2016-2017年山东省临沂市平邑县初三上学期期末数学试卷含答案解析
- 格式:doc
- 大小:459.52 KB
- 文档页数:23
2016—2017学年第一学期期末考试试卷九年级数学参考答案二、填空题(每题5分,共30分)11.60 12.3 13.π48 14.5415. ②③ 16.5 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.3602r n S π= ………………4分=ππ91036021002=⨯(2cm )………………4分 18.解:(1)一次出拳小聪出“石头”的概率是;………………2分(2)如图:………………4分则小聪胜小明的概率是=; ………………2分19.设经过t 小时后,乙船在甲船的正东方………………1分︒⨯=︒-302045)10100(Sin t Sin t ………………3分解得:)12(101210-=+=t ………………3分(不化简不扣分)答:经过)12(10-小时后,乙船在甲船的正东方.………………1分 20.(1) C ………………3分(2) 4)1(221--=x y ,其顶点为(1,-4), ………………1分 而抛物线2y 的顶点坐标为(m ,2),由它们的系数关系,可以得出友好抛物线的顶点的横坐标相同,纵坐标抛物线1y 是抛物线2y 的k 倍,………………2分∴2-=k , ∴1222++-=x x y ………………2分21.解:(1)y 1=2x ﹣20,(0<x≤200)………………2分y 2=10x ﹣40﹣0.05x 2=﹣0.05x 2+10x ﹣40.(0<x≤80).………………2分(2)对于y 1=2x ﹣20,当x=200时,y 1的值最大=380万元.………………2分对于y 2=﹣0.05(x ﹣100)2+460, ∵0<x≤80, ∴x=80时,y 2最大值=440万元.………………2分∵440>380,∴选择生产乙产品利润比较高.………………2分22.(1)证△OPI ≌△ODI (SAS) ………………6分 (2) I 为△OPQ 的内心,且∠OQP=90°,所以∠OIP=135°,……………4分则∠OID=135°,所以∠PID=90°………………2分23.(1)证△BHF ∽△DFG (两角对应相等的两个三角形相似) ………2分得出DGBFDF BH =,………………2分 又因为F 是BD 的中点,所以24BD GD BH =⋅………………2分 (2)同理可得△CBF ∽△FDG , ∴FGCFDF BC =, 又∵DF=BF ,∴FGCFBF BC = ∵∠CBF=∠CFG ,∴△CBF ∽△CFG ………………4分 ∴∠BCF =∠FCG ………………1分当CA=CG 时,CF ⊥AD ………………1分24.(1)3(2)(4)8y x x =-+-343832++-=x x ………………5分(2)当CD ∥BF 时,△COD ∽△FDB ∴DBDFOD OC = ∴ tt t t --+-=4)4)(2(833………………3分解得:41-=t (舍),22=t ………………2分∴ t=2时,CD ∥BF(3)当40<<t 时,①若CE=EF ,t t t 2383452+-=,32=t ………………1分 ②若CF=EF , 53)2383(852⨯+-=t t t ,911=t ………………1分③若CE=CF , 3433438362+-++-=t t t ,0=t (舍………1分当t>4时,只有CE=EF ,t t t 2383452-=,322=t …………1分∴ 当32=t 或119或223时CEF ∆为等腰三角形.。
(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案的全部内容。
第1 页共6 页2016—-—2017学年度九年级上册数学期末试卷(时间120分钟,满分120分)一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是( )2.将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A.y=2(x-1)2-3 B.y=2(x-1)2+3C.y=2(x+1)2-3 D.y=2(x+1)2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于 ( )A.55° B。
70° C。
125° D。
145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )A。
4 5.一个半径为2cm的圆内接正六边形A.24cm2 B.63 cm2 C .6.如图,若AB是⊙O的直径,CD是A.35° B.45° C.55°7.函数mxxy+--=822的图象上有两点B。
2016-2017学年九年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣24.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1y2(填“>”或“<”或“=”).11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵(﹣)×(﹣)=1,∴﹣的倒数是﹣.故选D.【点评】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】分别找出这个图形的主视图、俯视图、左视图,然后结合选项选出正确答案即可.【解答】解:该图形的主视图为:,俯视图为:,左视图为:,A、该图形为原图形的主视图,本选项正确;B、该图形为原图形的俯视图,本选项正确;C、该图形为原图形的左视图,本选项正确;D、观察原图形,不能得到此平面图形,故本选项错误;故选D.【点评】本题考查了简单组合体的三视图,要求同学们掌握主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣2【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.故选A.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】根据概率的求法,先画出树状图,求出所有出现的情况,即可求出答案.【解答】解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:∵一共有12种情况,两个粽子都没有蛋黄的有6种情况,∴则这两个粽子都没有蛋黄的概率是=故选B.【点评】此题主要考查了画树状图求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【考点】相似三角形的应用.【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴=,∵BE=20m,CE=10m,CD=20m,∴,解得:AB=40,故选B.【点评】考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【考点】菱形的判定;平移的性质.【分析】首先根据平移的性质得出AB平行且等于CD,得出四边形ABCD为平行四边形,根据邻边相等的平行四边形是菱形可得添加条件AB=BC即可.【解答】解:∵将△ABC沿BC方向平移得到△DCE,∴AB平行且等于CD,∴四边形ABCD为平行四边形,当AB=BC时,平行四边形ACED是菱形.故选:A.【点评】此题主要考查了平移的性质和平行四边形的判定和菱形的判定,得出AB平行且等于CD是解题关键.7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:如图,①抛物线开口方向向下,则a<0.故①正确;②∵对称轴x=﹣=1,∴b=﹣2a>0,即b>0.故②错误;③∵抛物线与y轴交于正半轴,∴c>0.故③正确;④∵对称轴x=﹣=1,∴b+2a=0.故④正确;⑤根据图示知,当x=1时,y>0,即a+b+c>0.故⑤错误.综上所述,正确的说法是①③④,共有3个.故选C.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.【考点】反比例函数系数k的几何意义;含30度角的直角三角形;勾股定理.【分析】先由∠ACB=90°,BC=4,得出B点纵坐标为4,根据点B在反比例函数的图象上,求出B点坐标为(3,4),则OC=3,再解Rt△ABC,得出AC=4,则OA=4﹣3.设AB与y 轴交于点D,由OD∥BC,根据平行线分线段成比例定理得出=,求得OD=4﹣,最后根据梯形的面积公式即可求出阴影部分的面积.【解答】解:∵∠ACB=90°,BC=4,∴B点纵坐标为4,∵点B在反比例函数的图象上,∴当y=4时,x=3,即B点坐标为(3,4),∴OC=3.在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,AC=BC=4,OA=AC﹣OC=4﹣3.设AB与y轴交于点D.∵OD∥BC,∴=,即=,解得OD=4﹣,∴阴影部分的面积是:(OD+BC)•OC=(4﹣+4)×3=12﹣.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,含30度角的直角三角形的性质,平行线分线段成比例定理,梯形的面积公式,难度适中,求出B点坐标及OD的长度是解题的关键.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为x1=,x2=1.【考点】解一元二次方程-因式分解法.【分析】分解因式后即可得出两个一元一次方程,求出方程的解即可.【解答】解:2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,2x﹣1=0,x﹣1=0,x1=,x2=1,故答案为:x1=,x2=1【点评】本题考查了解一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成解一元一次方程.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1<y2(填“>”或“<”或“=”).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象所经过的象限与函数图象的增减性进行填空.【解答】解:∵函数y=﹣中的﹣2<0,∴函数y=﹣的图象经过第二、四象限,且在每一象限内,y随x的增大而增大,∴点(2,y1),(3,y2)同属于第四象限,∵2<3,∴y1<y2.故填:<.【点评】本题主要考查反比例函数图象上点的坐标特征.解答该题时,利用了反比例函数图象的增减性.当然了,解题时也可以把已知两点的坐标分别代入函数解析式,求得相应的y值后,再来比较它们的大小.11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【考点】相似图形.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.【考点】解直角三角形.【分析】根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC 的长度,然后根据锐角的正切等于对边比邻边解答.【解答】解:∵CD是斜边AB上的中线,CD=2,∴AB=2CD=4,根据勾股定理,BC==,tanB===.故答案为:.【点评】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20.【考点】矩形的性质;三角形中位线定理.【专题】几何图形问题.【分析】根据题意可知OM是△ADC的中位线,所以OM的长可求;根据勾股定理可求出AC的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO的长,进而求出四边形ABOM的周长.【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.【点评】本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好,难度不大.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,分母为2的指数次幂,分子比分母小1,根据此规律解答即可.【解答】解:∵2=21,4=22,8=23,16=24,32=25,…∴第n个数的分母是2n,又∵分子都比相应的分母小1,∴第n个数的分子为2n﹣1,∴第n个数是.故答案为:.【点评】本题是对数字变化规律的考查,熟练掌握2的指数次幂是解题的关键.三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】分别进行零指数幂、绝对值、特殊角的三角函数值、负整数指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=1+﹣2×+4=5.【点评】本题考查了实数的运算,涉及了零指数幂、绝对值、负整数指数幂及特殊角的三角函数值,属于基础题,注意各部分的运算法则.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,于是得到△ADE∽△ABC,根据相似三角形的性质得到=()2,于是求得S△ADE=27,即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2,∵AD=3BD,∴=,∴=,∵S△ABC=48,∴S△ADE=27,∴S四边形BCED=S△ABC﹣S△ADE=48﹣27=21.【点评】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.【考点】作图-位似变换.【专题】作图题.【分析】延长OA到A′,使AA′=OA,则点A′为点A的对应点,用同样方法作出B、C的对应点B′、C′,则△A′B′C′与△ABC位似,且相似比为2.【解答】解:如图,△A′B′C′为所作.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】设窗口A到地面的高度AD为xm,根据题意在直角三角形ABD和直角三角形ACD中,利用锐角三角函数用含x的代数式分别表示线段BD和线段CD的长,再根据BD﹣CD=BC=6列出方程,解方程即可.【解答】解:设窗口A到地面的高度AD为xm.由题意得:∠ABC=30°,∠ACD=45°,BC=6m.∵在Rt△ABD中,BD==xm,在Rt△ADC中,CD==xm,∵BD﹣CD=BC=6,∴x﹣x=6,∴x=3+3.答:窗口A到地面的高度AD为(3+3)米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系求解.19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?【考点】列表法与树状图法.【分析】(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.【解答】解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴小明的实验是一个不放回实验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.故答案为:不放回;(3,2).【点评】本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设道路的宽为x米,则绿地的面积就为(100﹣2x)(90﹣x),就有(100﹣2x)(90﹣x)=8448建立方程求出其解即可.【解答】解:设道路的宽为x米,由题意,得(100﹣2x)(90﹣x)=8448,解得:x1=2,x2=138(不符合题意,舍去)∴道路的宽为2米.【点评】本题考查了列一元二次方程解实际问题的运用,矩形面积公式的运用,一元二次方程的解法的运用,解答时根据绿地的面积为8448建立方程是关键.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)先根据等腰直角三角形的性质得出∠B=∠A=45°,再根据四边形DEFG是正方形可得出∠BFG=∠AED,故可得出∠BGF=∠ADE=45°,GF=ED,由全等三角形的判定定理即可得出结论;(2)过点C作CG⊥AB于点G,由正方形DEFG的面积为16cm2可求出其边长,故可得出AB的长,在Rt△ADE中,根据勾股定理可求出AD的长,再由相似三角形的判定定理得出△ADE∽△ACG,由相似三角形的对应边成比例即可求出AC的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∠C=90°,∴∠B=∠A=45°,∵四边形DEFG是正方形,∴∠BFG=∠AED=90°,故可得出∠BGF=∠ADE=45°,GF=ED,∵在△ADE与△BGF中,,∴△ADE≌△BGF(ASA);(2)解:过点C作CG⊥AB于点H,∵正方形DEFG的面积为16cm2,∴DE=AE=4cm,∴AB=3DE=12cm,∵△ABC是等腰直角三角形,CH⊥AB,∴AH=AB=×12=6cm,在Rt△ADE中,∵DE=AE=4cm,∴AD===4cm,∵CH⊥AB,DE⊥AB,∴CH∥DE,∴△ADE∽△ACH,∴=,=,解得AC=6cm.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.【考点】反比例函数综合题.【分析】(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标即为6,求出纵坐标,即可求出n的值.【解答】解:(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=6,∠CAB=60°,∴AD=3,CD=sin60°×AC=×6=3,∴点C坐标为(3,3),∵反比例函数的图象经过点C,∴k=9,∴反比例函数的解析式y=;(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标为6,即纵坐标y==,也是向上平移n=.【点评】本题主要考查反比例函数的综合题,解答本题的关键是熟练掌握反比例函数的性质以及平移的相关知识,此题难度不大,是中考的常考点.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A坐标代入y=kx﹣6,根据待定系数法即可求得直线AB的解析式;(2)根据直线AB的解析式求出点B的坐标,点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法即可求解;(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴直线AB的解析式为y=2x﹣6,(2)∵抛物线的顶点为A(1,﹣4),∴设此抛物线的解析式为y=a(x﹣1)2﹣4,∵点B在直线y=2x﹣6上,且横坐标为0,∴点B的坐标为(3,0),又∵点B在抛物线y=a(x﹣1)2﹣4上,∴a(3﹣1)2﹣4=0,解之得a=1,∴此抛物线的解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(3)在y轴上存在点Q,使△ABQ为直角三角形.理由如下:作AE⊥y轴,垂足为点E.又∵点D是直线y=2x﹣6与y轴的交点,点C是抛物线y=x2﹣2x﹣3与y轴的交点∴E(0,﹣4),D(0,﹣6),C(0,﹣3)∴OD=6,OE=4,AE=1,ED=2,OC=3,OB=3,BD=,AD=①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=6﹣=,即Q1(0,﹣);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,﹣)或(0,)或(0,﹣1)或(0,﹣3).【点评】本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。
2017届九年级数学上期末试卷(含答案和解释) :篇一:2017届九年级上学期期末考试数学试题带答案(人教版)2016—2017学年上学期九年级数学期末检测试卷(全卷三个大题,共23个小题,共4页;满分120分,考试用时120分钟)注意事项:本卷为试题卷。
考生必须在答题卡上解题作答。
答案应写在答题卡的相应位置,在试卷上、草稿纸上作答无效。
一、填空题(本大题共6个小题,每小题3分,共18分) 1. 二次函数y=2(x﹣3)2+5的最小值为. 2. 如图,⊙O的直径AB经过弦CD的中点E,若∠C=25°, 则∠D= .3.若反比例函数的图象经过(-2,3),则其函数表达式为________________ .4. 若两个相似六边形的周长的比是3﹕2,其中较大一个六边形的面积为81,则较小一个六边形的面积为_____________ .2x,x是方程3x?2x?2?05.若1211??_________. x1x26. 一个圆锥的侧面展开图是半径为8cm、圆心角为120°的扇形,则此圆锥底面圆的半径为 cm.二、选择题(本大题共8个小题,每小题4分,共32分) 7. 下列既是轴对称图形又是中心对称图形的是()A.B.C. D.38. 反比例函数y??的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则xx1与x2的大小关系是()A. x1<x2B.x1=x2C.x1>x2D.不确定9. 事情“父亲的年龄比儿子的年龄大”属于()A.不可能事件B.可能事件C.不确定事件D.必然事件 10.直角三角形的两直角边长分别为3cm、4cm以直角顶点为圆心,2.4cm长为半径的圆与斜边的位置关系是() A.相交 B.相切 C.相离 D.无法确定11. 若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A.3B.-3C.1D.-112. 将抛物线y=x2向右平移2个单位,再向上平移3个单位后,平移后的抛物线的解析式为( )A.y=(x+2)2+3B.y=(x-2)2+3C.y=(x+2)2-3D.y=(x-2)2-3 13. 如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB 缩1小为原来的CD,则端点C的坐标为2( )A.(3,3)B.(4,3)C.(3,1)D.(4,1) 14. 如图,AD是正五边形ABCDE 的一条对角线,则∠BAD=().A.36°B.30°C.72°D.60°三、解答题(本大题共9个小题,共70分) 15.解方程(共2个小题,共10分)2x?27?12x (2)3x2?2x?4?0 (1)16. (8分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当AD?1,AC=3时,求BF的长. BD17. (7分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC向右平移5个单位,向上平移1个单位得△A1B1C1,再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求点A1运动到点A2的路径总长.18.(8分,第(1)题5分,第(2)题3分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求:(1)该种药品平均每次降价的百分率.(2)若按(1)中的百分率再降一次,则每瓶的售价将为多少元?19. (7分)小亮与小明学习概率初步知识后设计了如下游戏,小亮手中有三张分别标有数字-1,-2,-3的卡片,小明手中有三张分别标有数字1,2,3的卡片,均背面朝上,卡片形状、大小、质地等完全相同,现随机从小亮手中任取一张卡片,卡片的数用m表示;从小明手中任取一张卡片,卡片的数用n表示并记为点(m,n)(1)请你用树状图或列表法列出所有可能的结果;(2)求点(m,n)在函数y=-x的图象上的概率.20. (6分)如图,在平面直角坐标系xOy中,双曲线y?线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点的坐标.21. (8分)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA =CB.(1)求证:直线AB是⊙O的切线;(2)若∠A=30°,AC=6,求⊙O 的周长.m与直 xB22、(7分)如图,已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D. (1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O直线AB的距离为6,求AC的长.到23.(9分)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)篇二:上海市2017届九年级上期末考试数学试卷含答案2016-2017学年第一学期教学质量调研测试卷一. 选择题a2a?,那么的值为() b3a?b1233A. ; B. ; C. ; D. ; 35542. 已知Rt△ABC中,?C?90?,BC?3,AB?5,那么sinB的值是() 1. 已知A. 3344;B. ;C. ;D. ; 54533. 将抛物线y?x2先向右平移2个单位,再向下平移3个单位,所得抛物线的函数解析式是()A. y?(x?2)2?3;B. y?(x?2)2?3;C. y?(x?2)2?3;D. y?(x?2)2?3;4. 如图,在△ABC中,点D、E分别在AB、AC上,?AED??B,那么下列各式中一定正确的是()A. AE?AC?AD?AB;B. CE?CA?BD?AB;C. AC?AD?AE?AB;D. AE?EC?AD?DB;5. 已知两圆的半径分别是3和5,圆心距是1,那么这两圆的位置关系是()A. 内切;B. 外切;C. 相交;D. 内含;6. 如图所示,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边依次向下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A. 第4张;B. 第5张;C. 第6张;D. 第7张;二. 填空题????7. 化简:2(a?2b)?3(a?b)?8. 如果在比例1:1000000的地图上,A、B两地的图上距离为2.4厘米,那么A、B两地的实际距离为千米;9. 抛物线y?(a?2)x2?3x?a的开口向下,那么a的取值范围是;10. 一斜面的坡度i?1:0.75,一物体由斜面底部沿斜面向前推进了20米,那么这个物体升高了11. 如果一个正多边形的一个外角是36°,那么该正多边形的边数为12. 已知AB是○O的直径,弦CD⊥AB于点E,如果AB?8,CD?6,那么OE?; 13. 如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子为线段AD,甲的影子为线段AC,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距米;14. 如图,点A(3,t)在第一象限,OA与x轴正半轴所夹的锐角为?,如果tan??3,那么t的值 2为;15. 如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD 交于点F,CD?2DE,如果△DEF的面积为1,那么平行四边形ABCD的面积为;16. 如图,在矩形ABCD中,AB?3,BC?5,以B为圆心BC为半径画弧交AD于点E,如果点F是弧EC的中点,联结FB,那么tan?FBC的值为;17. 新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”,如图所示,△ABC中,AF、BE是中线,且AF?BE,垂足为P,像△ABC这样的三角形称为“中垂三角形”,如果?ABE?30?,AB?4,那么此时AC的长为;18. 如图,等边△ABC中,D是边BC上的一点,且BD:DC?1:3,把△ABC折叠,使点A落在边BC上的点D处,那么三. 解答题19. 计算:AM的值为; ANcot45??tan60??cot30?; 2(sin60??cos60?)20. 已知,平行四边形ABCD中,点E在DC边上,且DE?3EC,AC与BE交于点F;????????????????(1)如果AB?a,AD?b,那么请用a、b来表示AF;????????????(2)在原图中求作向量AF在AB、AD方向上的分向量;(不要求写作法,但要指出所作图中表示结论的向量)21. 如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C 和点D、E、F, DE2?,AC?14; EF5(1)求AB、BC的长;(2)如果AD?7,CF?14,求BE的长;22. 目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知 ?CAN?45?,?CBN?60?,BC?200米,此车超速了吗?请说明理由;?1.41?1.73)23. 如图1,△ABC中,?ACB?90?,CD?AB,垂足为D;(1)求证:△ACD∽△CBD;(2)如图2,延长DC至点G,联结BG,过点A作AF?BG,垂足为F,AF交CD于点E,求证:CD2?DE?DG;24. 如图,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于C点,其中B(3,0),C(0,4),点A在x轴的负半轴上,OC?4OA;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上一个动点,过点P作PM∥BC 交射线AC于点M,联结CP,若△CPM的面积为2,则请求出点P的坐标;25. 如图,已知矩形ABCD中,AB?6,BC?8,E是BC边上一点(不与B、C重合),过点E作EF?AE交AC、CD于点M、F,过点B作BG?AC,垂足为G,BG交AE于点H;(1)求证:△ABH∽△ECM;EH?y,求y关于x的函数解析式,并写出定义域; EM(3)当△BHE为等腰三角形时,求BE的长;(2)设BE?x,中考数学一模卷一、选择题(本大题共6题,每题4分,满分24分)1.B2.C3.D4.A5.D6.B二、填空题(本大题共12题,每题4分,满分48分)??7.?a?7b8.24 9.a<-210.1611.1013.1 14.17. 18.91 15.1216.235 7三、解答题(本大题共7题,满分78分)19.(本题满分10分)【解】原式? (5)分? …………………………………………………………………1分?2 (3)分 ?2……………………………………………………………………………1分20.(本题满分10分,第1小题5分,第2小题5分)【解】(1)∵四边形ABCD是平行四边形∴AD∥BC且AD=BC,CD∥AB且CD=AB ??????????????∴BC?AD?b 又∵AB?a ?????????????? ∴AC?AB?BC?a?b ……………………………………………………2分∵DE=3EC ∴DC=4EC又∵AB=CD∴AB=4EC篇三:最新2017年九年级上期末数学试卷含答案解析九年级(上)期末数学试卷一、选择题(2015秋江北区期末)若3x=2y,则x:y的值为() A.2:3 B.3:2 C.3:5 D.2:52.如果∠A是锐角,且sinA=cosA,那么∠A=()A.30° B.45° C.60° D.90°3.圆锥的母线长为4,侧面积为12π,则底面半径为()A.6 B.5 C.4 D.34.6只黄球,5只白球,一个袋子中有7只黑球,一次性取出12只球,其中出现黑球是()A.不可能事件 B.必然事件C.随机事件 D.以上说法均不对5.下列函数中有最小值的是()C.y=2x2+3xA.y=2x﹣1 B.y=﹣ D.y=﹣x2+16.如果用表示1个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是()A. B. C. D.7.⊙O内有一点P,过点P的所有弦中,最长的为10,最短的为8,则OP的长为()A.6 B.5 C.4 D.38.下列m的取值中,能使抛物线y=x2+(2m﹣4)x+m﹣1顶点在第三象限的是()A.4 B.3 C.2 D.19.四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A.L、K B.C C.K D.L、K、C 10.如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有()A.2对 B.3对 C.4对 D.5对11.如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足=,连接AF并延长交⊙0于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是()A.①②④ B.①②③ C.②③④ D.①③④ 12.如图,在平面直角坐标系中,⊙P与y轴相切,交直线y=x于A,B两点,已知圆心P的坐标为(2,a)(a>2),AB=2,则a的值为()A.4 B.2+ C. D.二、填空题。
2017 年初中毕业生升学文化课考试数学模拟试卷(九)本试卷分为卷Ⅰ和卷Ⅱ两部分. 卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷共8页. 总分120分,考试时间120分钟.卷Ⅰ(选择题,共24分)一、选择题.(本大题共12个小题,每小题2分,共24分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算(-3)0+(-2)的结果为()A. -1B. -2C. -3D. -5【答案】A【解析】+(−2)=1−2=−1.故选:A.2. 下列说法中,正确的是()A. 任何数都有两个平方根B. 9的平方根只有3C. (-2)3的立方根为2D. 0.04的算数平方根为0.2【答案】D【解析】A. 任何正数都有两个平方根,不符合题意;B. 9的平方根是3或−3,不符合题意;C.的立方根为−2,不符合题意;D. 0.04的算术平方根是0.2,符合题意,故选D3. 已知某三角形的三边长分别为4,9,a,若a为偶数,则a的取值有()A. 3个B. 4个C. 5个D. 6个【答案】B【解析】根据三角形的三边关系,得:9−4<a<9+4,即5<a<13,∵a为偶数,∴a为6,8,10,12,故选B点睛:本题考查了三角形三边关系,已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围,进而解答即可.4. 中国京剧脸谱艺术是广大戏曲爱好者非常喜爱的艺术门类,在国内外流行的范围相当广泛,已经被大家公认为是汉民族传统文化的标识之一. 下列脸谱中,属于轴对称图形的是()A. B. C. D.【答案】B【解析】A. 不是轴对称图形;B. 是轴对称图形;C. 不是轴对称图形;D. 不是轴对称图形;故选:B.5. 如图,⊙O是△ABC的内切圆,点D,E,F为切点,AD=13,AC=25, BC=35,则BD的长度为()A. 23B. 22C. 21D. 无法确定【答案】A【解析】∵⊙O是△ABC的内切圆,点D,E,F为切点,∴AF=AD=13,CF=CE,BD=BE,∵AC=25,∴CF=AC−AF=25−13=12,∵BC=35,∴BF=BC−CE=35−12=23,∴BD=BE=23.故选A.点睛:本题考查了三角形的内切圆与内心,主要利用了切线长定理,熟记定理是解题的关键.6. 同学们在学校小花园的一角种植了M,P,Q三种花,其所占的种植区域如图所示,∠AOE=90°,AB=OB,CB∥OE,AB=4m,则种植M花的面积为()A. πm2B. πm2C. 16πm2D. 8πm2【答案】A【解析】连接AC,∵CB⊥OA,OB=AB, ∴△OCA为等腰三角形,又∵OC=AC, ∴AC=OA,即△OCA为等边三角形,∠COA=60°, ∠EOC=30°, ∴,故选A.7. 山东省爱心公益群体为某白血病患者举行了募捐义演晚会,募捐近十万元. 若某中学某班45名学生为该患者捐款315元,且该班同学捐款情况如下表所示,则该班捐款10元的同学有()A. 15人B. 20人C. 25人D. 30人【答案】A【解析】该班捐款10元的同学有x人,即捐款数为元捐款5元的同学有(45-5-x)人,即捐款为5(45-5-x)元捐款8元的同学有5人,即捐款为5×8元解,设该班捐款10元的同学有x人。
2017—2017学年第一学期期末考试九年级数学试题参考答案及评分标准(共3页)一、选择题(10×3分=30分)1.C ; 2.D ; 3.C ; 4.A ; 5.B ; 6.B ; 7.B ; 8.C ; 9.C ; 10.D .二、填空题(6×3分=18)11.60°; 12.12; 13.20%; 14.(1,0); 15.6π-; 16.(3,2) . 三、解答题(72分)17.(6分)解:a=1, b=1-, c=3-. ------------ 1分△=224(1)41(3)130b ac -=--⨯⨯-=> ------------ 3分方程有两个不等的实数根122b x a -±±== ------------ 5分即121122x x == ----------- 6分 18.(6分)解:设该班男生人数为x 人,依题意得: -2483x = ------------ 4分 解得:x =32, 48-x =16 ------------ 5分即该班男生人数为32人,女生人数为16人. ------------ 6分19.(7分)证明:连OC ,则OC ⊥PQ∴∠BCP +∠BCO =90° ------------ 2分又∵AB 是直径, ∴∠ACB =90°∴∠A +∠B =90° ------------ 4分∵OB =OC∴∠B =∠BCO ------------ 6分∴∠BCP =∠A ------------ 7分20.(7分)解:(1)画树形图:------------ 2分∴21(63P A ==选中型号电脑) ------------ 3分 (2) 设购买A 型号电脑x 台,由(1)知,则购买D 型号电脑或E 型号电脑(36-x )台. 依题意得:①6000x +5000(36-x )=100000 ------------ 4分方程解不合题意,舍去. ------------ 5分②6000x +2000(36-x )=100000 ------------ 6分解得:x =7 ------------7分综合①、②知购买A 型号电脑7台.21.(7分)解:(1)由题知△=2241(24)0k -⨯⨯->, ------------ 2分 解得:52k < ------------ 3分 (2)由(1)知52k <,又k 为正整数,∴k =1或k =2 ------------ 4分 ①当k =1时,原方程可化为:2220x x +-=该方程的两根都不是整数,不合题意,舍去. ------------ 5分②当k =2时,原方程可化为:220x x +=该方程的两根都是整数,符合题意. ------------ 6分∴k =2. ------------ 7分22.(8分)解:(1)设A (a ,b ) 由11122OAM S OM AM ab ∆=== 得:2ab = ------------ 2分 ∴2k ab == ------------ 3分 ∴反比例函数解析式为:2y x =(2)由122y x y x⎧=⎪⎪⎨⎪=⎪⎩解得点A 的坐标为A (2,1) ------------ 4分 由题知B (1,2) ------------ 5分延长AM 到A ',使AM =A 'M ,连A 'B 交x 轴于点P ,则P 为所求由B (1,2),(2,1)A '-求得直线A 'B 的解析式为:35y x =-+ ------------ 6分在35y x =-+中,令y =0,得x =53 ------------ 7分 ∴所求点P 坐标为P (53,0). ------------ 8分 23.(8分)解:(1)设所求函数关系式为:y kx b =+由图象知:360830010k b k b =+⎧⎨=+⎩,解得:30300k b =-⎧⎨=⎩∴所求函数关系式为:y =-30x +600 ------------ 3分(2) 2(6)30(13)1470w y x x =-=--+ ------------ 5分∵a =-30<0,对称轴为x =13 ------------ 6分∴当x ≤13时,w 随x 增大而增大 ------------ 7分∴当x =12时,w 值最大,且最大值为1440元. ------------ 8分24.(10分)(1)证明:连OE .∵AB =AC ,D 是BC 中点∴AD ⊥BC ------------ 1分∵OA =OE , ∴∠OAE =∠OEA∵AE 平分∠BAD , ∴∠DAE =∠OAE∴∠DAE =∠OEA ------------ 2分∴OD ∥AC∴OE ⊥BC ------------ 3分又∵点E 在⊙O 上∴BC 与⊙O 相切. ------------ 4分(2)解:∵AB =AC ,D 是BC 中点∴AD ⊥BC ,∠BAD =∠CAD∵AE 平分∠BAD , ∠BAC =120°∴∠DAE =∠EAF =∠B =30° ------------ 5分在Rt △DAE 中:由2222(2)AD DE AE DE +==,得:2223(2)DE DE +=解得:DE------------ 7分∴AE =2 DE =在Rt △AEF 中,由勾股定理,同上可得:EF =2 ------------ 8分∴AF =2 EF =4在Rt △ABD 中,∵∠B =30°∴AB =2 AD =6 ------------ 9分∴BF =AB -AF =2. ------------ 10分25.(12分)解:(1)把A (-2,0)代入y =a (x -1)2+33,得0=a (-2-1)2+33.∴a =-33 ∴该抛物线的解析式为y =-33(x -1)2+33 ------------ 2分 即y =-33x 2+332x +338. (2)设点D 的坐标为(x D ,y D ),则x D =-)(-332332 =1,y D =-33×1 2+332×1+338=33. ∴顶点D 的坐标为(1,33). ------------ 3分 如图,过点D 作DN ⊥x 轴于N ,则DN =33,AN =3,∴AD =22333)+(=6.∴∠ADN =60°∴∠DAO =60° ------------ 4分 ∵OM ∥AD①当DP ⊥OM 时,四边形DAOP 为直角梯形.过点O 作OE ⊥AD 轴于E .在Rt △AOE 中,∵AO =2,∠EAO =60°,∴AE =1.∵四边形DEOP 为矩形,∴OP =DE =6-1=5.∴t =5(s ) ------------ 5分②当PD =OA 时,四边形DAOP 为等腰梯形,此时OP =AD -2AE =6-2=4.∴t =4(s ) ------------ 6分综上所述,当t =5s ,4s 时,四边形DAOP 分别为直角梯形,等腰梯形.(3)由题知DAOC 是平行四边形.∵∠DAO =60°,OM ∥AD ,∴∠COB =60°.又∵OC =OB ,∴△COB 是等边三角形,∴OB =OC =AD =6.∵BQ =2t ,∴OQ =6-2t (0<t <3) ------------ 7分过点P 作PF ⊥x 轴于F ,则PF =23t . ∴S 四边形BCPQ =S △COB -S △POQ =21×6×33-21×(6-2t )×23t =23(t -23)2+8363 ------------ 10分 ∴当t =23(s )时,S 四边形BCPQ 的最小值为8363. ------------ 11分 此时OQ =6-2t =6-2×23=3,OP =23,OF =43, ∴QF =3-43=49,PF =433. ∴PQ =22QF PF +=2249433)+()(=233. ------------ 12分。
山东临沂九年级数学上学期期末考试卷(含答案)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的.1.用配方法解方程2610x x -+=,方程应变形为 A .2(3)8x -=B .2(3)10x -=C .2(6)10x -=D .2(6)8x -=2.保护环境,人人有责.下列四个图形是生活中常见的垃圾回收标志,是中心对称图形的是3.点11(2,)P y -,22(2,)Py ,33(4,)P y 均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是A .231y y y >>B .213y y y >=C .132y y y =>D .123y y y =>4.已知二次函数224y x x =++,下列说法正确的是 A .抛物线开口向下B .当3x >-时,y 随x 的增大而增大C .二次函数的最小值是2D .抛物线的对称轴是直线1x =-5.在“众志成城,共战疫情”党员志愿者进社区服务活动中,小晴和小霞分别从“A ,B ,C 三个社区”中随机选择一个参加活动,两人恰好选择同一社区的概率是A. B. C. D.A .13B .23 C .19D .296.关于反比例函数2y x=-,下列说法中错误的是A .当0x <时,y 随x 的增大而增大B .图象位于第二、四象限C .点(2,1)-在函数图象上D .当1x <-时,2y >7.如图,在给出网格中,小正方形的边长为1,点A ,B ,O 都在格点上,则cos A ∠= A .55B .510C .255D .128.如图,已知////AB CD EF ,它们依次交直线1l 、2l 于点A 、D 、F 和点B 、C 、E ,如果:3:1AD DF =,10BE =,那么CE = A .103B .203C .52D .1529.如图,点A 、B 、C 在O 上,若35o A C ∠=∠=,则B ∠= A .65︒B .70︒C .55︒D .60︒10.二次函数224y x x =-++,当12x -时,则 A .14yB .5yC .45yD .15y11.如图,函数ky x=-与1(0)y kx k =+≠在同一平面直角坐标系中的图象大致是第8题第9题第7题A.B.C.D.12.如图,ABC∆中,90C∠=︒,3AC=,4BC=,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为A .95B.125C.185D.36513.如图,从地面竖直向上抛出一小球,小球的高度h(单位:)m与小球运动时间t(单位:)s之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;第12题第13题第14题③小球抛出3秒时,速度为0; ④当 1.5t s =时,小球的高度30h m =. 其中正确的是 A .①④B .①②C .②③④D .②④14.如图,等边OAB ∆的边OB 在x 轴上,点B 坐标为(2,0),以点O 为旋转中心,把OAB ∆逆时针旋转90︒,则旋转后点A 的对应点A '的坐标是 A .(3-,1)B .(3,1)-C .(1,3)-D .(2,1)-二、填空题(本大题共4小题,每小题5分,共20分).15.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为_____.16.已知二次函数221y x mx =++,若1x >时,y 随x 的增大而增大,则m 的取值范围是________.17.如图,O 的直径2AB =,C 是半圆上任意一点,60BCD ∠=︒,则劣弧AD 的长为 .第17题第18题18.如图,正方形ABCD中,E为DC边上一点,且2DE=,将AE绕点E逆时针旋转90︒得到EF,连接AF、FC,则线段FC的长度是_________.三、解答题(共58分)19. (10分) 如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60︒方向上,航行12海里到达C点,这时测得小岛A在北偏东30︒方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?说明理由.≈)(参考数据:3 1.73220. (12分).如图,AB为O的直径,C为O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分DAB∠;(2)若2CE=,求图中阴影部分的面积.BE=,2321.(12分) 如图,在ABC ∆中,90C ∠=︒,1AC BC ==,将ABC ∆绕点A 顺时针方 向旋转60︒到△AB C ''的位置. (1)画出旋转后的△AB C '';(2)连接BC ',求证:直线BC '是线段AB '的垂直平分线; (3)求线段BC '的长.22. (12分) 已知点1(x ,1)y 和2(x ,2)y 在反比例函数1y x=图象上. (1)如果12x x >,那么1y 与2y 有怎样的大小关系? (2)当10x >,20x >,且122x x -=时,求2112y y y y -的值;23. (12分) 如图,直线y x c =-+与x 轴交于点(3,0)B ,与y 轴交于点C ,过点B ,C 的抛物线2y x bx c =-++与x 轴的另一个交点为A . (1)求抛物线的解析式和点A 的坐标;(2)P 是直线BC 上方抛物线上一动点,PA 交BC 于D .设PDt AD=,请求出t 的最大值和此时点P 的坐标;参考答案【注】本答案供参考,由于证明(解题)方法的多样性,学生给出的方法只要合情合理即可按标准给分。
2018-2019学年山东省临沂市平邑县九年级(上)期末数学模拟试卷一.选择题(共10小题,满分27分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=3.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°4.甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中()A.甲获胜的可能更大B.甲、乙获胜的可能一样大C.乙获胜的可能更大D.由于是随机事件,因此无法估计5.四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A.1:3:2:4B.7:5:10:8C.13:1:5:17D.1:2:3:46.下列关于x的方程中一定没有实数根的是()A.x2﹣x﹣1=0B.4x2﹣6x+9=0C.x2=﹣x D.x2﹣mx﹣2=0 7.如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)8.抛物线y=x2﹣4x+4的顶点坐标为()A.(﹣4,4)B.(﹣2,0)C.(2,0)D.(﹣4,0)9.如图,点A的坐标为A(8,0),点B在y轴正半轴上,且AB=10,点P是△AOB外接圆上一点,且∠BOP=45°,则点P的坐标为()A.(7,7)B.(7,7)C.(5,5)D.(5,5)10.若一次函数y=kx+b与反比例函数y=的图象如图所示,则关于x的不等式kx+b﹣≤﹣2的解集为()A.0<x≤2或x≤﹣4B.﹣4≤x<0或x≥2C.≤x<0或x D.x或0二.填空题(共8小题,满分32分,每小题4分)11.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=.12.如图,在等边△ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长度为.13.在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是.14.小莉抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果她第四次抛硬币,那么硬币正面朝上的概率为.15.已知圆锥的底面半径为3,母线长为6,则此圆锥侧面展开图的圆心角是.16.如图,AB是⊙O的直径,AB=10,点M在⊙O上,∠MAB=30°,N是弧MB的中点,P是直径AB上的一动点,若MN=2,则△PMN周长的最小值为.17.如图,在平面直角坐标系xOy中,点A,B在双曲线y=(k是常数,且k≠0)上,过点A作AD⊥x轴于点D,过点B作BC⊥y轴于点C,已知点A的坐标为(4,),四边形ABCD的面积为4,则点B的坐标为.18.如图,△ABC中,∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t <15),连接DE,当△BDE是直角三角形时,t的值为.三.解答题(共7小题,满分58分)19.解方程.(1)x2﹣5x=0;(2)x2﹣3x=1;(3)(x﹣3)(x+3)=2x.20.如图,在平面直角坐标系中,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC绕原点O逆时针方向旋转90°得到的△A'B'C';并直接写出点A',B',C'的坐标:A',B',C'.(2)在(1)的条件下,求在旋转的过程中,点A所经过的路径长,(结果保留π)21.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.(1)求证:DE是⊙O的切线;(2)当⊙O半径为3,CE=2时,求BD长.22.如图,已知在△ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上一点,且满足AB2=DB•CE.求证:△ADB∽△EAC.23.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点.(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)求△AOB的面积.(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.24.如图,为美化环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)用含a的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.25.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为;(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.参考答案一.选择题(共10小题,满分27分)1.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B.2.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.3.【解答】解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.4.【解答】解:一人掷一次,两人所投掷骰子的点数和共有36种等可能的结果数,其中点数和大于7的结果数为15,所以甲胜的概率==;乙胜的概率==,所以乙获胜的可能更大.故选:C.5.【解答】解:A、1+2≠3+4,所以A选项不正确;B、7+10≠5+8,所以B选项不正确;C、13+5=1+17,所以C选项正确;D、1+3≠2+4,所以D选项不正确.故选:C.6.【解答】解:A、△=5>0,方程有两个不相等的实数根;B、△=﹣108<0,方程没有实数根;C、△=1=0,方程有两个相等的实数根;D、△=m2+8>0,方程有两个不相等的实数根.故选:B.7.【解答】解:由图知,旋转中心P的坐标为(1,2),故选:C.8.【解答】解:∵y=x2﹣4x+4=(x﹣2)2,∴抛物线顶点坐标为(2,0).故选:C.9.【解答】解:作PH⊥x轴于H,连结PA、PB,∵∠AOB=90°,∴AB为△AOB外接圆的直径,∴∠BPA=90°,∵AB=10,∠BAP=∠BOP=45°,∴PA=5,设OH=t,则PH=t,AH=8﹣t,在Rt△PHA中,∵PH2+AH2=PA2,即t2+(8﹣t)2=(5)2,解得,t1=1(舍去),t2=7,∴点P的坐标为(7,7),故选:A.10.【解答】解:将(﹣2,0)、(0,﹣2)代入y=kx+b,,解得:,∴一次函数解析式为y=﹣x﹣2.当x=2时,y=﹣x﹣2=﹣4,∴一次函数图象与反比例函数图象的一个交点坐标为(2,﹣4),∴k=2×(﹣4)=﹣8,∴反比例函数解析式为y=﹣.将一次函数图象向上移2个单位长度得出的新的函数解析式为y=﹣x.联立新一次函数及反比例函数解析式成方程组,,解得:,.观察函数图象可知:当﹣2<x<0或x>2时,新一次函数图象在反比例函数图象下方,∴不等式﹣x≤﹣的解集为﹣2≤x<0或x≥2.故选:C.二.填空题(共8小题,满分32分,每小题4分)11.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°.故答案为:30°.12.【解答】解:∵△ABC为等边三角形,∴AB=BC=10,∠B=∠BAC=60°,∵D是BC的中点,即BD=DC=BC=5,∴AD⊥BC,∠BAD=30°,∴AD=BD=5,∵△ABD绕点A旋转后得到△ACE,∴∠DAE=∠BAC=60°,AD=AE,∴△ADE为等边三角形,∴DE=AD=5.故答案为5.13.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB==,∴点B经过的路径长==;由图可知,S阴影=S△ADE+S扇形ABD﹣S△ABC,由旋转的性质得,S△ADE=S△ABC,∴S阴影=S扇形ABD==.故答案为:;.14.【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故答案为:.15.【解答】解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,解得n=180.故答案为180°.16.【解答】解:作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB的交点即为PM+PN的最小时的点,PM+PN的最小值=MN′,∵∠MAB=30°,∴∠MOB=2∠MAB=2×30°=60°,∵N是弧MB的中点,∴∠BON=∠MOB=×60°=30°,由对称性,∠N′OB=∠BON=30°,∴∠MON′=∠MOB+∠N′OB=60°+30°=90°,∴△MON′是等腰直角三角形,∴MN′=OM=×5=5,即PM+PN=5,∴△PMN周长的最小值=5+2.故答案为5+2.17.【解答】解:连接BO、BD,∵点A在双曲线y=(k是常数,且k≠0)上,点A的坐标为(4,),又∵BC⊥y轴于点C,∴BC∥OD,∴△BOC的面积=△BCD的面积=3,又∵四边形ABCD的面积为4,∴△ABD的面积=4﹣3=1,设B(a,),∵AD⊥x轴于点D,A的坐标为(4,),∴AD=,∵××(4﹣a)=1,解得a=,∴=,∴点B的坐标为(,).故答案为:(,).18.【解答】解:当DE⊥AB于点E,设t秒时,E点没有到达B点前,∠BED=90°,∵∠B=∠B,∠ACB=∠BED=90°,∴△BED∽△BCA,∴=,∵∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,∴AB=10cm,BD=3cm,解得:t=8.2,设t秒时,当E点到达B点后,∠BED=90°,∵∠B=∠B,∠ACB=∠BED=90°,∴△BED∽△BCA,∴=,∵∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,∴AB=10cm,BD=3cm,∴=,解得:t=11.8,当DE⊥CB于DE,设t秒时,∠BDE=90°,∵DE∥AC,∴△BED∽△BAC,∴==,∵∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,∴AB=10cm,BD=3cm,∴=解得:t=5,综上所述:t的值为5s或8.2s或11.8s.故答案为:5s或8.2s或11.8s.三.解答题(共7小题,满分58分)19.【解答】解:(1)∵x2﹣5x=0,∴x(x﹣5)=0,则x=0或x﹣5=0,∴x=0或x=5;(2)∵x2﹣3x=1,∴x2﹣3x﹣1=0,∵a=1、b=﹣3、c=﹣1,∴△=9﹣4×1×(﹣1)=13>0,则x=;(3)方程整理可得x2﹣2x﹣9=0,∵a=1、b=﹣2、c=﹣9,∴△=4﹣4×1×(﹣9)=40>0,则x==1±.20.【解答】解:(1)如图所示,△A'B'C'即为所求.由图知,A′(﹣4,﹣3),B′(﹣2,﹣5),C′(﹣1,﹣2),故答案为:(﹣4,﹣3),(﹣2,﹣5),(﹣1,﹣2);(2)连接OA,则OA==5,所以点A所走的路径长为=π.21.【解答】(1)证明:连接OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切线;(2)证明:∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴,∴BD•CD=AB•CE,∵BD=CD,∴BD2=AB•CE,∵⊙O半径为3,CE=2,∴BD==2.22.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,∴∠ABD=∠ACE,∵AB2=DB•CE,,∴,∴,∴△ADB∽△EAC.23.【解答】解:(1)把A(2,1)代入y=,得:m=2,∴反比例函数的解析式为y=,把B(﹣1,n)代入y=,得:n=﹣2,即B(﹣1,﹣2),将点A(2,1)、B(﹣1,﹣2)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=x﹣1;(2)在一次函数y=x﹣1中,令y=0,得:x﹣1=0,解得:x=1,=×1×1+×1×2=;则S△AOB(3)由图象可知,当x>2或﹣1<x<0时,一次函数的值大于反比例函数的值.24.【解答】解:(1)由图可知,花圃的面积为(40﹣2a)(60﹣2a);(2)由已知可列式:60×40﹣(40﹣2a)(60﹣2a)=×60×40,解得:a1=5,a2=45(舍去).答:所以通道的宽为5米.25.【解答】解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).故答案为:(m,2m﹣5).(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,=AB•CD=﹣.∴S△ABC(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.。
2015-2016学年山东省临沂市平邑县九年级(上)期末数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共14小题,共42.0分)1.一元二次方程x2-4=0的解是()A. x1=2,x2=-2B. x=-2C. x=2D. x1=2,x2=02.抛物线y=2(x-3)2+1的顶点坐标是()A. (3,1)B. (3,-1)C. (-3,1)D. (-3,-1)3.点P(2,-3)关于原点对称的点的坐标是()A. (-2,-3)B. (2,3)C. (-2,3)D. (-3,2)4.已知圆的半径为3,一点到圆心的距离是5,则这点在()A. 圆内B. 圆上C. 圆外D. 都有可能5.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=66.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A. 12B. 15C. 13D. 237.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A. 116°B. 32°C. 58°D. 64°8.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A. 53B. 255C. 52D. 239.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A. (0,0)B. (1,0)C. (1,-1)D. (2.5,0.5)10.如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有()A. 1条B. 2条C. 3条D. 4条11.将抛物线y=x2-1向左平移2个单位,再向上平移2个单位,得到的抛物线解析式为()A. y=(x+2)2+1B. y=(x-2)2-1C. y=(x-2)2+1D. y=(x+2)2-112.如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A. ②④B. ①③C. ②③D. ①④13. 如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D点,CD =BD ,∠C =70°.现给出以下四种结论:①∠A =45°;②AC =AB ;③AE =BE ;④CE •AB =2BD 2.其中正确结论的序号是( )A. ①②B. ②③C. ②④D. ③④14. 如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P →D →Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A. B.C. D.二、填空题(本大题共5小题,共20.0分)15. 在△ABC 中,∠C =90°,cos A =35,则tan A 等于______ .16. 已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是______ .17. 如图,正三角形ABC 的边长为4,D 、E 、F 分别为BC 、CA 、AB 的中点,以A 、B 、C 三点为圆心,2为半径作圆,则图中的阴影面积为______ .18. 如图,在平行四边形ABCD 中,F 是AD延长线上一点,连接BF 分别交AC 、CD于P 、E ,则图中的位似三角形共有______ 对.19. 如图,点A 在双曲线y =2x 上,点B 在双曲线y =5x 上,且AB ∥y轴,C 、D 在y 轴上,若四边形ABCD 为平行四边形,则它的面积为______ .三、计算题(本大题共1小题,共10.0分)20.(1)计算:3tan60°+|-3sin30°|-cos245°.(2)解方程:x2+4x+1=0.四、解答题(本大题共1小题,共8.0分)21.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有121台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过1300台?五、计算题(本大题共1小题,共8.0分)22.如图,一次函数y1=kx+b的图象与反比例函数y2=m(x>0)x的图象交于A(1,6),B(a,2)两点.(1)求一次函数与反比例函数的解析式;(2)直接写出y1≤y2时x的取值范围.六、解答题(本大题共3小题,共32.0分)23.如图,直线PM切⊙O于点M,直线PO交⊙O于A、B两点,弦AC∥PM,连接OM、BC.求证:(1)△ABC∽△POM;(2)2OA2=OP•BC.24.如图,四边形ABCD是平行四边形,以AB为直径的圆O经过点D,E是⊙O上一点,且∠AED=45°.(1)判断CD与⊙O的位置关系,并说明理由;(2)若⊙O半径为6cm,AE=10cm,求∠ADE的正弦值.25.矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(10,0)、C(0,x与BC相交于点D,抛物线3),直线y=13y=ax2+bx经过A、D两点.(1)求抛物线的解析式;(2)连接AD,试判断△OAD的形状,并说明理由.(3)若点P是抛物线的对称轴上的一个动点,对称轴与OD、x轴分别交于点M、N,问:是否存在点P,使得以点P、O、M为顶点的三角形与△OAD相似?若存在,请求出点P的坐标;若不存在,请说明理由.。
2016-2017学年山东省临沂市平邑县初三上学期期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列的平面几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)下列命题中,是真命题的为()A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似3.(3分)从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.4.(3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大5.(3分)圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°6.(3分)若关于x的方程2x2﹣ax+a﹣2=0有两个相等的实根,则a的值是()A.﹣4B.4C.4或﹣4D.27.(3分)在平面直角坐标系中,点A的坐标为(﹣1,﹣2),将OA绕原点O 逆时针旋转180°得到OA′,点A′的坐标为(a,b),则a﹣b等于()A.1B.﹣1C.3D.﹣38.(3分)抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x…﹣2﹣1012…y…04664…从上表可知,有下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴是x=1;③抛物线与x轴有两个交点,它们之间的距离是;④在对称轴左侧y随x增大而增大.其中正确的说法是()A.①②③B.②③④C.②③D.①④9.(3分)如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)10.(3分)如图,直线与双曲线交于点A.将直线向右平移6个单位后,与双曲线交于点B,与x轴交于点C,若,则k的值为()A.12B.14C.18D.24二、填空题(共8小题,每小题4分,满分32分)11.(4分)已知正六边形的半径是2,则这个正六边形的边长是.12.(4分)如图,点D是等边△ABC内的一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,那么旋转了度.13.(4分)如图,在平面内将Rt△ABC绕着直角顶点C逆时针旋转90°,得到Rt△EFC,若AB=,BC=1,则阴影部分的面积为.14.(4分)小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是.15.(4分)一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是.16.(4分)如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为.17.(4分)如图是反比例函数y=在第二象限内的图象,若图中的矩形OABC的面积为2,则k=.18.(4分)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E 点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为.三、解答题(共7小题,满分58分)19.(8分)解下列方程(1)x2+x﹣1=0(2)x(x﹣2)+x﹣2=0.20.(7分)如图,若将△ABC绕点C逆时针旋转90°后得到△A'B'C',(1)在图中画出△A'B'C';(2)求出点A经过的路径长.21.(7分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN ⊥AC于点N.求证:MN是⊙O的切线.22.(6分)如图,在△ABC中,AB=AC,点D、E分别在BC、AB上,且∠BDE=∠CAD.求证:△ADE∽△ABD.23.(8分)如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x 轴交于点C,已知点A的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.24.(10分)暑假期间,某学校计划用彩色的地面砖铺设教学楼门前一块矩形操场ABCD的地面.已知这个矩形操场地面的长为100m,宽为80m,图案设计如图所示:操场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,在实际铺设的过程总,阴影部分铺红色地面砖,其余部分铺灰色地面砖.(1)如果操场上铺灰色地面砖的面积是铺红色地面砖面积的4倍,那么操场四角的每个小正方形边长是多少米?(2)如果灰色地面砖的价格为每平方米30元,红色地面砖的价格为每平方米20元,学校现有15万元资金,问这些资金是否能购买所需的全部地面砖?如果能购买所学的全部地面砖,则剩余资金是多少元?如果不能购买所需的全部地面砖,教育局还应该至少给学校解决多少资金?25.(12分)如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由.2016-2017学年山东省临沂市平邑县初三上学期期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列的平面几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:下列的平面几何图形中,既是轴对称图形又是中心对称图形的是,故选:A.2.(3分)下列命题中,是真命题的为()A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似【解答】解:A、锐角三角形的三个内角都小于90°,但不一定都对应相等,故A 选项错误;B、直角三角形的直角对应相等,但两组锐角不一定对应相等,故B选项错误;C、等腰三角形的顶角和底角不一定对应相等,故C选项错误;D、所有的等边三角形三个内角都对应相等(都是60°),所以它们都相似,故D选项正确;故选:D.3.(3分)从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.【解答】解:∵直径所对的圆周角等于直角,∴从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选:B.4.(3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大【解答】解:A.摸到红球是随机事件,故A选项错误;B.摸到白球是随机事件,故B选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故C选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故D选项正确;故选:D.5.(3分)圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°【解答】解:∵四边形ABCD为圆的内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣70°=110°.故选:D.6.(3分)若关于x的方程2x2﹣ax+a﹣2=0有两个相等的实根,则a的值是()A.﹣4B.4C.4或﹣4D.2【解答】解:∵关于x的方程2x2﹣ax+a﹣2=0有两个相等的实根,∴△=0,即(﹣a)2﹣4×2×(a﹣2)=0,整理得a2﹣8a+16=0,∴a1=a2=4.故选:B.7.(3分)在平面直角坐标系中,点A的坐标为(﹣1,﹣2),将OA绕原点O 逆时针旋转180°得到OA′,点A′的坐标为(a,b),则a﹣b等于()A.1B.﹣1C.3D.﹣3【解答】解:∵将OA绕原点O逆时针旋转180°得到OA′,∴A点和A′点关于原点对称,∵A(﹣1,﹣2),∴A′(1,2),∴a=1,b=2,∴a﹣b=1﹣2=﹣1,故选:B.8.(3分)抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x…﹣2﹣1012…y…04664…从上表可知,有下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴是x=1;③抛物线与x轴有两个交点,它们之间的距离是;④在对称轴左侧y随x增大而增大.其中正确的说法是()A.①②③B.②③④C.②③D.①④【解答】解:∵抛物线过点(﹣2,0)和(0,6),则,解得,∴抛物线的解析式为y=﹣x2+x+6,∴抛物线与y轴的交点为(0,6),故①正确;抛物线的对称是:直线x=﹣=,故②错误;抛物线与x轴的两个交点为(﹣2,0),(3,0),它们之间的距离是5,故③错误;抛物线开口向下,则在对称轴左侧,y随x的增大而增大,故④正确.正确答案为①④.故选:D.9.(3分)如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)【解答】解:如图所示:∵点A,B,C的坐标为(1,4),(5,4),(1,﹣2),∴△ABC为直角三角形,∠BAC=90°,∴△ABC的外接圆的圆心是斜边BC的中点,∴△ABC外接圆的圆心坐标是(,),即(3,1).故选:D.10.(3分)如图,直线与双曲线交于点A.将直线向右平移6个单位后,与双曲线交于点B,与x轴交于点C,若,则k的值为()A.12B.14C.18D.24【解答】解:作AD⊥x轴于D点,BE⊥x轴于E,如图,∵直线向右平移6个单位得到直线BC,∴C点坐标为(6,0),∵OA∥BC,∴∠AOD=∠BCE,∴Rt△AOD∽Rt△BCE,∴===2,∴OD=2CE,AD=2BE,设CE=t,则OD=2t,OE=6+t,当x=2t时,y=t,即A点坐标为(2t,t)∴BE=t,∴B点坐标为(6+t,t),∴2t•t=(6+t)•t,解得t1=0(舍去),t2=2,∴A点坐标为(4,3),把A点坐标为(4,3)代入y=得k=3×4=12.故选:A.二、填空题(共8小题,每小题4分,满分32分)11.(4分)已知正六边形的半径是2,则这个正六边形的边长是2.【解答】解:如图,AB为⊙O内接正六边形的一边;则∠AOB==60°,∵OA=OB,∴△OAB为等边三角形,∴AB=OA=2.故答案为:2.12.(4分)如图,点D是等边△ABC内的一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,那么旋转了60度.【解答】解:∵△ABC为等边三角形,∴AC=AB,∠CAB=60°,又∵△ABD绕点A逆时针旋转后能与△ACE重合,∴AB绕点A逆时针旋转了∠BAC到AC的位置,∴旋转角为60°.故答案为60.13.(4分)如图,在平面内将Rt△ABC绕着直角顶点C逆时针旋转90°,得到Rt△EFC,若AB=,BC=1,则阴影部分的面积为π﹣1.【解答】解:∵Rt△ABC中AB=,BC=1,∴AC===2.∵△EFC由△ABC旋转而成,∴△EFC≌△ABC,∴AC=EC=2,BC=FC=1,∴S阴影=S扇形﹣S△ECF=﹣×2×1=π﹣1.故答案为:π﹣1.14.(4分)小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是.【解答】解:∵抛掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴他第二次再抛这枚硬币时,正面向上的概率是:.故答案为:.15.(4分)一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是.【解答】解:圆锥的底面周长是:π;设圆锥的底面半径是r,则2πr=π.解得:r=.故答案是:.16.(4分)如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为.【解答】解:作出D关于AB的对称点D′,连接OC,OD′,CD′.又∵点C在⊙O上,∠CAB=30°,D为的中点,即=,∴∠BAD′=∠CAB=15°.∴∠CAD′=45°.∴∠COD′=90°.则△COD′是等腰直角三角形.∵O C=OD′=AB=1,∴CD′=.故答案为:.17.(4分)如图是反比例函数y=在第二象限内的图象,若图中的矩形OABC 的面积为2,则k=﹣2.【解答】解:因为反比例函数y=,且矩形OABC的面积为2,所以|k|=2,即k=±2,又反比例函数的图象y=在第二象限内,k<0,所以k=﹣2.故答案为:﹣2.18.(4分)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E 点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为4或7或9.【解答】解:在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D为BC中点,∴BD=2cm,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=tcm,BE=BC﹣AE=(8﹣t)cm,当∠EDB=90°时,则有AC∥ED,∵D为BC中点,∴E为AB中点,此时AE=4cm,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴=,即=,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故答案为:4或7或9.三、解答题(共7小题,满分58分)19.(8分)解下列方程(1)x2+x﹣1=0(2)x(x﹣2)+x﹣2=0.【解答】解:(1)∵a=1、b=1、c=﹣1,∴△=1﹣4×1×(﹣1)=5>0,则x=;(2)∵(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,解得:x=2或x=﹣120.(7分)如图,若将△ABC绕点C逆时针旋转90°后得到△A'B'C',(1)在图中画出△A'B'C';(2)求出点A经过的路径长.【解答】解:(1)如下图所示;(2)由题意知,∠AOA′=90°AC=,∴点A经过的路径长是L=π.21.(7分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN ⊥AC于点N.求证:MN是⊙O的切线.【解答】证明:连接OM,∵AB=AC,∴∠B=∠C,∵OB=OM,∴∠B=∠OMB,∴∠OMB=∠C,∴OM∥AC,∵MN⊥AC,∴OM⊥MN.∵点M在⊙O上,∴MN是⊙O的切线.22.(6分)如图,在△ABC中,AB=AC,点D、E分别在BC、AB上,且∠BDE=∠CAD.求证:△ADE∽△ABD.【解答】证明:∵AB=AC,∴∠B=∠C,∵∠ADB=∠C+∠CAD=∠BDE+∠ADE,∠BDE=∠CAD,∴∠ADE=∠C,∴∠B=∠ADE,∵∠DAE=∠BAD,∴△ADE∽△ABD.23.(8分)如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x 轴交于点C,已知点A的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.【解答】解:(1)将点A的坐标代入y=x﹣1,可得:m=﹣1﹣1=﹣2,将点A(﹣1,﹣2)代入反比例函数y=,可得:k=﹣1×(﹣2)=2,故反比例函数解析式为:y=.(2)将点P的纵坐标y=﹣1,代入反比例函数关系式可得:x=﹣2,将点F的横坐标x=﹣2代入直线解析式可得:y=﹣3,故可得EF=3,CE=OE+OC=2+1=3,=CE×EF=.故可得S△CEF24.(10分)暑假期间,某学校计划用彩色的地面砖铺设教学楼门前一块矩形操场ABCD的地面.已知这个矩形操场地面的长为100m,宽为80m,图案设计如图所示:操场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,在实际铺设的过程总,阴影部分铺红色地面砖,其余部分铺灰色地面砖.(1)如果操场上铺灰色地面砖的面积是铺红色地面砖面积的4倍,那么操场四角的每个小正方形边长是多少米?(2)如果灰色地面砖的价格为每平方米30元,红色地面砖的价格为每平方米20元,学校现有15万元资金,问这些资金是否能购买所需的全部地面砖?如果能购买所学的全部地面砖,则剩余资金是多少元?如果不能购买所需的全部地面砖,教育局还应该至少给学校解决多少资金?【解答】解:(1)设操场四角的每个小正方形边长是x米,根据题意,得:4x2+(100﹣2x)(80﹣2x)=4[2x(100﹣2x)+2x(80﹣2x)],整理,得:x2﹣45x+200=0,解得:x1=5,x2=40(舍去),故操场四角的每个小正方形边长是5米;(2)设铺矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则,y=30×[4x2+(100﹣2x)(80﹣2x)]+20×[2x(100﹣2x)+2x(80﹣2x)]即:y=80x2﹣3600x+240000配方得,y=80(x﹣22.5)2+199500当x=22.5时,y的值最小,最小值为19.95万元>15万元,故这些资金不能购买所需的全部地面砖,教育局还应该至少给学校解决19.95﹣15=4.95万元资金.25.(12分)如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由.【解答】解:(1)∵抛物线y=﹣x2+bx+4的图象经过点A(﹣2,0),∴﹣×(﹣2)2+b×(﹣2)+4=0,解得b=,∴抛物线解析式为y=﹣x2+x+4,又∵y=﹣x2+x+4=﹣(x﹣3)2+,∴对称轴方程为x=3;(2)在y=﹣x2+x+4中,令x=0,得y=4,∴C(0,4),令y=0,即﹣x2+x+4=0,整理得x2﹣6x﹣16=0,解得x=8或x=﹣2,∴A(﹣2,0),B(8,0),设直线BC的解析式为y=kx+b,把B(8,0),C(0,4)的坐标分别代入解析式,解得,∴直线BC的解析式为y=﹣x+4;(3)△AOC∽△COB成立.理由如下:在△AOC与△COD中,∵OA=2,OC=4,OB=8,∴=,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB.附加:初中数学几何模型【模型一】“一线三等角”模型:图形特征: 60°60°60° 45°45°45°运用举例: 1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标; x yB C AO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .l s 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D作∠ADE =45°,DE 交AC 于E .(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。