生物化工原理与设备
- 格式:doc
- 大小:53.50 KB
- 文档页数:8
化工原理课程教学大纲课程名称:化工原理英文名称:Principles of Chemical engineering/ Unit operations of Chemical engineering 课程编码:x2030212学时数:96其中实践学时数:16课外学时数:0学分数:6.0适用专业:生物工程一、课程简介《化工原理》将课堂教学、化工单元实验操作与设计型教学内容相结合,使学生掌握化工单元操作各部分的基本原理,掌握流体输送过程的基本理论;掌握气体和液体混合物分离操作的基本理论和实际操作要求,掌握不同单元操作条件对化工单元过程生产效果的影响;掌握传热过程的基本定律和实际生产设备应用;掌握传热,精馏和吸收单元操作所应用典型装置的设计方法;了解本学科领域热点问题;熟悉新型化工单元操作中生物化工生产的典型应用。
最终掌握生物化工生产单元操作有机结合的典型案例及设计方法,了解生产安全相关法律法规,能够针对具体化工单元操作过程,编制完整的具有典型生物工程单元操作的设计方案,培养掌握具有化工基本知识的生物和化工领域的技术人才。
二、课程目标与毕业要求关系表三、课程教学内容、基本要求、重点和难点绪论1、教学内容化工过程与单元操作;《化工原理》课程的性质与任务;2、基本要求了解部分:《化工原理》课程的性质、研究对象、任务与基本内容理解部分:因次、单位制和单位换算掌握部分:物料衡算与能量衡算熟练掌握:无3、重点和难点(1)重点:单元操作及基本特点(2)难点:无第一章流体流动1、教学内容流体概述;流体静力学方程及其应用;流体流动中的守恒原理;流体的流动状态分析;流体的阻力损失原因及阻力计算;简单管路的计算;流速和流量的测定方法。
2、基本要求了解部分:流体概述;流速和流量的测定方法理解部分:流体静力学方程及其应用;流体流动中的守恒原理;流体的流动状态分析;流体的阻力损失原因及阻力计算;简单管路的计算;掌握部分:流体静力学方程及其应用;流体的流动状态分析;简单管路的计算;熟练掌握:流体流动中的守恒原理;3、重点和难点(1)重点:流体静力学方程;连续性方程;柏努利方程;雷诺实验及应用;阻力计算(2)难点:柏努利方程;雷诺实验及应用;阻力计算第2章流体输送机械1、教学内容常用液体输送机械;离心泵的理论压头和实际压头(扬程),功率和效率;离心泵的气缚与气蚀现象;泵的安装高度、流量调节、泵的选择;离心风机的性能与选择。
生物工程化工原理生物工程化工原理引言:生物工程化工原理是将生物技术与化学工程相结合的学科,通过利用生物体的生物化学反应和微生物的代谢能力,实现对化学反应的控制和优化。
本文将重点介绍生物工程化工原理的基本概念、应用领域以及相关的发展趋势。
一、生物工程化工原理的基本概念1. 生物工程化工原理的定义生物工程化工原理是指将生物技术与化学工程相结合,利用生物体的生物化学反应和微生物的代谢能力,实现对化学反应的控制和优化的学科。
2. 生物工程化工原理的基本原理生物工程化工原理是基于生物体的生物化学反应和微生物的代谢能力,通过调控生物体内的酶活性、调整代谢途径以及利用基因工程等手段,实现对化学反应的控制和优化。
3. 生物工程化工原理的关键技术生物工程化工原理涉及到许多关键技术,包括基因工程、发酵工艺、酶工程、代谢工程等。
这些技术的应用可以使化工过程更加高效、环保,提高产物的纯度和产量。
二、生物工程化工原理的应用领域1. 生物制药生物工程化工原理在生物制药领域有着广泛的应用。
通过利用基因工程技术,将目标基因导入到适当的宿主微生物中,使其产生所需的药物蛋白。
这种方法可以大大提高药物的生产效率和纯度,降低成本。
2. 生物能源生物工程化工原理在生物能源领域也有着重要的应用。
通过利用微生物的代谢能力,将可再生能源转化为生物燃料,如生物乙醇、生物柴油等。
这种方法不仅可以减少对化石燃料的依赖,还可以减少温室气体的排放。
3. 环境保护生物工程化工原理在环境保护领域也发挥着重要的作用。
通过利用微生物的降解能力,对有机废物和污染物进行分解和清除。
这种方法可以有效地降低环境污染,改善生态环境。
三、生物工程化工原理的发展趋势1. 微生物组学的发展随着微生物组学的发展,我们对微生物的代谢途径和酶系统有了更深入的了解,可以更好地利用微生物的代谢能力进行化学反应的控制和优化。
2. 基因编辑技术的应用基因编辑技术的应用将为生物工程化工原理带来更大的突破。
生物催化的原理和应用生物催化是指利用酶或微生物等生物体对化合物进行催化反应的过程。
相比于传统化学催化,生物催化具有更高的催化效率、更加环保、选择性更好等优点,因此被广泛应用于化工、制药、食品等诸多领域。
一、生物催化的基本原理酶是一种生物大分子催化剂,由蛋白质和辅助因子组成,具有催化化学反应的能力。
酶分子可以与底物分子进行互相作用,形成酶底物复合物,通过反应之后又生成新的产物和酶分子,在整个反应过程中酶本身不参与反应,也不改变反应的平衡常数。
酶催化过程中需要满足的条件主要包括适宜的温度、pH值等环境因素以及适宜酶底物比例等物理、化学的因素。
二、生物催化的应用1. 食品工业酶在食品加工生产中具有广泛的应用,一些常见的应用包括:食用油的加工工艺中发酵的脱酸化酶;发酵面包、酸奶中的酵母等。
2. 医药工业生物催化在药物的合成、提取、纯化等方面也扮演着重要的角色。
医药生产中,亲水性、疏水性等物质的合成和转化,通过境界界面催化技术和基于酶催化技术结合的生物催化工艺进行。
3. 化工工业生物催化在化工生产、环保等方面也得到了广泛的应用。
优良的化学特性为使生物催化在过程在工业生产中具备优势,而在环境保护领域,在废水处理、废气治理等同时发挥了重要作用。
生物催化技术通过提高传统化学方法的效率,降低副产品生成率,并能显著降低化工行业的资源消耗与环境污染。
三、生物催化技术发展目前,生物催化技术已经发展了多达上千种不同的化学反应,该技术的应用领域和成果日趋多样化和复杂化。
随着人们对环保和可持续发展的越来越认识和要求,化工过程的优化成为未来生物催化技术发展的主要方向。
目前,在国际上,生物催化工艺作为一种环保、低能耗、高效的新兴技术,受到广泛关注和重视。
总之,生物催化技术在现代化工、制药等产业,具有更加环保、高效、低成本的特点,已经成为一种热门的研究方向。
希望通过不断的技术创新,生物催化技术可以更好地应用于我们的生活和工作中,为我们创造更加便捷、高效的工作环境和生活品质。
生活中应用化工原理的例子1. 肥料的制作和使用•化工原理:肥料的制作是通过化学合成或者物理处理,将具有提供植物所需营养元素的化合物制成固体或液体形式,以促进植物生长和增加产量。
•应用示例:–化学合成法制作尿素肥料:将氨气与二氧化碳通过高温高压合成尿素,尿素中的氮元素可以提供植物生长所需的养分。
–生物制作有机肥料:利用微生物的作用将有机废弃物进行堆肥,生成含有丰富有机物质的肥料,提供植物所需的营养。
2. 化妆品的制造•化工原理:化妆品的制造利用了化学合成、物理处理和生物技术等技术手段,将各种化学物质、天然提取物、香料等进行配方和加工,制成洗发水、面霜、口红等各种化妆品。
•应用示例:–洗发水的制造:化学原料如表面活性剂、防腐剂、增稠剂等与水进行混合和加热,经过乳化、稀释等工艺步骤,制成洗发水。
–口红的制造:将颜料、油脂、蜡等原料进行混合与加热,通过化学反应形成均匀的液体,经过冷却后制成固体口红。
3. 化纤纺织品的生产•化工原理:化纤纺织品的制造是通过将合成纤维通过纺丝、加工、染色等工艺步骤,制成各种纺织品,如聚酯纤维制成的衣物、尼龙纤维制成的袜子等。
•应用示例:–共聚纺丝工艺:将聚酯原料与其他添加剂混合,经过加热、提纺、冷却等步骤,使原料聚合成纤维,并通过拉伸、定型等工艺制成聚酯纤维。
–染色工艺:将纤维进行染色,通过化学反应将染料与纤维表面结合,使纺织品获得所需颜色。
4. 食品加工中的发酵•化工原理:食品加工中的发酵是利用微生物的作用,将食品原料经过适当的处理和培养条件,使其发生生化变化,产生新的风味、营养和保鲜效果。
•应用示例:–面包的发酵:将面粉、酵母、水等原料进行混合后,通过适当的温度和湿度,使酵母菌进行发酵,产生二氧化碳,使面团膨胀发酵,最终制成松软的面包。
–酸奶的发酵:将牛奶中加入乳酸菌,通过恰当的温度和时间,乳酸菌进行发酵分解乳糖,产生乳酸和其他有益物质,使牛奶变成酸奶。
5. 玻璃制品的生产•化工原理:玻璃制品的生产是通过化学反应将石英砂、碳酸盐等原料与辅助助剂经过熔融和成型等工艺步骤制成固态非晶体材料。
851化工原理知识点总结一、化工原理基础1、化工原理的定义化工原理是研究化工反应过程、化工设备与化工产品性能的科学。
化工原理学是将物理、化学、工程学和数学原理应用于化工反应过程研究及化工生产的学科。
2、化工反应过程化工反应过程是指物质在化学、物理或生物因素作用下发生变化的过程。
化工反应过程是化工生产的基础。
化工反应原理是全面了解各种原料的物理化学特性,选择工艺条件,确定设备型号和操作要点的基础。
3、化工设备化工设备是进行化学反应、分离、提纯和储存化工产品的机械或设备。
化工设备的主要功能包括:各种化工反应设备、蒸馏器、析取设备、萃取设备、结晶器、过滤设备、离心机、混合、搅拌设备、搬运储存设备。
4、化工产物化工产品是通过工程化工反应和设备工艺过程获得的化学产品。
化工产品对社会的生产和生活有重要作用。
二、化工反应动力学化工反应动力学是研究化工反应速率与反应机理的科学。
化工反应速率是量化描述反应物质浓度与时间的关系。
1、反应动力学理论反应动力学理论是化工原理基础,了解反应动力学理论对化工操作有重要的指导作用。
2、反应速率反应速率是化学物质浓度随时间变化的速率,描述了反应的快慢。
3、反应速率常数与反应级数反应速率常数是描述反应物质转化速率规律的常数,反应级数是衡量化学反应中各参与组分对反应速率的影响程度的方式。
4、反应速率与温度、压力、浓度的关系化工反应速率与温度、压力、浓度的关系是化工操作中需要注意的因素,温度、压力、浓度对反应速率有一定的影响。
5、反应活性能及影响反应活性是指单位时间内1mol反应物所消耗的能量,影响反应活性的因素包括温度、浓度、催化剂等。
6、反应动力学模型反应动力学模型是描述化学反应动力学过程的数学方程。
7、反应机理反应机理是描述反应过程中反应物质转化成产物的详细过程。
三、催化反应催化反应是通过催化剂加速化学反应的过程,催化反应是化工工程中常见的重要反应过程。
催化剂是一种能够降低反应活化能,加快化学反应速率的物质。
细胞生物反应器设备工艺原理细胞生物反应器是一种用于培养细胞生长和分裂的设备,具体包括反应器、控制系统、传感器、采样系统等组成。
设备构成细胞生物反应器主要由以下几个部分组成:反应器反应器一般应选用高透光的材质制作,如玻璃或者透明塑料。
反应器要具有良好的密闭性,可以防止氧气和废气的泄漏,同时也可以保证细胞培养过程中不会受到外界环境的干扰。
控制系统控制系统主要是用于控制反应器中温度,pH值,营养成分等因素的影响。
这个系统是由生物反应器和电子系统两个部分组成,它们一起负责控制反应温度、压力、搅拌速度、通风速度、液位高度和营养成分等参数。
传感器传感器可以实时监测反应器中的温度、氧气含量、pH值和细胞数量等参数,并通过串口传输到计算机进行记录和处理,同时也可以通过控制系统进行调整。
采样系统采样系统主要是用于在细胞培养过程中采集样本,用于后续分析和检测。
主要工艺过程细胞生物反应器的工艺过程主要包括以下几个步骤:培养基预处理细胞生物反应器使用的培养基必须严格消毒处理,以避免细菌和病毒的污染。
同时还要根据细胞类型和培养需求进行培养基的配方和调整,以保证细胞培养过程中的营养需要得到满足。
细胞接种和培养将处理好的培养基注入反应器中,然后将细胞接种于培养基中,开始进行细胞培养。
在这个过程中,需要根据细胞类型和培养需求设定适当的温度、通风和搅拌速度等参数,并进行实时监测,以保证培养环境的稳定。
生产后处理细胞生物反应器中的细胞不断生长和分裂,最终形成大量细胞,需要进行后续处理。
一般包括细胞分离、提取重要的代谢产物、蛋白质纯化等步骤,以满足后续实验或者生产的需求。
总结细胞生物反应器是一种机械化控制下的细胞培养设备,在细胞培养领域中有着广泛的应用。
通过对反应器的组成和主要工艺过程的了解,我们可以更好的利用这种设备进行细胞培养和生产,同时可以对其进行优化和改进,以满足不同的研究和生产需求。
化工设备工作原理
化工设备的工作原理是指在特定的操作条件下,利用物理、化学或生物过程来发生化学反应、物质转化或分离纯化等过程的原理。
下面将以一些常见的化工设备为例进行说明。
1. 塔式反应器:塔式反应器是一种用于进行化学反应的设备。
其工作原理是在垂直塔内通过将反应物和催化剂引入不同的层次,使其在塔内进行接触和反应。
反应物在塔中下降的过程中,与催化剂发生反应,产生所需的化学物质。
2. 蒸馏塔:蒸馏塔是一种用于分离和纯化物质的设备。
其工作原理是利用不同物质的沸点差异,将混合物加热蒸发后,再经过塔内的冷凝和液体回流过程,使组成物质逐渐分离并收集。
3. 高速搅拌釜:高速搅拌釜是一种用于进行物质混合的设备。
其工作原理是通过搅拌器的高速旋转,使不同组分的物质充分接触和混合,从而实现反应物的均匀混合。
4. 过滤机:过滤机是一种用于将固体和液体分离的设备。
其工作原理是通过将混合物通过过滤介质,使固体颗粒被滤除,而液体部分则通过过滤介质流出。
5. 离心机:离心机是一种用于分离液体中悬浮物的设备。
其工作原理是通过使液体产生高速旋转,利用离心力将悬浮物颗粒沉淀到容器底部,从而实现液体和固体的分离。
需要注意的是,不同的化工设备具有不同的工作原理,以上只
是一些常见设备的简要说明。
在实际应用中,还需要根据具体情况选择合适的化工设备,并了解其详细的工作原理。
《生物工程设备》课程教学大纲一、课程的性质和目的本课程是大学本科生物工程专业的专业课,通过本课程学习,结合认识实习和发酵工程等专业课程的学习,使学生掌握生物工程企业的工作流程、设备结构及其工作原理,主要设备的设计计算及选型,初步了解设备的安装与维护。
在此基础上,了解国内外生物工程与设备的新技术、新设备及发展动向。
通过本课程的学习,使学生初步具有独立分析和解决生产及试验研究上的工程设备问题的能力。
二、课程的基本要求通过本课程的教学,要求学生掌握生物工程生产过程中常用设备的结构、特点、工作原理、设计计算、选型及保养。
通过本课程学习使学生掌握常见生物工程设备的结构原理,能进行设计和选型的能力。
三、课程内容与要求第一章物料输送系统设备(4学时)1、学习目的和要求通过本章学习,了解生物工程工厂常用的固体物料和液体物料的输送设备,掌握斗式提升机、皮带输送机、螺旋输送机和气力输送系统的构造、原理及相关计算。
2、课程内容(1)斗式提升机;(2)皮带输送机;(3)螺旋输送机;(4)气力输送系统;(5)液体物料的输送设备。
3、考核知识点和考核要求(1)识记:斗式提升机、皮带输送机、螺旋输送机的构造及工作原理,气力输送流程、主要配套设备;(2)领会:气流输送的原理;(3)综合应用:气力输送系统的设计。
第二章物料处理与培养基制备(4学时)1、学习目的和要求通过本章学习,掌握固体物料的筛选、除杂及粉碎设备的构造、工作原理,液体培养基的制备及杀菌所涉及的设备构造、工作原理、工作流程及相关计算与设备选型。
2、课程内容(1)固体物料的筛选除杂设备;(2)固体物料的粉碎设备;(3)糖蜜原料的稀释与澄清设备;(4)淀粉质原料的蒸煮糖化设备;(5)啤酒生产中麦芽汁的制备。
3、考核知识点和考核要求(1)识记:振动筛、磁力除铁器、碟片式精选机、滚筒精选机、平板分级筛、圆筒分级筛、锤式粉碎机、辊式粉碎机、圆盘钢磨机、钢片式粉碎机、湿法粉碎机的构造及工作原理,糖蜜原料的稀释与澄清设备的构造及工作原理,淀粉质原料蒸煮糖化流程、啤酒生产中麦芽汁的制备流程中相关设备的构造及工作原理;(2)领会:固体物料粉碎的力学分析,培养基热灭菌的动力学;(3)综合运用:液体培养基的制备及杀菌工艺流程的设计。
生物工程设备期末总结引言生物工程是一门涉及生物科学、生物技术和工程技术的学科,旨在利用生物学原理和方法开展工程设计与制造,解决工程和生物学中的问题。
生物工程设备是生物工程学科的重要组成部分,它们在生物工程领域起着至关重要的作用。
本文将对生物工程设备进行总结与归纳,以期对生物工程设备的运用和改进有所启发和提升。
一、生物发酵设备生物发酵是利用微生物或其他细胞生产某种物质的过程,它对于制药、食品、饲料等行业具有重要意义。
生物发酵设备的设计和制造对发酵过程的控制和优化至关重要。
在发酵过程中,控制温度、pH值、氧气供应和搅拌等参数是非常重要的,因此生物发酵设备应具备良好的温度控制、pH控制、氧气供应和搅拌效果。
二、生物反应器设备生物反应器是在控制条件下进行生物反应的设备。
生物反应器设备的设计和制造对于生物反应过程的控制和提高反应效率具有重要意义。
生物反应器设备的主要参数包括反应温度、pH值、气体供应和搅拌效果等。
此外,生物反应器设备还应具备可靠的控制系统和自动化功能,以提高生物反应的稳定性和可控性。
三、细胞培养设备细胞培养是利用细胞的自我复制能力进行细胞繁殖和生产的过程。
细胞培养设备的设计和制造对于细胞培养的成功与否起着决定性的作用。
细胞培养设备应提供适宜的环境条件,包括适宜的温度、CO2浓度、湿度和搅拌效果等。
同时,细胞培养设备还应具备良好的控制系统和自动化功能,以提高细胞培养的稳定性和可控性。
四、分离纯化设备分离纯化是生物工程过程中的关键环节之一,它的目的是将目标物质从混合物中分离出来并纯化。
分离纯化设备的设计和制造对于分离纯化的效率和质量起着重要的影响。
分离纯化设备的种类繁多,包括离心机、过滤器、吸附剂、色谱柱等。
分离纯化设备应具备高效、可靠和可控的特点,以满足不同物质的分离纯化需求。
五、检测分析设备检测分析是生物工程中必不可少的环节,它的目的是对生物过程中的各种参数和产物进行监测和分析。
检测分析设备的设计和制造对于检测分析的准确性和灵敏度具有重要意义。
化工基础-流体输送及机械导言化工工程是利用物理、化学和生物学原理来设计、操作和控制化学过程的科学和工程学科。
在化工过程中,流体输送和机械装置是不可或缺的组成部分。
本文将介绍化工过程中流体输送和机械装置的基础知识,包括流体输送的原理、流体的性质和流体行为、常见的机械装置以及它们在化工工程中的应用。
一、流体输送的原理1. 流体输送的定义流体输送是指将液体或气体从一个地方输送到另一个地方的过程。
在化工工程中,流体输送通常是通过管道进行的。
2. 管道输送的原理管道输送是流体输送的常见方式之一。
它的原理是利用管道内的压力差来推动流体的流动。
通过控制管道内的压力和流速,可以实现流体在管道中的输送。
二、流体的性质和流体行为1. 流体的性质流体的性质包括密度、粘度、表面张力等。
这些性质对流体的输送和机械装置的设计都有影响。
2. 流体行为在流体输送和机械装置中,流体的行为对于流体的流动和机械装置的性能起到重要的作用。
流体的行为包括流态、流动模式、流动速度等。
三、常见的机械装置1. 泵泵是常见的机械装置之一,用于将液体从一个地方抽出或推入另一个地方。
根据其工作原理和结构,泵可以分为离心泵、容积泵等。
2. 压缩机压缩机是将气体压缩并推送到管道或储罐中的机械装置。
根据其工作原理和结构,压缩机可以分为容积式压缩机、离心式压缩机等。
3. 阀门阀门用于控制管道中流体的流动。
根据其结构和控制方式,阀门可以分为截止阀、调节阀等。
四、流体输送和机械装置在化工工程中的应用流体输送和机械装置在化工工程中有着广泛的应用。
它们可以用于输送各种流体,例如原料、中间产品和最终产品。
同时,它们也可以用于控制和调节流体的流动,以满足化工工程的生产要求。
常见的应用包括液体输送、气体输送、混合和分离等。
例如,在化工生产中,通过泵将液体从储罐输送到反应器中,然后通过压缩机将生成的气体送入分离设备进行分离。
结论流体输送和机械装置是化工工程中不可或缺的组成部分。
生物化学实验中的仪器与设备生物化学实验中,仪器与设备的使用起着至关重要的作用。
通过科学而精确的操作,能够获得可靠的实验结果,进而推动生物化学研究的发展。
本文将介绍几种常见的生物化学实验仪器与设备,并探讨它们在实验中的应用。
一、分光光度计分光光度计是生物化学实验中常见的仪器之一。
它通过测量溶液对特定波长光的吸收或透过来确定溶液的浓度。
分光光度计的工作原理是通过将可见光或紫外光通过溶液中,利用光的吸收作用来计算溶液的浓度。
在DNA测定、蛋白质浓度测定等实验中,分光光度计被广泛应用。
二、离心机离心机是一种常见的生物化学实验仪器,它通过离心力将样品内的细胞、碎片或其他颗粒物质沉淀到管底,从而分离出上清液和沉淀物。
离心机在细胞培养、离心沉降、蛋白质提取等实验中发挥着重要的作用。
三、电泳仪电泳仪是生物化学实验中不可或缺的仪器之一。
它通过电场作用将带电的生物分子(例如DNA、蛋白质)在凝胶中移动,从而实现对这些分子的分离和分析。
电泳仪广泛应用于DNA分析、蛋白质分析等实验中。
四、pH计pH计是一种用于测量溶液酸碱性的仪器。
生物化学实验中,酸碱性的精确控制对于诸多实验至关重要。
pH计通过测量溶液中氢离子的浓度来确定溶液的酸碱性。
在酶活性研究、酸碱反应等实验中,pH计的使用是不可或缺的。
五、实时荧光定量PCR仪实时荧光定量PCR仪是分子生物学和遗传学研究中重要的仪器之一。
它通过荧光信号的检测来监测DNA的扩增过程,从而定量分析初始DNA的含量。
实时荧光定量PCR仪在基因表达分析、病原体检测等领域有着广泛的应用。
六、冷冻离心机冷冻离心机是一种用于生物样品冷冻离心的仪器。
在生物化学实验中,冷冻离心机被广泛用于富集样品中的蛋白质、RNA或DNA等。
冷冻离心机通过低温离心过程中控制冷却系统,可以防止样品中的目标分子被降解。
七、质谱仪质谱仪是一种用于分析复杂混合物成分的仪器。
它通过将分子样品分解成带电离子,并通过测量带电离子的质量和相对丰度来确定样品中各种成分的含量和结构。
生物质气化工艺一、引言生物质气化是利用生物质作为原料,通过热化学反应将其转化为可燃气体的一种技术。
生物质气化工艺具有很高的应用价值,可以用于能源转换和化工原料生产等领域。
本文将重点介绍生物质气化工艺的原理、过程和应用。
二、生物质气化原理生物质气化是一种热化学反应过程,其原理是将生物质物料在缺氧或氧化性较低的条件下进行热解,生成可燃气体(主要是一氧化碳、氢气和甲烷)和一些固体副产物(如焦炭和灰分)。
生物质气化的主要反应包括干燥、热解、气化和燃烧等过程。
三、生物质气化工艺过程1. 干燥:生物质物料中含有一定的水分,在气化之前需要进行干燥处理。
干燥过程可以采用自然风干、热风干燥或气流干燥等方法,将生物质物料的水分含量降至一定水平。
2. 热解:在热解过程中,生物质物料在高温下分解,生成固体碳质产物(焦炭)、液体产物(木质素油)和气体产物(可燃气体)。
热解温度通常在400-800摄氏度之间。
3. 气化:热解产物在气化过程中进一步转化为可燃气体。
气化反应通常在800-1200摄氏度之间进行,需要提供适当的气化剂(如水蒸气或二氧化碳)和催化剂(如镍基催化剂)。
4. 燃烧:气化产生的可燃气体可以用于发电、供热、炼化等用途。
在燃烧过程中,可燃气体与氧气反应,产生热能、水和二氧化碳等。
四、生物质气化工艺应用1. 能源转换:生物质气化可以将生物质转化为可燃气体,用于发电、供热和燃料替代等能源转换领域。
生物质气化发电具有环境友好、资源丰富的特点,可以有效减少对传统能源的依赖。
2. 化工原料生产:生物质气化产生的可燃气体可以用于生产合成气、合成液体燃料和化学品等。
合成气可以作为化工原料,用于制备甲醇、乙醇、丙烯等化学品。
合成液体燃料可以替代传统石油燃料,用于交通运输和工业领域。
3. 生物质气化炼化:生物质气化可以与其他炼化技术结合,用于生产生物燃料、生物化学品和生物材料等。
生物质气化炼化技术可以充分利用生物质资源,实现能源和化工产品的可持续生产。
《生物化工原理与设备》课程教学大纲
胡道伟鲁明波邬建国
一、课程名称:生物化工原理与设备
Principle and equipment of Biochemical Engineering
二、课程编码:
三、学时与学分:48/3
四、先修课程:
五、课程教学目标
通过本课程的学习,掌握生物化工生产中有关单元操作的基本原理和方法,为生物技术产品研究开发打下工程学的基础。
六、适用学科专业:
生物技术
七、基本教学容与学时安排
●绪论(2学时)
生物技术与生物化工的关系
生物化工过程及其有关的单元操作
本课程的容,性质及任务
本课程常用的有关基本概念、物理量的单位及换算
●流体流动(2学时)
流体静力学的基本方程式
流体的密度
流体的静压强
流体静力学基本方程式
流体静力学基本方程式的应用
●管流体流动的基本方程式(2学时)流体的流量与流速
定态流动与非定态流动
流动的连续性方程
管道流动的能量衡算式——柏努利方程柏努利方程的应用
●真实流体的性质(2学时)
牛顿粘性定律及流体的粘性
非牛顿型流体
流动类型及雷诺准数
生物流体的非牛顿粘性——流变学基础常用的粘度测定方法
●管真实流体的流动(2学时)
圆管流体的切应力分布
流体在圆管的速度分布
流动边界层的概念
流动阻力与管路计算
流体在直管中的流动阻力
管路中的局部阻力
管路系统中的能量损失
管路的计算
流量测量
●流体输送机械(2学时)
离心泵
离心泵的结构及工作原理
离心泵的性能指标
离心泵的特性曲线及工作点调节气蚀现象及安装高度
●往复泵(2学时)
其他类型泵
通风机,鼓风机,压缩机,真空泵●机械分离概述(2学时)
生物化工生产中的分离操作
非均相混合物的机械分离
颗粒及颗粒床层的特性
沉降
沉降过程中颗粒的受力分析
沉降速度
重力沉降及设备
离心沉降及离心分离因数
离心沉降设备
●过滤(2学时)
过滤的基本概念
过滤基本方程
恒压过滤
过滤常数的测定
过滤设备
生物化工生产及制药行业的空气过滤净化●传热的基本概念(2学时)
传热的基本方式
传热过程中流体的热交换方式
间壁换热器
载热体及其选择
热传导
热传导和傅立叶定律
导热系数
跨平壁的热传导
跨圆筒壁的热传导
●对流传热(2学时)
对流传热速率方程及对流传热系数
对流传热机理
保温层的临界直径
●传热计算(2学时)
对流传热过程中的能量衡算
总传热速率方程和总传热系数
平均温度差法
对流传热的系数关联式
●换热器(2学时)
间壁式换热器的类型
列管式换热器
生化反应过程中的温度控制
●蒸馏(2学时)
双组分溶液的气液相平衡
两组分理想物系的气液平衡
两组分非理想物系的气液平衡
蒸馏与精馏原理
蒸馏及精馏原理和过程
精馏操作流程及条件
●双组分连续精馏的分析与计算(2学时)理论板的概念及恒摩尔流假定
物料衡算和操作线方程
进料热状况的影响
●理论板层数的求法(2学时)
回流比的影响及其选择
连续精馏过程的热量衡算
●其他蒸馏方式(2学时)
简单蒸馏
平衡蒸馏
●液-液萃取(2学时)
萃取的基本概念
组成在三角形相图上的表示方法
液-液相平衡关系在三角形相图上的表示萃取过程在三角形相图上的表示
萃取操作在生物化工生产上的应用
●萃取操作的流程和计算(2学时)
单级萃取的计算
多级错流接触萃取的计算
●多级逆流接触萃取的计算(2学时)萃取设备
混合-澄清槽
塔式萃取设备
离心萃取设备
萃取设备的选择
●超临界萃取(2学时)
什么是超临界萃取
超临界萃取的流程分析
超临界萃取在生物分离过程中的应用●干燥概述(2学时)
湿空气的性质及湿度图
湿空气的性质
湿空气的湿焓图
干燥过程的物料衡算和热量衡算
湿物料中含水量的表示方法
干燥过程的物料衡算
干燥过程的热量衡算
空气通过干燥器时的状态变化
●干燥速率和干燥时间(2学时)
干燥过程中的平衡关系及速率关系
干燥时间的计算
干燥设备
干燥器的主要型式
干燥器的选择及设计
冷冻干燥
冷冻干燥的基本原理
冷冻干燥的流程及设备
冷冻干燥在生物制品生产过程中的应用●膜分离技术(2学时)
膜分离过程简介
膜分离过程的主要传递机理
膜分离装置与工艺
膜分离技术的应用
八、教材及参考书
化工原理,(上,下册),玉英主编,天津大学,1999年九、考核方式:开卷考试。