的位置和速度,帮助我们更好地理解自然界中的各种物理现象。
在生物学中,导数可以用来描述生物体的生长和变化过程,帮助研究人员更好地理解生物体的发育和演化规律。
导数也被用来分析生物体在不同环境条件下的适应性和响应能力。
在工程学和医学领域,导数被广泛应用于设计和优化各种系统和流程。
通过导数,工程师和医生可以分析和改进各种工艺和治疗方案,提高效率和准确性,保障工程项目和医疗保健的质量和安全性。
1.1.1变化率问题
【学习目标】理解函数平均变化率的概念,会求已知函数的平均变化率。
【知识点实例探究】
例1.国家环保总局对长期超标准排放污物,污染严重而又未进行治理的单位,规定出一定期限,强令在此期限内完成排污治理。
下图是国家环保总局在规定的排污达标日期前,对甲、乙两家企业连续检测的结果(W 表示排污量),哪个企业治理得比较好?为什么?
例2.已知质点按照规律t t s 422
+=(距离单位:m ,时间单位:s )运动,求:
(1) 质点开始运动后3秒内的平均速度;
(2) 质点在2秒到3秒内的平均速度。
例3.求函数322+-=x x y 在区间⎥⎦⎤⎢
⎣⎡2,1223和⎥⎦
⎤⎢⎣⎡1225,2的平均变化率。
变式1:求函数2
x y =在区间[]x x x ∆+00,(或[]00,x x x ∆+)的平均变化率,并探索表达式的值(平均变化率)与函数图象之间的关系。
变式2:过曲线()3
x x f y ==上两点P (1,1)和()y x Q ∆+∆+1,1作曲线的割线,求出当1.0=∆x 时割线的斜率。